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Abstract: While there is overwhelming evidence for dark matter (DM) in galaxies and galaxy 

clusters, all searches for DM particles have so far proved negative. It is not even clear whether 

only one particle is involved or a combination or particles, their masses not precisely predicted. 

This non-detectability raises the possible relevance of modified gravity theories – MOND, 

MONG, etc. Here we consider a specific modification of Newtonian gravity (MONG) which 

involves gravitational self-energy, leading to modified equations whose solutions imply flat 

rotation curves and limitations of sizes of clusters. The results are consistent with current 

observations including that involving large spirals. This modification could also explain the 

current Hubble tension. We also consider effects of dark energy (DE) in terms of a 

cosmological constant. 
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Over the past few decades there have been a plethora of sophisticated experiments 

involving massive sensitive detectors trying to catch faint traces of the elusive Dark Matter 

(DM) particles. But so far all of these efforts have been to no avail. Most of these detectors are 

designed to look for Weakly Interacting Massive Particles (WIMPS) which are much heavier 

than the proton (several GeV), with there being no definite prediction for the masses of these 

heavy particles [1]. Another possible candidate is the axion, which is expected to have a much 

smaller mass (10−3 − 10−5 eV). Here again there is no definite theoretical prediction for the 

axion mass. A recent work [2] has put limits on very light axion like particle. There has also 

been several astrophysical searches for DM particles.  

So considering these negative results of all experiments so far, can we try to understand 

why we don’t see them? While evidence for DM as such is overwhelming – otherwise galaxies 

and galaxy clusters would fly apart but for the additional gravity they provide – the question is 

what type of particles constitute them, or can there be alternate ideas to understand the 

enhanced gravity. Is only one type of DM particle involved or a combination? Theories do not 

predict what combination of particles or what type of particles will fix the ratio of DM to 

baryonic matter as about six. We suggest some reasons why we have not seen these elusive 

particles. 

One such suggestion that has been made [3, 4] is that the DM particles (of favoured 

mass range) could form degenerate objects of a Neptune mass or less. The first DM clumps to 

form (as these particles do not couple to radiation) could form primordial planets at large 

redshifts. So this clumping of DM into objects of different masses would substantially reduce 

the flux of free DM particles, so that the number of expected events in detectors would be 

reduced, accounting for negative results so far. Even axions could clump [5].  

Another possibility is that the DM particles could have much weaker cross-sections and 

their masses may not be in the range assumed. This would lead to non-detection. A more drastic 

conclusion would be that the particles in the predicted mass range, fluxes and coupling may 

not exist. They may be a different kind of particle, interacting only gravitationally with higher 

masses, the fluxes would be smaller and number of events less. 

In the absence of detection of DM particles so far, it is natural to explore alternate 

possibilities such as modification of Newtonian gravity that could explain the galaxy rotation 

curves and motion of clusters. There have been recent approaches in this direction [6]. One 

such alternative picture, the Modification of Newtonian dynamics (MOND) was initially 

proposed as an alternative to account for the flat rotation curves of spiral galaxies, without 

invoking DM in the halo [7, 8].  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 June 2020                   doi:10.20944/preprints202006.0239.v1

https://doi.org/10.20944/preprints202006.0239.v1


3 
 

The theory required an ad hoc introduction of a fundamental acceleration 𝑎0 ≈

10−8𝑐𝑚/𝑠2. When the acceleration approaches 𝑎0, the Newtonian law giving the field strength 

is modified as:  

𝑎 =
(𝐺𝑀𝑎0)

1
2⁄

𝑟
            (1) 

where 𝑎 is the acceleration, 𝑟 is the radial distance, 𝑀 is the central mass. And this gives a 

constant velocity, i.e. flat rotation curve for the galaxies, with the constant velocity, at the 

galactic outskirts given by, 𝑣𝑐 = (𝐺𝑀𝑎0)
1
4⁄ .  

These results can also be arrived at by considering a minimum acceleration given by 

[9]:  

𝑎𝑚𝑖𝑛 =
𝐺𝑀

𝑟𝑚𝑎𝑥
2               (2) 

Here 𝑟𝑚𝑎𝑥 is the radius of the structure corresponding to the minimum acceleration and it sets 

the limit for the size of large scale structures, which follows from equation (2) as, 𝑟𝑚𝑎𝑥 =

(
𝐺𝑀

𝑎𝑚𝑖𝑛
)
1
2⁄

, hence we get,  

𝑣𝑐 = (𝐺𝑀𝑎𝑚𝑖𝑛)
1
4⁄            (3) 

This velocity is independent of 𝑟 beyond 𝑟𝑚𝑎𝑥, which is consistent with observation. 

For Milky Way, this constant velocity (equation (3)) ~300km/s, same order as that observed. 

For clusters of galaxies, such as Virgo (𝑀 ≈ 1.25 × 1015𝑀⊙) and Coma (𝑀 ≈ 7 × 1014𝑀⊙) 

clusters, the velocity (from equation (3)) is ~1500km/s which is again in accordance with what 

is observed. The constraints on the size of large scale structures such as galaxies, clusters and 

super clusters, i.e. 𝑟𝑚𝑎𝑥 = (
𝐺𝑀

𝑎𝑚𝑖𝑛
)
1/2

, closely matches with observations (table 1) [10]. 

 

Table 1: Observed and calculated sizes of clusters and superclusters 

Large scale structure 𝒓𝒍𝒊𝒎 (in cm) 𝒓𝒐𝒃𝒔 (in cm) 

Virgo Cluster 2.28 × 1024 7.09 × 1024  

Coma Cluster 2.16 × 1025 9.46 × 1024 

Omega Centauri 1.6 × 1018 8.13 x1019 

Saraswati Supercluster 1.15 × 1025 2 × 1026 

Laniakea Supercluster 2.58 × 1025 2.36 × 1026 

Horologium Supercluster 2.5 × 1025 5 × 1026 

Corona Borealis Supercluster 7.47 × 1025 3.1 × 1026 
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It was also discussed in recent papers that the requirement that the attractive 

gravitational binding self-energy density of large scale structures (such as galaxies, clusters, 

superclusters, etc.) should at least be equal to the background repulsive DE (cosmological 

constant Λ) density implies a mass-radius relation of the type [11-13]: 

𝑀

𝑟2
=

𝑐2

𝐺
√Λ ≈ 1𝑔 𝑐𝑚2⁄           (4) 

for the observed value of Λ~10−56𝑐𝑚−2. Here 𝑀 and 𝑟 corresponds to mass and radius of 

these structures. This relation holds true for primeval galaxies as well as those at present epoch 

[14]. This relation can also be obtained by rearranging equation (2), i.e., 
𝑀

𝑟𝑚𝑎𝑥
2 =

𝑎𝑚𝑖𝑛

𝐺
≈

1𝑔 𝑐𝑚2⁄ , where the minimum acceleration is 𝑎𝑚𝑖𝑛~10
−8𝑐𝑚/𝑠2. 

The flat rotation curves can also be explained by considering Modifications of 

Newtonian Gravity (MONG). By adding a gravitational self-energy term to the Poisson’s 

equation we get, 

∇2𝜙 + 𝐾(𝛻𝜙)2 = 4𝜋𝐺𝜌         (5) 

where 𝜙 (~
𝐺𝑀

𝑟
) is the gravitational potential and the constant 𝐾~𝐺2 𝑐2⁄ . The gravitational 

self-energy density is given by 𝐾(𝛻𝜙)2, and also contributes to the gravitational field along 

with the matter density 𝜌. For small values of the density 𝜌, (for e.g. at the outskirts of galaxies) 

we have,  

∇2𝜙 + 𝐾(𝛻𝜙)2 = 0           (6) 

The solution of this equation yields, 𝜙 = 𝐾′ ln
𝑟

𝑟𝑚𝑎𝑥
       (7) 

where 𝐾′ =
𝐺𝑀

𝑟𝑚𝑎𝑥
 is a constant. This gives the force of the form,  

𝐹 =
𝐾"

𝑟
             (8) 

where 𝐾" = (𝐺𝑀𝑎𝑚𝑖𝑛)
1 2⁄ , is again a constant. The balance of centripetal force and 

gravitational force then gives, 𝑣2/𝑟 = 𝐾"/𝑟.  

This then implies the independence of 𝑣 on 𝑟 (i.e. flat rotation curve, 𝑣2 = 𝐾", which 

is a constant) for larger distances from the centre of the galaxy (i.e. for 𝑟 > 𝑟𝑚𝑎𝑥). Including 

both gravitational self-energy and DE densities, the Poisson’s equation now takes the form, 

∇2𝜙 + 𝐾(𝛻𝜙)2 − Ʌ𝑐2 = 0                 (9) 

The general solution (for the potential 𝜙) can be written as:  

𝜙 =
𝐺𝑀

𝑟
+𝐾′ ln

𝑟

𝑟𝑚𝑎𝑥
+ Ʌ𝑟2𝑐2                     (10) 
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We now make use of this general solution for different regimes of interest in the galaxy 

structure. Where matter density dominates, i.e. 𝑟 < 𝑟𝑚𝑎𝑥, we have 𝜙 ≈
𝐺𝑀

𝑟
 (solution of ∇2𝜙 =

4𝜋𝐺𝜌) which gives a velocity varying linearly with distance. For 𝑟 > 𝑟𝑚𝑎𝑥, (𝛻𝜙)2 term 

dominates, and 𝜙 goes as 𝐾′ ln
𝑟

𝑟𝑚𝑎𝑥
, (giving a constant velocity) accounting for DM (solution 

of ∇2𝜙 + 𝐾(𝛻𝜙)2 = 0). For 𝑟 ≫ 𝑟𝑚𝑎𝑥, 𝜙 goes as Ʌ𝑟2𝑐2, DE dominates (i.e. the cosmological 

constant term).  

In the case of the Milky Way, the velocity flattens out beyond ~2kpc, which is what is 

obtained from the above results (figure 1). Other galaxies also show similar typical rotation 

curves, with MONG matching with observation [15].   

 

Figure 1: Galaxy rotation curve (for Milky Way) from modified Newtonian gravity 

 

In this connection, the extra term in the Poisson equation given by MONG, i.e. equation 

(9) and its solution given by equation (10) could have interesting consequences for current 

observations of super-spirals [16], wherein their large extent (450,000 light-years) is associated 

with large rotation velocities of up to ~450𝑘𝑚/𝑠 at their periphery. Conventionally such large 

velocity would imply a large amount of DM, i.e. about ~1013𝑀⨀. However, our extra term 

would give a velocity given by: 

𝑣 = (𝐺𝑀𝑎𝑚𝑖𝑛)
1
4⁄ (ln

𝑟

𝑟𝑚𝑎𝑥
)
1
2⁄

                          (11) 

Where 𝑟𝑚𝑎𝑥 corresponds to the radius at which acceleration approaches 𝑎𝑚𝑖𝑛. With 

𝑟𝑚𝑎𝑥 = 20𝑘𝑝𝑐 and super spiral extant 𝑟 = 𝑟𝑆𝑆 ≈ 200𝑘𝑝𝑐, this would give velocities 

~450𝑘𝑚/𝑠. In other words, the logarithmic term makes gravity stronger above 𝑟𝑚𝑎𝑥 (i.e., 

potential going as ln 𝑟, instead of 1 𝑟⁄ ), so that we do not need such colossal amounts of DM. 

This also implies a logarithmic correction to the Tully-Fisher relation. 
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The usual Friedmann equation now gets modified to: 

𝑅2̇

𝑅2
=

8𝜋𝐺𝜌

3
+ (𝐺𝑀𝑎0)

1
2⁄ ln

𝑅

𝑅𝑚𝑎𝑥
                   (12) 

(𝑅 is the scale factor) 

The second term can be seen as a modification in potential energy due to gravitational 

self-energy density in the usual balance between kinetic and potential energy terms, 
8𝜋𝐺𝜌

3
 (in 

the expanding Universe), i.e. the usual Newtonian analogue agreeing with the GR result.   

With 𝑎0 = 10−8𝑐𝑚/𝑠2, and the Universe having expanded at present to 𝑅 > 1028𝑐𝑚 

the modified term will also contribute. With 𝑅 ≈ 2 × 1028𝑐𝑚, 𝜌 ≈ 10−29𝑔/𝑐𝑐, and the mass 

of the Universe, 𝑀 = 2𝜋2𝑅3𝜌 ≈ 1056𝑔, the usual first term is ≈ 1021, whereas the second 

term ≈ 1020. This suggests that this extra term now manifesting itself would cause an increase 

of the expansion rate, i.e. a change in Hubble constant (𝑅2̇ 𝑅2⁄ ) by ~5%. This could perhaps 

account for the faster expansion rate seen at the present epoch. Hence this modification of the 

gravitational field can provide an alternate explanation for the discrepancy in the value of the 

Hubble constant as implied by Planck observations of the CMBR in the early Universe and that 

deduced from other distance indicators in the present epoch [17-19]. 

Hence we see that the specific modification of Newtonian gravity, involving 

gravitational self-energy leads to modified equations and the solutions imply flat rotation 

curves and limits the sizes of clusters. This modification can also account for current 

observations involving super-spiral galaxies and can account for the Hubble tension. 
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