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SUMMARY 14 
The 2019 novel SARS-like coronavirus (SARS-CoV-2) entry depends on the host membrane serine protease 15 
TMPRSS2, which can be blocked by some clinically-proven drugs. Here we analyzed spatial relevance 16 
between glycosylation sequons and antibody epitopes and found that, different from SARS-CoV S, most 17 
high-surface-accessible epitopes of SARS-CoV-2 S are blocked by the glycosylation, and the optimal 18 
epitope with the highest surface accessibility is covered by the S1 cap. TMPRSS2 inhibitor treatments may 19 
prevent unmasking of this epitope and therefore prolong virus clearance and may induce 20 
antibody-dependent enhancement. Interestingly, a heparin-binding sequence immediately upstream of 21 
the S1/S2 cleavage site has been found in SARS-CoV-2 S but not in SARS-CoV S. Binding of SARS-CoV-2 with 22 
heparins may lead to exposure of S686, which then facilitates the S1/S2 cleavage, induces exposure of the 23 
optimal epitope, and therefore increases the antibody titres. A combination of heparin and vaccine (or 24 
convalescent serum) treatments thus is recommended. 25 
 26 
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In Brief 1 
Most strong epitopes of SARS-CoV-2 S are blocked by the glycosylation, and the optimal epitope with the 2 
highest surface accessibility is covered by the S1 subunit. Heparin facilitates the S1/S2 cleavage. Therefore, 3 
TMPRSS2 inhibitors may prolong but heparins may accelerate SARS-CoV-2 clearance. 4 
 5 
Highlights 6 
● Most strong epitopes of SARS-CoV-2 S are covered by glycans or the S1 subunit. 7 
● TMPRSS2 inhibitor may prevent unmasking of the optimal epitope. 8 
● Free heparins may induce more exposure of the optimal epitope. 9 
● Max blood concentrations of TMPRSS2 inhibitors are below IC90. 10 
 11 
INTRODUCTION 12 
Considering the wide spread of the 2019 novel SARS-like coronavirus (SARS-CoV-2), many candidate drugs 13 
have been proposed and testified. No highly-specific anti-viral treatment exists. Therefore, host-directed 14 
therapies have been repurposed to treat the novel coronavirus disease 2019 (COVID-19), such as some 15 
immunomodulators to prevent the cytokine storm and drugs to inhibit the virus entry or endocytosis 16 
(Zumla et al., 2020). 17 
  SARS-like coronaviruses utilize angiotensin-converting enzyme 2 (ACE2) as the receptor (Yan et al., 2020). 18 
And a plasma membrane serine protease TMPRSS2 is responsible for the proteolysis of viral spike (S) 19 
proteins in the post-receptor-binding stage (Glowacka et al., 2011; Kawase et al., 2012; Matsuyama et al., 20 
2010; Shulla et al., 2011; Yamamoto et al., 2016). Viral spike (S) protein S1 attaches the virion to the cell 21 
membrane by interacting with the host receptor, initiating the infection. Binding to human ACE2 receptors 22 
and internalization of the virus into the endosomes of the host cell induce conformational changes in the S 23 
glycoprotein. Proteolysis by TMPRSS2 may unmask the fusion peptide of S2 and activate membranes 24 
fusion within endosomes. Spike protein S2 mediates fusion of the virion and cellular membranes by acting 25 
as a class I viral fusion protein (Xia et al., 2020). Under the current model, the protein has at least three 26 
conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. 27 
During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of- 28 
hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the 29 
ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral 30 
and target cell membranes (Xia et al., 2020). 31 
  Recently, Hoffmann et al. (2020) found that a TMPRSS2 inhibitor camostat blocked CoV infection in-vitro. 32 
Here we analyzed spatial relevance between glycosylation sequons and antibody epitopes and found that, 33 
different from SARS-CoV S, most high-surface-accessible epitopes of SARS-CoV-2 S are blocked by the 34 
glycosylation, and the optimal epitope with the highest surface accessibility is covered by the S1 cap. 35 
TMPRSS2 inhibitor treatments may prevent unmasking of this epitope and therefore prolong virus 36 
clearance subsequently. A clinical study suggested that higher TMPRSS2 levels in prostate cancer patients 37 
did not increase their illness duration after SARS-CoV-2 infections, but decreased the mortality rate 38 
significantly; inhibition to TMPRSS2 (as androgen-deprivation therapy) may not improve the outcomes 39 
(Montopoli et al., 2020). Interestingly, a heparin-binding sequence immediately upstream of the S1/S2 40 
cleavage site has been found in SARS-CoV-2 S but not in SARS-CoV S, indicating that free heparins may 41 
promote the S1/S2 cleavage, induce exposure of the optimal epitope, and therefore accelerate the virus 42 
clearance. This assumption has been proved by a serological study that adding 10 μM heparins into the 43 
sera from COVID-19 patients led to a four-fold increase in antibody titres (Perera et al., 2020). 44 
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 1 
RESULTS AND DISCUSSION 2 
Positive Electrostatic Potential of SARS-CoV-2 S Protein May Explain Its High Affinity to ACE2. 3 

 4 

Figure 1. Electrostatic Potential of SARS-CoV S, SARS-CoV-2 S and Human ACE2 5 
The red-to-blue color on the molecular surface indicates the electrosta�c poten�al (red: −1.8; blue: 1.8). 6 
The S1/S2 cleavage sites are marked with the dark purple color. The receptor-binding motifs (RBM) are 7 
marked with the pale lavender color. 8 
 9 
The predominant state of the trimer has one of the three receptor-binding domains (RBDs) rotated up in a 10 
receptor-accessible conformation. Biophysical and structural evidences indicated that ACE2 bound to the 11 
SARS-CoV-2 S ectodomain with about 15 nM affinity, which is 10 to 20-fold higher than ACE2 binding to 12 
SARS-CoV S (Yan et al., 2020). Here we calculated electrostatic potential of SARS-CoV S protein, 13 
SARS-CoV-2 S protein and human ACE2 (Figure 1). Interestingly, both SARS-CoV S and ACE2 protein 14 
surfaces are uniformly negatively-charged, and therefore they repel each other. However, a large part of 15 
SARS-CoV-2 S protein surface is electrically neutral but its receptor-binding motif (RBM) is positive-charged, 16 
and therefore SARS-CoV-2 S and ACE2 attract each other. The S1/S2 cleavage sites are distributed in the 17 
middle of both SARS-CoV S and SARS-CoV-2 S proteins, implying that TMPRSS2-mediated S1/S2 cleavage 18 
may not influence ACE2 binding. 19 
 20 
SARS-CoV-2 S Fusion Core Peptides Are More Hydrophobic than SARS-CoV S 21 
A study of the X-ray crystal structure revealed that the six-helical fusion core in the SARS-CoV-2 S protein 22 
S2 subunit is formed by interaction between two heptad repeat domains HR1 and HR2 (Xia et al., 2020). 23 
The three HR1 domains (894-966 of SARS-CoV S protein or 912-984 of SARS-CoV-2 S protein) form a 24 
parallel trimeric coiled-coil center, around which three HR2 domains (1145-1195 of SARS-CoV S protein or 25 
1163-1213 of SARS-CoV-2 S protein) are entwined in an antiparallel manner (Xia et al., 2020). The 26 
interaction between these two domains is predominantly a hydrophobic force. Each pair of two adjacent 27 
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HR1 helices forms a deep hydrophobic groove, providing the binding site for hydrophobic residues of the 1 
HR2 domain. The hydrophobic appearance (electrically neutral surface) plays an important role in the 2 
membrane fusion process (Xia et al., 2020). 3 

 4 
Figure 2. Electrostatic Potential of SARS-CoV and SARS-CoV-2 S1 and S2 Subunits 5 
The Viral spike (S) protein could be divided into S1 and S2 subunits upon the cleavage by TMPRSS2. The 6 
red-to-blue color on the molecular surface indicates the electrosta�c poten�al (red: −1.8; blue: 1.8). The 7 
S1/S2 cleavage sites are marked with the dark purple color. The heptad repeat domain HR1 on one of the 8 
three monomers is marked with orange (invisible segment covered by the S1 cap), green (the fusion core) 9 
and yellow colors (visible segment without a cover of S1 cap). In the SARS-CoV fusion core, only three aa 10 
distribute on an electrically-neutral area (marked with the pale green color); while the others distribute on 11 
the hydrophilic area. Different from SARS-CoV, the SARS-CoV-2 fusion core is much more hydrophobic that 12 
only three aa distribute on an electrically-negative area (marked with the brown color) and the others 13 
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distribute on the electrically-neutral area. 1 
 2 
  The SARS-CoV fusion core is composed of 19 amino acids (aa; 911-929 of SARS-CoV S); while the 3 
SARS-CoV-2 fusion core is also composed of 19 aa (929-947 of SARS-CoV-2 S; Figure 2). Interestingly, a 4 
majority of SARS-CoV fusion core peptide surface is negatively-charged, which could be converted into 5 
positive-charged after the TMPRSS2 cleavage, indicating an electrical charge redistribution. Among the 19 6 
aa, only three aa distribute on an electrically-neutral area; while the others distribute on the hydrophilic 7 
area. Different from SARS-CoV, the SARS-CoV-2 fusion core is much more hydrophobic that only three aa 8 
distribute on an electrically-negative area and the others distribute on the electrically-neutral area. More 9 
hydrophobic appearance of SARS-CoV-2 fusion core may be another reason for its higher infectivity 10 
compared to SARS-CoV. Interestingly, C-terminus of HR1 domain in either SARS-CoV S (930-966 aa) or 11 
SARS-CoV-2 S (948-984 aa) is covered by the S1 subunit, which could be unmasked upon proteolysis by 12 
TMPRSS2, also confirming the role of TMPRSS2 in the conformational changes required for the membrane 13 
fusion process. 14 
 15 
The Optimal Epitope with the Highest Surface Accessibility Is Covered by the S1 Cap 16 
Being exposed on the viral surface, S proteins are a major target for host antibodies and are referred to as 17 
viral antigens; these antigens are therefore targets for vaccine development (Zheng and Song, 2020). 18 
However, viral envelope proteins are often modified by the attachment of complex glycans. The 19 
glycosylation of these surface antigens helps the pathogen evade recognition by the host immune system 20 
by cloaking the protein surface from detection by antibodies, and can influence the ability of the host to 21 
raise an effective adaptive immune response or even be exploited by the virus to enhance infectivity 22 
(Baum and Cobb, 2017; Pereira et al., 2018). 23 
  In this study, we computed sequence-based antibody epitopes on spike proteins of SARS-CoV and 24 
SARS-CoV-2 (Tables S1 and S2). As the surface accessibility of epitope is the most important determinant 25 
to the interaction between antibody and antigen, the possible antibody epitopes were filtered with the 26 
surface accessible scores by using the default threshold value of 1.0 (Emini et al., 1985). Then the epitope 27 
candidates were re-scored by using BepiPred-2.0 bioinformatic tool with the default threshold value of 28 
0.50 (Jespersen et al., 2017). 27 epitopes were found on SARS-CoV S protein, among which 10 epitopes 29 
had been ruled out due to the low epitope scores. And 30 epitopes were identified on SARS-CoV-2 S, 30 
among which 9 epitopes had been ruled out due to the low epitope scores (Tables S1 and S2). In SARS-CoV 31 
RBD region (306-527) and SARS-CoV-2 RBD region (319-541) respectively, 4 epitopes and 6 epitopes were 32 
screened out finally. Our epitope prediction has been proved by two clinical studies. In one study, 399 33 
human monoclonal antibodies (mAbs) have been sorted in 10 SARS-CoV-2 patients, but only 35 34 
S-protein-specific mAbs were acquired, among which, 4 mAbs recognize RBD (Chi et al., 2020). Another 35 
study indentified the S230 antibody, which was isolated from memory B cells of a SARS-CoV-infected 36 
individual and potently neutralized a broad spectrum of SARS-CoV isolates of human and animal origins 37 
(Rockx et al., 2008). The S230 epitope is centered around L443 on S protein and Y408, Y442, F460 and 38 
Y475 participate binding to this antibody (Rockx et al., 2008), which matches to a 14 aa epitope candidate 39 
(431-444) screened out in this study with a high surface accessibility (SA) score of 3.149 (Table S1). 40 
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 1 
Figure 3. Distribution of Glycosylation Sequons and Antibody Epitopes on SARS-CoV S and SARS-CoV-2 S 2 
The Viral spike (S) protein could be divided into S1 and S2 subunits after the cleavage by TMPRSS2. The 3 
S1/S2 cleavage sites are marked with the dark purple color. The receptor-binding motifs (RBM) are marked 4 
with the pale lavender color. Putative epitopes with different surface accessibilities (SA) are marked with 5 
yellow (SA 1.0-2.0), orange (SA 2.0-3.0), red (SA 3.0-3.8) and brown (SA > 3.8) colors. Glycosylation 6 
sequons are marked with the green color. The putatively-optimal epitope (755-761) of SARS-CoV with the 7 
highest SA score of 4.431 is located on the cutting surface of S2 subunit, which would be uncovered only 8 
after TMPRSS2 cleavage. And the putatively-optimal epitope (773-779) of SARS-CoV-2 with the highest SA 9 
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score of 4.868 is also located on the cutting surface of S2 subunit, whose binding requires removal of the 1 
S1 cap. Due to the coverage limitation in the Swiss model, glycosylation sequons and epitopes in 2 
1120-1255 aa of SARS-CoV S or in 1147-1273 aa of SARS-CoV-2 S are not shown in the figure. To present 3 
the sites more clearly, only one of the three monomers is labeled. 4 
 5 
  Walls et al. (2020) indentified N-linked glycosylation sequons in SARS-CoV S and SARS-CoV-2 S. Along 6 
with these data, spatial relevance between glycosylation sequons and antibody epitopes were further 7 
analyzed (Figure 3). Grant et al. (2020) demonstrated that most SARS-CoV and SARS-CoV-2 epitopes are 8 
shielded by glycans, and only areas of the protein surface at the apex of the S1 domain appear to be 9 
accessible to known antibodies (Vankadari and Wilce, 2020). A visual examination of the structures from 10 
molecular dynamics simulation also confirmed that the most exposed epitopes comprise the ACE2 11 
receptor site RBD, specifically at the apex region of the RBM domain (Grant et al., 2020). Similar results 12 
were also obtained in this study. On SARS-CoV S, only three strong epitopes with SA scores >3.0 have been 13 
identified. One epitope (431-444; matching to the S230 epitope as mentioned above) recognizes RBD and 14 
is not surrounded by glycosylation sequons. Another epitope (1238-1243) is located in the C-terminal 15 
transmembrane domain (Figure S1) and therefore should not be accessible to any antibody. The 16 
putatively-optimal epitope (755-761) with the highest SA score of 4.431 is located on the cutting surface of 17 
S2 subunit, which could be uncovered only after TMPRSS2 cleavage (Figure 3). Besides, the epitope 18 
540-548 is also not surrounded by glycosylation sequons, however its relatively low SA score (2.396) may 19 
suggest a low neutralizing ability (Figure 3 and Figure S2). 20 
  Unfortunately, no strong epitopes (SA scores >3.0) is available that recognizes SARS-CoV-2 RBD. This 21 
finding is consistent with the fact that only low level of binding of SARS-CoV-2 S to polyclonal rabbit 22 
anti-SARS S1 antibodies T62 was detected (Ou et al., 2020). Two strong epitopes are located on 23 
SARS-CoV-2 S1 (674-685) and S2 (808-817) subunit surfaces respectively. However both of them are 24 
accompanied with glycosylation sequons. Although these two epitopes have large surface areas, their 25 
accompanying glycosylation sequons are located on raised areas, and therefore may form the steric 26 
hindrance (Figure 3). There is also a strong epitope (1256-1261) located in the C-terminal transmembrane 27 
domain (Figure S1). And the putatively-optimal epitope (773-779) with the highest SA score of 4.868 is 28 
also located on the cutting surface of S2 subunit, whose binding requires removal of the S1 cap (Figure 3). 29 
Notably, a remarkable alterations in the antigenicity was observed in SARS-CoV-2 that no strong 30 
RBD-targeting epitopes is available and almost all high-surface-accessible epitopes are blocked by the 31 
glycosylation, including the 4A8 epitope sorted recently (matching to a 10 aa epitope 144-153 indentified 32 
in this study; Chi et al., 2020). These results might explain why the sera from convalescent SARS-CoV-2 33 
patients exhibited a much weaker neutralizing antibody response compared to SARS-CoV (Hoffmann et al., 34 
2020). 35 
  These results also imply that developing of monoclonal antibodies may not be an idea strategy to treat 36 
SARS-CoV-2 infections. Alternatively, recombinant virus vector vaccines, DNA vaccines or inactivated virus 37 
vaccines may induce strong cellular immunity rather than humoral immunity that produces antibodies 38 
(Chandrashekar et al., 2020; Gao et al., 2020; Yu et al., 2020; Zhu et al., 2020). 39 
 40 
TMPRSS2 Protease Inhibitors May Prolong SARS-CoV-2 Clearance and Induce Antibody-Dependent 41 
Enhancement 42 
Considering that almost all high-surface-accessible epitopes of SARS-CoV-2 are blocked by the glycan 43 
shield, people may deduce that the virus should not be cleaned up by the immune system. But that is not 44 
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the truth. The epitope on the cutting surface usually have no time to bind with the corresponding 1 
antibody, since the membrane fusion occurs immediately following the S1/S2 cleavage. However, free 2 
TMPRSS2 makes the antibody binding possible. TMPRSS2 is a secreted protease that is highly expressed in 3 
prostate and lung tissues, especially in secretory epithelia (Afar et al., 2001; Lukassen et al., 2020). 4 
TMPRSS2 inactive precursor is a 492 residue protein classified as a type II transmembrane protein, with a 5 
70 amino acid N-terminal cytoplasmic domain, followed by a 36 amino acid transmembrane domain 6 
(Lucas et al., 2008). Upon sorting to the cytomembrane, the proenzyme would be converted into the 7 
active enzyme through limited proteolysis and removal of both the N-terminal segment and the 8 
transmembrane domain (Figure S1; Khan and James, 1998; Lucas et al., 2008). Then the active enzymes 9 
(C-terminal) may detach from the membrane and be released (secreted) to the extracellular space. As a 10 
result, a small part of SARS-CoV-2 S proteins may be cleavaged by free TMPRSS2 before they bind the 11 
receptor ACE2 and then the epitope on the cutting surface may have a time to induce a neutralizing 12 
antibody response, although maybe in a low efficiency. Clinical data suggested that SARS-CoV-2 can be 13 
cleaned up within 17 days (13–22 days; Xu et al., 2020); while the median duration of SARS-CoV RNA 14 
detection is 13 days (6–23 days; Hui et al., 2004). 15 
  Some TMPRSS2 inhibitors (such as camostat and nafamostat) block the Middle East respiratory 16 
syndrome coronavirus (MERS-CoV) or SARS-CoV infection in-vitro (Kawase et al., 2012; Yamamoto et al., 17 
2016). Hoffmann et al. (2020) further indicated that camostat mesylate treatment significantly inhibited 18 
SARS-CoV-2 entry into primary human lung cells. However as analyzed above, the optimal epitope with 19 
the highest surface accessibility is covered by the S1 cap and thus TMPRSS2 inhibitors may prevent 20 
unmasking of this epitope and prolong virus clearance subsequently. Nevertheless, the delay in virus 21 
clearance caused by TMPRSS2 inhibitors may not occur in SARS-CoV infections, because that the 22 
neutralizing antibody S230 would play a crucial role in the virus clearance (Rockx et al., 2008). 23 
  Antibody-dependent enhancement (ADE) of viral entry has been a major concern for epidemiology, 24 
vaccine development, and antibody-based drug therapy (Wan et al., 2020). The ADE antibody binds to the 25 
surface spike protein of coronaviruses, triggers a conformational change of the spike via receptor 26 
functional mimicry (Walls et al., 2019), and mediates viral entry into IgG Fc receptor-expressing cells (like 27 
macrophages) and causes cell death (Wan et al., 2020). Critically, patients who eventually died of SARS 28 
displayed similarly accumulated pulmonary proinflammatory, absence of wound-healing macrophages, 29 
faster neutralizing antibody responses and higher total antibody titer, all of which indicate a certain level 30 
of ADE (Cao, 2020; Tetro, 2020; Zhang et al., 2020; Zhao et al., 2020). 31 
  Given that TMPRSS2 inhibitors prevent unmasking of the optimal epitope and thus hamper neutralizing 32 
antibody activities, these inhibitors may prolong the persistence of ADE. Although TMPRSS2 inhibitors may 33 
prevent macrophage death caused by the SARS-CoV-2 entry, they increase the likelihood of viral 34 
attachment to the macrophage surface. Alveolar macrophages underwent functional polarization after 35 
such viral attachment, demonstrating a proinflammatory characteristic (Liu et al., 2019). On the other 36 
hand, viral attachment to the macrophage surface may further enhance the infectivity via macrophage 37 
infiltration, which may worsen the lung injury (Li et al., 2020). 38 
  These assumptions have been partly proved in prostate cancer patients infected with SARS-CoV-2 39 
(Montopoli et al., 2020). TMPRSS2 is highly expressed in both localized and metastatic prostate cancers 40 
and its transcription is regulated by the androgen receptor. Intriguingly, it has been shown that androgen 41 
positively regulates TMPRSS2 expression also in non-prostatic tissues, including lung (Stopsack et al., 2020). 42 
Montopoli et al. (2020) indicated that 27.2% (31/114) of prostate cancer COVID-19 male patients without 43 
androgen-deprivation therapy developed severe diseases and 15.8% (18/114) died; 28.5% (89/312) of male 44 
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patients with other tumors and SARS-CoV-2 developed severe diseases and 18.3% (57/312) died; while 1 
among male patients without cancer 10.0% (411/4102) developed severe diseases and 5.8% (237/4102) 2 
died. Although only four prostate cancer patients receiving androgen-deprivation therapy were infected 3 
with SARS-CoV-2, one patient (1/4) still developed severe diseases. These clinical data imply that higher 4 
TMPRSS2 levels in prostate cancer patients did not increase their illness duration, but decreased the 5 
mortality rate significantly; inhibition to TMPRSS2 (as androgen-deprivation therapy) may not improve the 6 
outcomes. 7 
  Nevertheless, only 4 of 5273 (0.076%) prostate cancer patients receiving androgen-deprivation therapy 8 
were infected with SARS-CoV-2; while 114 of 37,161 (0.307%) prostate cancer patients without 9 
androgen-deprivation therapy were infected with SARS-CoV-2. The infection rate decreased by 75.1% after 10 
the androgen-deprivation therapy. Camostat, nafamostat, or other TMPRSS2 inhibitors (e.g. bromhexine 11 
as recommended by Stopsack et al., 2020) may be used as prophylactic drugs to reduce the risk of 12 
infection, because that TMPRSS2 inhibitors may decrease the initial viral load during the incubation period. 13 
However they may be inefficient for the patients who already develop symptoms, or even have a 14 
detrimental effect on the virus clearance. 15 
 16 
Heparin May Accelerate SARS-CoV-2 Clearance by Facilitating S1/S2 Cleavage 17 

 18 

Figure 4. Distribution of a Heparin-Binding Sequence Immediately Upstream of the S1/S2 Cleavage Site 19 
on SARS-CoV-2 S But Not on SARS-CoV S 20 
A heparin-binding sequence immediately upstream of the S1/S2 cleavage site has been found in 21 
SARS-CoV-2 S but not in SARS-CoV S. The heparin-binding sequence is marked with the red color. Both 22 
R667 and S668 in SARS-CoV S cleavage site are exposed on the protein surface (marked with the dark 23 
purple color). Contrastingly, although R685 in SARS-CoV-2 S cleavage site is exposed on the protein surface 24 
(marked with the dark purple color), S686 in SARS-CoV-2 S is embedded under the protein surface (marked 25 
with the light purple color), which may be exposed above the protein surface via a conformational change 26 
induced by the heparin binding. To present the sites more clearly, only one of the three monomers is 27 
labeled. 28 
 29 
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Heparin is a mucopolysaccharide sulfuric acid ester that is found especially in the liver and lungs. Heparin 1 
is an attractive target for viral adhesion because of its physiological location on the surface of most animal 2 
cells, where the initial interactions with viruses occur (de Haan et al., 2005). Previous studies found the 3 
heparan sulfate (HS) binding in the S1/S2 cleavage motif of murine coronaviruses (de Haan et al., 2005; 4 
Watanabe et al., 2007). Although heparin is not a direct entry receptor for some murine coronaviruses, it 5 
induces a conformational change of S1 subunit, which may facilitate the virus entry (Mycroft-West et al., 6 
2020). Here we searched putative HS-binding consensus sequences (XBBXBX, XBXBBX or XBXXBBBX; X=any 7 
amino acid, B=basic amino acid; de Haan et al., 2005; Watanabe et al., 2007) on both SARS-CoV S and 8 
SARS-CoV-2 S, and interestingly found that only SARS-CoV-2 S has a HS-binding sequence (681-686 PRRARS) 9 
immediately upstream of the S1/S2 cleavage site (R685-S686; Figure 4). Another intriguing difference 10 
between SARS-CoV S and SARS-CoV-2 S is that both R667 and S668 in SARS-CoV S cleavage site are 11 
exposed on the protein surface, but S686 in SARS-CoV-2 S is embedded under the protein surface (Figure 12 
4). These findings imply that heparin binding may be required for SARS-CoV-2 S1/S2 cleavage, but not for 13 
SARS-CoV S1/S2 cleavage. Binding of SARS-CoV-2 with membrane-bound heparins may lead to exposure of 14 
S686 by a conformational change, which then facilitates the S1/S2 cleavage and the subsequent 15 
membrane fusion (virus entry). While if SARS-CoV-2 S binds free heparins in the interstitial fluids or in the 16 
blood, the enhanced S1/S2 cleavage may induce more exposure of the optimal epitope 773-779, which 17 
therefore accelerates SARS-CoV-2 clearance (Figure 5). One copy of the HS-binding motif adjacent to the 18 
cleavage site in the S protein is a common characteristic of murine coronaviruses (de Haan et al., 2005; 19 
Watanabe et al., 2007), which suggests that one or more rodent species might be the intermediate hosts 20 
of SARS-CoV-2 where the virus was once circulating and mutating (Yuan et al., 2020a). 21 
  The enhancement to antigenicity by free heparins has been confirmed by a serological assay (Perera et 22 
al., 2020). They observed a 1.0–1.5 log10 reduction in TCID50 (median tissue culture infective dose) when 23 
the SARS-CoV-2 was diluted in the heparin medium compared with the control medium. They also carried 24 
out titrations of three sera (from COVID-19 patients) with known micro-neutralisation antibody titres of 25 
1:40, 1:80 and 1:80, with the serum dilutions carried out in parallel in heparin medium or the control 26 
medium without heparin. The antibody titres in the sera diluted in the heparin medium were 1:160, 1:320 27 
and 1:320 respectively (Perera et al., 2020). These results suggested that heparin (heparinised plasma 28 
usually contains about 10 μM heparins) may induce a four-fold increase in the antibody titres against 29 
SARS-CoV-2. A combination of heparin and vaccine (or convalescent serum) treatments may help to 30 
enhance the efficiency of the antibodies. 31 
  Besides above mechanism, free heparins may also inhibit coronavirus entry by preventing viral adhesion 32 
on the cell surface. SARS-CoV rolls onto the cell membrane by binding to cell-surface cholesterols (Wang et 33 
al., 2008) and heparan sulfate proteoglycans (HSPGs; Lang et al., 2011) and scans for the specific entry 34 
receptor ACE2, which leads to subsequent cell entry (Figure 5). Methyl-β-cyclodextrin (MβCD), an 35 
oligosaccharide used to deplete cholesterols from cell membranes was shown to inhibit SARS-CoV entry in 36 
a dose-dependent manner (although the 90% inhibitory concentration IC90 was as high as 10 mM; Wang et 37 
al., 2008). Similarly, heparin treatments inhibited SARS-pseudovirus adhesion on the cell surface in a 38 
dose-dependent manner with a IC90 of about 20 μM (Lang et al., 2011). According to above analysis of 39 
spatial relevance between the heparin-binding sequence and the S1/S2 cleavage site on SARS-CoV-2 S, a 40 
much lower IC90 specific to SARS-CoV-2 could be expected. 41 
  The therapeutic effects of heparins on SARS-CoV-2 infections have been confirmed clinically. 42 
Anticoagulant therapy with low molecular weight heparin (LMWH) has been suggested to treat COVID-19, 43 
because that the severe patients have the risk of disseminated intravascular coagulation and venous 44 
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thromboembolism (Ahmed and Anirvan, 2020; Lin et al., 2020; Tang et al., 2020; Yin et al., 2020). 1 
Moreover, heparin also showed a good therapeutic effect to acute respiratory distress syndrome (ARDS), 2 
which is a common complication of viral pneumonia (Thompson et al., 2017). Here we added an important 3 
information that heparin may also inhibit SARS-CoV-2 entry by both enhancing neutralizing antibody titres 4 
and preventing viral adhesion on the cell surface. Thus, LMWH anticoagulant therapy may also work for 5 
the non-severe patients. On the other hand, COVID-19 has a prominent feature, that is, a large amount of 6 
mucus (oedema and plasma exudation) could be found in the small airway, and it may eventually block the 7 
airway, which may be an important reason for the high mortality after later mechanical ventilation and 8 
high-flow oxygen inhalation (Barton et al., 2020). Therefore, nebulized heparin, oxygen supply or other 9 
inhalation therapies should be given at the early stages of COVID-19 (Yuan et al., 2020b). 10 

 11 
Figure 5. Drugs against SARS-CoV-2 Entry and Their Effects on the Virus Clearance 12 
Coronavirus rolls onto the cell membrane by binding to cell-surface cholesterols and heparan sulfate 13 
proteoglycans (HSPGs) and scans for the specific entry receptor ACE2, which leads to subsequent cell entry. 14 
Camostat, nafamostat or bromhexine inhibits the plasma membrane protease TMPRSS2, which is 15 
responsible for the proteolysis of viral S proteins in the post-receptor-binding stage. Methyl-β-cyclodextrin 16 
and heparin inhibit virus binding with cholesterols and HSPGs respectively. Chloroquine neutralizes acidic 17 
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pH in the endosome, which is necessary for viral nucleocapsid release into the cytoplasm. PIKfyve 1 
inhibitors apilimod and YM201636, TPC2 inhibitor tetrandrine and cathepsin L inhibitors E64D and SID 2 
26681509 prevent the virus entry. On the other hand, in the interstitial fluids or in the blood, free heparin 3 
binding may lead to exposure of the S1/S2 cleavage site by a conformational change. Then the enhanced 4 
S1/S2 cleavage by free TMPRSS2 may induce more exposure of the optimal epitope 773-779, which 5 
therefore accelerates neutralizing-antibody-mediated SARS-CoV-2 clearance. Contrastingly, TMPRSS2 6 
inhibitors prevent unmasking of the optimal epitope and thus hamper neutralizing antibody activities, 7 
prolonging the virus clearance. Although TMPRSS2 inhibitors may prevent macrophage death caused by 8 
the SARS-CoV-2 entry, they increase the likelihood of viral attachment to the macrophage surface, which 9 
induces proinflammatory responses and antibody-dependent enhancement (ADE). 10 
 11 
All FDA-Approved TMPRSS2 Inhibitors Would Not Achieve the Effective Concentrations, But Nebulized 12 
Heparin Would Achieve a Local High Concentration 13 
IC50 and IC90 of camostat against either SARS-CoV or SARS-CoV-2 were about 1 μM and 5 μM respectively 14 
(Hoffmann et al., 2020). Although no direct study about nafamostat against SARS-CoV or SARS-CoV-2 is 15 
available, two previous studies showed that IC50 of nafamostat was about 10 times lower than that of 16 
camostat against MERS-CoV (Shirato et al., 2013; Yamamoto et al., 2016). Thus, it can be deduced that IC50 17 
and IC90 of nafamostat against either SARS-CoV or SARS-CoV-2 may be 0.1 μM and 0.5 μM respectively. 18 
However the maximum blood concentration of camostat at the normal oral dose of 100 mg would achieve 19 
only 0.21 μM (Midgley et al., 1994); while the maximum blood concentration of nafamostat injection at 20 
the maximum dose of 40 mg would achieve only 0.27 μM (Iwama et al., 1998). Similarly, the maximum 21 
blood concentration of bromhexine at the maximum dose (single oral dose of 32 mg) would achieve only 22 
0.36 μM (Bechgaard and Nielsen, 1982); while IC90 of bromhexine on TMPRSS2 activity is about 1 μM 23 
(Lucas et al., 2014). In summary, all FDA-approved TMPRSS2 inhibitors would not achieve the effective 24 
blood concentrations. Thus they may neither inhibit SARS-CoV-2 entry, nor reduce the risk of infection 25 
efficiently. More effective TMPRSS2 inhibitors still need to be developed. 26 
  Contrastingly, nebulized heparin is inhaled directly into the lung, so it can reach a local high 27 
concentration in alveolar cells. Although the alveolar concentration cannot be easily estimated (1 mg/mL 28 
LMWH is usually used for the ultrasonic atomization, which is equal to about 67 μM), it may be higher 29 
than 10 μM that can induce a 1.0–1.5 log10 reduction in TCID50 of SARS-CoV-2 (Perera et al., 2020). 30 
Nevertheless, given that heparin may cause thrombocytopenia and thrombosis, more clinical trials are still 31 
required to determine the optimal dosage and therapeutic time. 32 
  Besides TMPRSS2 inhibitors and heparins, other drugs that inhibit coronavirus entry are summarized 33 
and listed in Table 1 and Figure 5. The cellular alkalizers also repress virus entry through neutralizing acidic 34 
pH in the early endosomes, which is necessary for viral nucleocapsid release into the cytoplasm. 35 
Chloroquine and its derivative hydroxychloroquine are such alkalizers and are used clinically as 36 
antimalarial medicines. In-vitro experiments confirmed that chloroquine is highly effective in the control of 37 
SARS-CoV-2 infection (the inhibition ratio of 10 μM chloroquine could reach over 90%; Liu et al., 2020; 38 
Wang et al., 2020; Yao et al., 2020). And a recent clinical trial showed that hydroxychloroquine treatment 39 
is significantly associated with viral load reduction and remission of symptoms in COVID-19 patients 40 
(Gautret et al., 2020). However chloroquine did not reduce the duration of Dengue virus type 2 infection 41 
in a human clinical trial and showed several adverse effects, primarily vomiting (Tricou et al., 2010). And 42 
the high-dosage chloroquine may not reduce the mortality rate but cause more instance of QTc interval 43 
greater than 500 milliseconds, showing a cardiac toxicity (Borba et al., 2020). More rigorous clinical trials 44 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 June 2020                   doi:10.20944/preprints202006.0249.v1

https://doi.org/10.20944/preprints202006.0249.v1


 

 13

on SARS-CoV-2 are still required. 1 
 2 
Table 1. Drugs against SARS-CoV-2 Entry, Their IC90 and the Demerits 3 

Drug's name Mechanisms 
IC90 to 
SARS-CoV 

IC90 to 
SARS-CoV-2 

Demerits 

Camostat 

TMPRSS2 inhibitor 

5 μM 5 μM Max plasma concentration < 0.27 μM and 
may causing a prolonged virus clearance Nafamostat 0.5 μM* 0.5 μM* 

Bromhexine 1 μM to TMPRSS2 
Max plasma concentration < 0.36 μM and 
may causing a prolonged virus clearance 

Methyl-β 
-cyclodextrin 

Cholesterol 
depletion 

10 mM N.A. 
Non-FDA-approved drug with a very high 
IC90 

Heparin 
Cell surface 
binding inhibitor 

20 μM < 10 μM† Thrombocytopenia and thrombosis 

Chloroquine 
Alkalizer in the 
endosome 

N.A. 100 μM 
non-decreased mortality rate with side 
effects 

Hydroxy 
-chloroquine 

N.A. 10 μM 

Apilimod 
PIKfyve inhibitor 

100 nM 100 nM Non-FDA-approved drug with side effects 
YM201636 N.A. 10 μM Non-FDA-approved drug with side effects 
Tetrandrine TPC2 inhibitor N.A. 3 μg/ml Non-FDA-approved drug with side effects 
E64D Cathepsin L 

inhibitor 
N.A. 2 μM Non-FDA-approved drug with side effects 

SID 26681509 N.A. 30 μM Non-FDA-approved drug with side effects 
*Although no direct study about nafamostat on SARS-CoV or SARS-CoV-2 is available, two previous studies 4 
showed that IC50 of nafamostat was about 10 times lower than that of camostat against MERS-CoV. Thus, it 5 
could be deduced that IC90 of nafamostat against either SARS-CoV or SARS-CoV-2 may be 0.5 μM. †10 μM 6 
heparins induced a 1.0–1.5 log10 reduction in TCID50 of SARS-CoV-2. Thus, it could be deduced that IC90 of 7 
heparin against SARS-CoV-2 may be < 10 μM. N.A., Not Available. 8 
 9 
  SARS-like coronavirus entry was mediated by a clathrin- and caveolae-independent mechanism (Wang 10 
et al., 2008). Drugs against clathrin-mediated endocytosis (e.g. chlorpromazine) or caveolae-dependent 11 
endocytosis (e.g. filipin and nystatin) had no inhibitory effects on the virus entry (Wang et al., 2008). The 12 
clathrin-pathway inhibitor baricitinib (Richardson et al., 2020; Stebbing et al., 2020) may not work as well. 13 
Nevertheless, a recent study demonstrated that phosphatidylinositol 3-phosphate 5-kinase (PIKfyve), two 14 
pore channel subtype 2 (TPC2), and cathepsin L are critical for SARS-CoV-2 entry (Ou et al., 2020), and 15 
PIKfyve inhibitors apilimod and YM201636, TPC2 inhibitor tetrandrine and cathepsin L inhibitors E64D and 16 
SID 26681509 prevent the virus entry (Table 1; Ou et al., 2020). However, none of them are FDA-approved 17 
drug and may have many side effects. In a nutshell, among all FDA-approved drugs against SARS-CoV-2 18 
entry putatively, camostat, nafamostat or bromhexine may be candidate prophylactic drugs, nebulized 19 
heparin may be a promising therapeutic drug, and validity and safety of (hydroxy)chloroquine require 20 
further clinical investigations. 21 

22 
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 1 
LEAD CONTACT AND MATERIALS AVAILABILITY 2 
Requests for material can be directed to Shu Yuan (roundtree318@hotmail.com). All materials and 3 
reagents will be made available upon installment of a material transfer agreement (MTA). 4 
 5 
METHOD DETAILS 6 
Homology modeling of ACE2 and viral spike proteins 7 
All full-length protein sequences were downloaded from National Center of Biotechnology Information 8 
(NCBI; https://www.ncbi.nlm.nih.gov/). The sequence of human angiotensin-converting enzyme 2 (ACE2, 9 
Accession ID: BAB40370.1), SARS-CoV CUHK-W1 Spike (S) protein (AAP13567.1) and SARS-CoV-2 WHU01 S 10 
protein (QHO62107.1) were subjected to the analysis of homology models which were constructed in the 11 
SWISS-MODEL Workspace (Bertoni et al., 2017; Biasini et al. 2014; Bienert et al. 2017; Waterhouse et al. 12 
2018; http://swissmodel.expasy.org/workspace/). The optimal templates for ACE2 was 6m17.1.B with a 13 
sequence identity of 99.87% and a coverage from 21-768 aa (805 aa totally). The optimal templates for 14 
SARS-CoV S was 6acd.1.A with a sequence identity of 99.83% and a coverage from 18-1119 aa (1255 aa 15 
totally). The optimal templates for SARS-CoV-2 S was 6vsb.1.A with a sequence identity of 99.26% and a 16 
coverage from 27-1146 aa (1273 aa totally). 17 
  The Molecular surface and the electrostatic potential were computed with the Swiss-PdbViewer v4.1.0 18 
software (Bertoni et al., 2017; Biasini et al. 2014; Bienert et al. 2017; Waterhouse et al. 2018). To see every 19 
amino acid no matter covered or uncovered by the protein surface, transparency of the surface was set at 20 
30%. 21 
 22 
Analysis of antibody epitopes and glycosylation sequons 23 
SARS-CoV CUHK-W1 Spike (S) protein (AAP13567.1) and SARS-CoV-2 WHU01 S protein (QHO62107.1) were 24 
subjected to the analysis of antibody epitopes. The sequence-based antibody epitopes score was 25 
predicted according to the epitope surface accessibility (SA) by using Emini surface accessibility scale 26 
method (Emini et al., 1985; http://tools.iedb.org/bcell/). The possible antibody epitopes were filtered by 27 
the surface accessible scores using the default threshold value of 1.0 with a center position of 3 aa and a 28 
window size of 6 aa. Then the epitope candidates were re-scored by using BepiPred-2.0 bioinformatic tool 29 
with the default threshold value of 0.50 (Jespersen et al., 2017; http://tools.iedb.org/bcell/). The average 30 
score of each epitope was calculated based on the epitope score of each amino acid. Epitopes with 31 
average scores below 0.5 were ruled out. 27 epitopes were found on SARS-CoV S protein, among which 10 32 
epitopes had been ruled out due to the low epitope scores. 30 epitopes were found on SARS-CoV-2 S 33 
protein, among which 9 epitopes had been ruled out due to the low epitope scores. Finally, 17 predicted 34 
epitopes for the SARS-CoV S protein and 21 predicted epitopes for the SARS-CoV-2 S protein were 35 
screened out and are shown in Tables S1 and S2. 36 
  N-linked glycosylation sites in SARS-CoV S and SARS-CoV-2 S are marked on the protein surface based on 37 
the sequons identified by Walls et al. (2020). 38 
 39 
Prediction of transmembrane domain 40 
Human transmembrane serine protease 2 (TMPRSS2) precursor zymogen (AF123453.1) and cleaved active 41 
enzyme (AAK29280.1), human ACE2 (BAB40370.1), SARS-CoV CUHK-W1 S protein (AAP13567.1) and 42 
SARS-CoV-2 WHU01 S protein (QHO62107.1) were subject to the transmembrane domain analysis. The 43 
putative transmembrane helices were scored by using TMHMM Server v. 2.0 bioinformatic tool (Krogh et 44 
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al., 2001; Moller et al., 2001; http://www.cbs.dtu.dk/services/TMHMM/).  1 
 2 
Alignment of SARS-CoV and SARS-CoV-2 spike proteins 3 
In a phylogenetic network analysis of SARS-CoV-2 genomes, three central variants distinguished by amino 4 
acid changes were defined, which we have named A, B, and C types (Forster et al., 2020). Three 5 
representative S protein sequences of SARS-CoV-2 USA-WA1/2020 (QHO60594.1) for the type A virus strain, 6 
SARS-CoV-2 WHU01 (QHO62107.1) for the type B virus strain and SARS-CoV-2 SNU01 (QHZ00379.1) for the 7 
type C virus strain were collected. Along with the SARS-CoV CUHK-W1 S protein sequence (AAP13567.1), 8 
these four amino acid sequences were aligned using the software ClustalX2.1 (Larkin et al., 2007). 9 
 10 
QUANTIFICATION AND STATISTICAL ANALYSIS 11 
Clinical data of cancer patients with confirmed SARS-CoV-2 infections (Montopoli et al., 2020) were 12 
re-analyzed. One-way analysis of variance (ANOVA) was used to test for statistical significance. Only p 13 
values of 0.05 or lower were considered statistically significant. For all statistical analyses, the SPSS 22.0 14 
software package was used. 15 
 16 
DATA AND CODE AVAILABILITY 17 
The study did not generate unique datasets or code. 18 
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