PREVALENCE AND ASSOCIATED RISK FACTORS OF TYPHOID FEVER IN CHILDREN ATTENDING “DEO GRATIAS” HOSPITAL IN DOUALA, LITTORAL REGION

TEH EXODUS AKWA*1, NGUIMBOUS SIMONE2

*Corresponding author: TEH EXODUS AKWA; ORCID: 0000-0003-2611-9774

1Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
2Department of Biological Sciences, University of Bamenda, Cameroon

*Corresponding author: exodusakwateh@gmail.com; Tel.: +254 792 775729; Medical Microbiology, Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya, P.O BOX 43844-00100-NAIROBI
PREVALENCE AND ASSOCIATED RISK FACTORS OF TYPHOID FEVER IN CHILDREN ATTENDING “DEO GRATIAS” HOSPITAL IN DOUALA, LITTORAL REGION OF CAMEROON

Abstract
Typhoid fever is a communicable disease transmitted by the bacteria *Salmonella typhi*, related to serotype *paratyphi* A, B and C. The disease is of a significant health concern in most developing countries especially Cameroon.

Objectives: The study aimed at determining the prevalence and associated risk factors of typhoid fever in children (0-18 years) attending the “Deo Gratias” hospital in Douala.

Method: A hospital base cross sectional study from August to September 2018 was carried out in patients’ age 0-18 years suffering from typhoid fever at the Deo gratias Catholic hospital. Widal slide agglutination test was the diagnostic test used. Positive tested patients were administered questionnaires to evaluate the level of knowledge, attitude and practice toward the disease, as well as their self-management abilities. Data obtained from respondents was analysed by descriptive statistics. One-way ANOVA and means comparison using Tukey’s test \((\alpha = 0.05)\) was performed to check whether the population of respondents differed significantly across risk factor practices. Results were finally presented on bar charts, tables and pie chart.

Results: Typhoid fever was more prevalent in females (52.3%) than in males (47.7%), with a high proportion in the ages 5-9 years (38.6%). A significant difference was observed in population of respondents across risk factor practices.

Conclusion: Water quality have a great impact on the burden of typhoid fever among children. The identification of risk factors associated to the disease is of great importance in the development of rational control strategies of the disease.

Keywords: *Salmonella typhi*, control, Widal test, incidence
1.0 Introduction

Typhoid fever is an infection having as causative agent *Salmonella typhi* related to the serotype *paratyphi* A, B and C (Geoffrey *et al.*, 2010). This bacteria is a significant cause of morbidity and mortality especially in developing countries and exhibits multiple antibiotic resistance (Akinyemi *et al.*, 2005). Studies by and Mike, (2008) shows that this disease is associated to low socio-economic status and poor hygiene, having humans as the only natural host of the infection since the bacteria grows best at 37 °C which corresponds to the human body temperature. Transmission of the disease is through faecal oral route from contaminated food or water (WHO, 2018). Major symptoms of the disease includes; malaise, fever, vomiting, constipation, splenomegaly and hepatomegaly (Nsutebu *et al.*, 2003). The disease can result to major complications such as internal haemorrhage and perforation (Evanson, 2008). In the absence of effective treatment, this disease has a fatality rate of about 10 to 30 % (Buckle *et al.*, 2010). Typhoid fever is a threat to many tropical countries showing a worldwide estimate of about 212 million cases with 129,000 deaths yearly with children and young adults being the vulnerable groups (Steele *et al.*, 2016).

Reports from the Cameroons’ Public Health ministry shows a frequent diagnosis of typhoid fever in children in health facilities in Cameroon and has resulted in a public scare (Nsutebu *et al.*, 2003). It is thus considered an endemic disease in Cameroon. One major challenge in the treatment of this disease in Cameroon is the high costs of its drugs. Control strategies to the disease is a possible way out to reduce the disease spread. However, absence of information associated to the risk factors of typhoid fever especially in children in Cameroon has made it not really possible to bring about effective control strategies to manage the disease. From the findings of this study, the knowledge of associated risk factors of typhoid fever will help to bring about rationale control strategies of the disease thus mitigating its spread.
2.0 Materials and Methods

2.1 Study design

A hospital based cross sectional study was conducted from August to September 2018 with the goal of determining the prevalence and associated risk factors of typhoid fever in children attending “Deo Gratias” hospital in Douala, Littoral region of Cameroon. The age 0-18 years was considered as children. Patients who were tested positive for typhoid fever were administered structured questionnaires. For patients less than 12 years of age their parents or guardian were required to fill the questionnaire. Questions were based on demographics of patients and typhoid fever associated risk factors. Questions on risk factors were related to water sources and treatment practices.

2.2 Study area

The study site was the “Deo Gratias” hospital in Douala, Littoral region of Cameroon. Cameroon is a country located in the central part of Africa. The country is comprised of ten regions. The Littoral region of Cameroon is the largest in size and the most populated of all the ten regions that make up Cameroon with a population of about 2,768,436 inhabitants (INS, 2017). Douala is the capital of the littoral region and also the economic capital of Cameroon. It is the most populated town in Cameroon (BUCREP, 2010). Water sanitation in Douala is poor which greatly contributes to water borne diseases such as typhoid and cholera (Ndjama et al., 2008)

2.3 Study participants and collection of samples

Participants of the study were patients of age between 0 to 18 years who tested positive for typhoid fever. Testing of typhoid disease was done with the use of blood samples. Blood specimens were collected into vacutainer tubes containing no preservative/additive (red cap tubes) and tests were performed using the Widal slide agglutination method. Structured
questionnaire were also administered to positive tested patients to evaluate the level of knowledge, attitude and practice towards the prevention and control of the disease, as well as their self-management abilities.

2.4 Laboratory analysis

The widal test was used as the presumptive serological diagnostic test for typhoid fever. The test determined the presence of agglutinins (antibodies) in the blood of an infected person against the the H (flagellar) and O (somatic) antigens of *S. typhi* and *paratyphi*. The slide agglutination test was used. Blood was collected in a vacutainer tube and centrifuged. With the use of a calibrated pipette, 50μl of serum was transferred on each circle of a Widal plate (which consisted of 8 rows of circles). A drop of reagent (TO, AO, BO, CO, TH, AH, BH, CH) respectively was added beside each drop of serum. Each drop of serum was mixed with the drop of reagent in a circular manner, using a separate mixing stick for each. The Widal plate was then gently swirled in a circular manner and macroscopically visualised for agglutination within 2 minutes.

Positive results were indicated by the appearance of a visible agglutination within a minute, formed due to the reaction occurring between antibodies present in the infected person’s blood (serum) and the antigens specific for *S. typhi* and *S. paratyphi*.

Results were recorded as 1/40, 1/60, 1/80, 1/160 etc. depending on the concentration of the agglutination observed. Negative results were indicated by the absence of agglutination between the patient’s antibodies in serum and specific *Salmonella* antigens. Negative results were noted as “non-reactive” (NR), indicating the absence of a reaction (agglutination).

A semi quantitative test was further performed on the patients’ serum that showed visible agglutination in order to determine the specific salmonella antigen responsible for the agglutination.

2.5 Result Analysis

The data obtained from questionnaires by respondents was analysed by descriptive statistics. The data was entered in a spread sheet, Microsoft Excel and normality determined. One-way ANOVA and means comparison using Tukey’s test (α = 0.05) was performed to check whether
the population of respondents differed significantly with respect to risk factors tested. Results were finally presented on bar charts, tables and pie chart.

2.6 Research Ethics

Prior to the sample collection, verbal and written details of the study was provided in both English and French. Written informed consent was obtained from all the participants or their guardians which was approved by the hospital management.

3.0 Results

3.1 Demographic and Clinical Presentation of Patients

3.1.1 Age and Gender

All patients who were confirmed positive for typhoid took part in the study during that period. A total of 44 patients were tested positive of which 23 (52.3 %) were females while 21 (47.7 %) were males. Of this, 18.2 % were in the group of below 5 years of age, 38.6% were in the range of 5 to 9 years, 22.7% were in the range of 10 to 14 years and finally 20.5% were in the group of 15 to 18 years old (Figure 1). Mean age of patients was 10.1 ± 7.8 years.

![Figure 1: Demographic presentation of participants according to age](image)

3.1.2 Clinical presentation of participants

Common symptoms shown by patients who participated in the study included fever, fatigue, headache and anorexia. Amongst the symptoms, most of the patients presented with fever (77.2 %) having temperatures ≥ 37.5ºC (figure 2). Fatigue was also common in the patients. Some
of the patients acknowledged that before being brought to the hospital for check-up they had already taken medications to reduce fever. Laboratory analysis showed that all the typhoid fever cases detected were due to \textit{S. paratyphi} A.

![Figure 2. Distribution of clinical signs and symptoms among study participants](image)

\textbf{3.2 Assessing risk factors associated with typhoid Fever}

\textbf{3.2.1 Source of Drinking Water}

Sources of drinking water identified by patients included pipe borne, river, stream and wells. A percentage of 62.5 was obtained from respondents on consumption of pipe borne water while rivers, wells and other sources had 13.3 \%, 22.5 \% and 10.7 \% response as sources of water consumption (Figure 3).

![Figure 3: Distribution of patients according to drinking water sources](image)
A one way ANOVA (Table 1) carried out on the data obtained from drinking water sources showed a significant difference (P < 0.05) between the mean population of respondents’ on the sources. A majority of the respondents used pipe borne as the major source of drinking water (23.98 ±3.20). There was no significant difference in the population of respondents whose source of drinking water was wells, river, streams and other sources.

Table 2: Mean population distribution of respondents on sources of drinking water

<table>
<thead>
<tr>
<th>Sources of drinking water</th>
<th>Mean population of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe borne</td>
<td>23.98±3.20^a</td>
</tr>
<tr>
<td>Wells</td>
<td>9.90±1.90^b</td>
</tr>
<tr>
<td>River and stream</td>
<td>5.80±1.50^b</td>
</tr>
<tr>
<td>Other sources (alternate source)</td>
<td>4.70±1.80^b</td>
</tr>
<tr>
<td>Mean respondents</td>
<td>11.09±2.10</td>
</tr>
<tr>
<td>P= 0.001 (P<0.05)</td>
<td></td>
</tr>
</tbody>
</table>

*Values are expressed as means ± SE

^a,bMeans accompanied by different superscripts differ significantly at P<0.05

3.2.2 Household Water Treatments Method used
Household water treatment methods outlined in the questionnaire included; boiling of water, filtering of water using purchased water filters and use of cotton wool as local household filters. A significant difference was recorded among participants on use of treatment methods. Majority of the respondents did not use any treatment method on water before drinking. Others used either boiling or filtering of the water as their water treatment technique.

Table 2: Mean distribution of respondents according to methods of household water treatment

<table>
<thead>
<tr>
<th>Method of water purification</th>
<th>Mean population of respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>18.99±2.90^b</td>
</tr>
<tr>
<td>Boiling</td>
<td>7.00±1.40^c</td>
</tr>
<tr>
<td>Use of water filters</td>
<td>18.00±1.40^b</td>
</tr>
<tr>
<td>Use of cotton wool</td>
<td>0^a</td>
</tr>
</tbody>
</table>

^a,bMeans accompanied by different superscripts differ significantly at P<0.05
3.3.3 Number of Members in Households
Patients who participated in the study lived in household with size ranging from one to eight members. A higher proportion of patients was obtained in households of size between of 3 to 5 members (66.7 %). Table 3.

Table 3: Distribution of respondents according to number of members in household

<table>
<thead>
<tr>
<th>Number of children</th>
<th>Percentage (number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 3</td>
<td>15.9 (7)</td>
</tr>
<tr>
<td>3-5</td>
<td>68.18 (30)</td>
</tr>
<tr>
<td>6-8</td>
<td>15.9 (7)</td>
</tr>
<tr>
<td>More than 8</td>
<td>0</td>
</tr>
</tbody>
</table>

3.3.4 Socioeconomic status index
Socioeconomic status index was considered based on monthly income of parents or guardians in households. The status was categorized as follows; high socioeconomic status index (>150,000 CFA), medium socioeconomic status index (between 100,000 CFA to 150,000 CFA) and low socioeconomic status index (< 100,000 CFA). A greater proportion of the patients (50 %) came from families with medium socioeconomic status index.

Figure 4: Distribution of patients according to household socioeconomic index
4.0 DISCUSSION

Based on our knowledge, this is the first study done on the association of risk factors to typhoid fever in this part of Cameroon. The gender distribution of typhoid disease in this study was 47.7% for males and 52.3% for females, suggesting that typhoid fever was more prevalent in females than in males among the age group in that locality. Similar research done by Butler et al. (1991) and Khan et al. (1999) in Bangladesh and South Africa showed that typhoid fever correlated with gender and case fatality is higher in females compared to males. A greater proportion of positive cases was detected among children with age range 5 to 9 (38.8 %) while a lesser proportion of patients was found in the age group below 5 years (18.2 %). One reason for the high prevalence observed in the age group 5 to 9 is the underdeveloped immune system in growing children, this makes them more vulnerable to this enteric pathogen. A low prevalence noted in children less than 5 years of age may probably be due to their controlled diet and drinking water at these tender ages by their parents.

As regards socioeconomic status index, high income category had a lesser prevalence of typhoid (15.9 %) relative to lower income category (34.1 %) and middle income category (50 %). Similar studies done by Vollaard, (2004) show that the prevalence of typhoid infection was higher among lower income category households. Low income category household have high tendency of purchasing and eating cooked food from street vendors which predisposes them to typhoid infection. Street vendors have limited facilities for storing food and cleaning of dishes. This poor hygiene practice is a vehicle for disease transmission. Furthermore low income category household practice poor household hygiene due to lack of means of available portable water connected to their houses. Ram et al. (2007) also identified socioeconomic status as a significant risk factor associated in the occurrence of typhoid fever.
Patients who took part in the study lived in household of varied sizes. Research indicates that household contact is a major risk factor associated to the spread of typhoid infection. Vollard, (2004) found that the prevalence of typhoid was higher in households containing more than 6 members. Crowding was seen to be a risk factor associated with typhoid fever among households.

Most epidemiological studies have related the risk factors to typhoid fever of being waterborne or foodborne (Swadiwudhipong et al., 2001). Findings obtained from the data showed a significant difference (P <0.05) between the mean population of respondents’ on the sources of drinking water. A majority of the respondents used pipe borne water as a source of drinking water though others still used wells, rivers and streams as their main source. Concerning sources of drinking water, UNICEF categorized water sources as improved drinking water source or unimproved drinking water source (UNICEF, 2012). Piped water in dwelling, yard or public taps was classified under improved drinking water source while unprotected springs and dug wells were classified as unimproved source of water. This classification was used to distinguish safe water sources from unsafe sources (UNICEF, 2012). People who drink water from safe sources stand a lower risk of typhoid infection than those who drink from unsafe sources (Mogasale, 2018). Similar research carried out on microbial analysis of household wells revealed a high bacterial load and resistant strains of Salmonella enterica serover Typhi (Farooqui et al., 2009).

With respect to household water treatment methods, a significant difference (P <0.05) was observed among the population of respondents. Some respondents did not use any household treatment method for water. This could contribute greatly to the prevalence of typhoid fever. Studies carried out by Ram, (2007) in Bangladesh demonstrated that drinking of unboiled water at home was a major risk factor in the occurrence of typhoid fever. Boiling of water in clean containers before drinking could reduce the risk of typhoid fever. This is due to the fact that
the Salmonella typhi bacteria grows best at a temperature of 37 °C thus very high temperatures kills the bacteria. Boiling, the use of ceramic filters, bleach addition and solar disinfection has been household water treatment interventions introduced by the WHO (Farooqui et al., 2009)

5.0 LIMITATIONS

One possible limitation of this study was the limited number of participants which could greatly affect the statistical power of the study. Responses provided in the questionnaire for age group below 12 years was provided by parents and guardians which could introduce recall bias as regards the study.

6.0 CONCLUSION

The results from the study have a lot of significance to health experts. Firstly, it highlights improvement of sanitation and hygiene as the most effective way to prevent the spread of the disease especially in children. Nonetheless, our findings also highlight the need for more sensitisation of the public concerning the mechanism of transmission and effective control or preventive methods of the disease.

7.0 USED ABBREVIATIONS

WHO; World Health Organisation, UNICEF; United Nations International Children Emergency Fund, ANOVA; Analysis of variance

8.0 CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this article and there have been no significant financial support from anywhere that might have influenced its outcome.

9.0 ACKNOWLEDGEMENTS

The authors are thankful for the support provided by the administration of the “Deo Gracias” Catholic hospital for making it possible for the research to be carried. Many thanks go to the patients or parents and guardians of patients who assisted responding to the questionnaires.
REFERENCES

3. BUCREP, Troisième recencement générale de la population et de l'habitat. Third general population and housing census Cameroun, Rapport de presentation des résultats définitifs. République du Cameroun; 2010

18. Wain, J; Hendriksen, RS; Mikoleit, ML; Keddy, KH; Ochiai, RL (21 March 2015) Typhoid fever

19. WHO; Typhoid and other invasive salmonellosis. Vaccine-Preventable Diseases Surveillance Standards; 2018
QUESTIONNAIRE

PREVALENCE AND ASSOCIATED RISK FACTORS OF TYPHOID FEVER IN CHILDREN

(Tick the letter corresponding to your answer)

A. Demography of respondents

1. Age
 a. Less than 5 years c. 10-14 years
 b. 5-9 years d. 15-18 years

2. Gender
 a. Female
 b. Male

3. Main source of household drinking
 a. Tap c. River/Stream
 b. Well d. Other

4. How is water treated in the house for drinking?
 a. Using a cotton c. We don’t treat our water
 b. Using purchased water filters d. By boiling

5. Estimated monthly income of parents
 a. Less than 50,000 CFA c. 100,000 CFA-150,000CFA
 b. 50,000 CFA-100,000CFA d. Greater than 150,000 CFA

6. Number of members in the household
 a. Less than 3 c. 6 - 8
 b. 3 - 5 d. more than 8

B. KNOWLEDGE AND PERCEPTION OF RESPONDENT

1. Have you ever heard of typhoid fever?
 a. Yes b. No

2. Based on your knowledge, what is typhoid fever?
 a. An illness caused by bacteria due to poor personal hygiene and poor sanitation
 b. An illness which affects only children
 c. Typhoid fever do not exist
 d. It is when somebody has fever
3. What are the signs and symptoms associated to typhoid fever?
 a. There’s no sign and symptom
 b. Anger, poverty, short height, hunger
 c. Fever, vomiting, malaise, diarrhea, headache
 d. Overweight, hallucination, loss of hair

4. How do we get typhoid fever?
 a. By talking with people
 b. By ingesting/eating contaminated food and water
 c. By walking on the way
 d. By staying in the hospital

5. What factors contribute to the spread of typhoid fever?
 a. Going to school
 b. Smoking, alcohol
 c. Poor hygiene and sanitation
 d. There’s no factor

6. Can typhoid fever be prevented?
 a. Yes
 b. No

7. If “Yes”, how can it be done?
 a. By sleeping in the night
 b. Avoid breathing
 c. playing under the rain
 d. Good personal hygiene, use of clean water

8. Based on your understanding, can typhoid disease be cured?
 a. Yes
 b. No