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Abbreviations 
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factor; CDC2, cell division cycle kinase 2; CDK5, cyclin-dependent kinase 5; 

CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/CRISPR-asso-

ciated protein 9; db-cAMP, dibutyryl-cAMP; EB, end-binding protein; HA tag, human influ-

enza hemagglutinin tag; hiPSC, human-derived induced pluripotent stem cells; LC, locus 

coeruleus; MAP2, microtubule-associated protein 2; MAPK, mitogen-activated protein ki-

nase; MAPT; microtubule-associated protein TAU-encoding gene; MT, microtubule; Nav, 

voltage-gated sodium channel; NB, nucleus basalis, NFT, neurofibrillary tangles; PP1, 

protein phosphatase 1; PP2A, protein phosphatase 2A; RA, retinoic acid; Ser, Serine; SN, 
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Abstract 

The microtubule-associated protein TAU is sorted into the axon in healthy brain neurons. 

Somatodendritic missorting of TAU is a pathological hallmark of many neurodegenerative 

diseases called tauopathies, including Alzheimer’s Disease (AD). Cause, consequence, 

and (patho)physiological mechanisms of TAU sorting and missorting are understudied, in 

part also due to the lack of readily available human neuronal model systems. The human 

neuroblastoma cell line SH-SY5Y is widely used for studying TAU physiology and TAU-

related pathology in AD and related tauopathies. SH-SY5Y cells can be differentiated into 

neuron-like cells (SH-SY5Y-derived neurons) using various substances. This review eval-

uates whether SH-SY5Y-derived neurons are a suitable model for i) investigating intracel-

lular TAU sorting in general, and ii) with respect to neuron subtype-specific TAU vulnera-

bility. I) SH-SY5Y-derived neurons show pronounced axodendritic polarity, high levels of 

axonally localized TAU protein, expression of all six major human brain isoforms, and TAU 

phosphorylation similar to the human brain. As proliferative cells, SH-SY5Y cells are read-

ily accessible for genetic engineering, stable transgene integration and leading-edge ge-

nome editing are valuable and promising tools for TAU-related studies. II) Depending on 

the used differentiation procedure, SH-SY5Y-derived neurons resemble cells of distinct 

subcortical nuclei, i.e. the Locus coeruleus (LC), Nucleus basalis (NB) and Substantia 

nigra (SN), all of which early affected in many tauopathies. This allows to analyse neuron-

specific TAU isoform expression and intracellular localization, also in the context of vul-

nerability to TAU pathology. Limitations are e.g. the lack of mimicking age-related tauopa-

thy risk factors and the difficulty to define the exact neuronal subtype of SH-SY5Y-derived 

neurons. In brief, this review discusses the suitability of SH-SY5Y-derived neurons for 

investigating TAU (mis)sorting mechanisms and neuron-specific TAU vulnerability in dis-

ease paradigms. 

 

Key words: SH-SY5Y-derived neurons, TAU sorting, neuronal identity, tauopathy, Alz-

heimer’s disease 
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1 Introduction 

Alzheimer’s disease (AD) and related neurodegenerative diseases constitute a major 

scourge of modern healthcare due to their tremendously high and increasing prevalence 

1. One key player in AD and related so-called tauopathies is the microtubule-associated 

protein TAU. Under healthy conditions, TAU is sorted to the axonal compartment of brain 

neurons 2,3 where it regulates the assembly of microtubule filaments 4,5. TAU missorting 

into the somatodendritic compartment, site-specific hyperphosphorylation and formation 

of TAU-containing neurofibrillary tangles (NFT) are typical pathological hallmarks of AD 

and other tauopathies 6–8. In the last decades, much effort has been invested in unravelling 

the physiological functions and pathomechanisms linked to TAU sorting and missorting.  

Mouse models or rodent-derived neuronal cultures are commonly used for TAU studies 

in general, including research on TAU sorting. However, these models have several limi-

tations as i) they require the sacrification of animals, ii) they suffer from limitations in trans-

latability, including different isoform expression patterns and species-dependent differ-

ences regarding the cellular machinery and interaction partners 9, and iii) in case of ‘hu-

manized’ mouse models, they exhibit artificial genetic settings due to overexpression of 

(multiple) human transgenes 10–13 (see Table 1 for summary. Another cellular model, hu-

man induced pluripotent stem cell (hiPSC)-derived neurons overcome many of these ob-

stacles and constitute a powerful tool for TAU-related research 14–18. However, differenti-

ation of hiPSC-derived neurons is expensive, time-consuming and results in cultures with 

variable homogeneity and differentiation efficiency 19–21 (see Table 1 for summary).  

The human neuroblastoma cell line SH-SY5Y, subcloned from the SK-N-SH line 22, is an 

easy-to-handle and proliferative cell line with well-established differentiation methods for 

generating stable neuronal cultures (see chapters 2.1 & 3). SH-SY5Y-derived neurons 

have been widely used for TAU-related research, as they yield homogeneous, reproduci-

ble human-derived neuronal cultures with robust expression and axonal distribution of 

TAU, thereby suitable also for addressing axonal TAU sorting 23 (see Table 1 for sum-

mary). Interestingly, the neuronal identity of SH-SY5Y-derived neurons depends on the 
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used differentiation procedure 23, which bears potential for neuronal subtype-specific TAU 

studies. 

The current review aims to evaluate the suitability of SH-SY5Y-derived neurons for TAU 

sorting research. Moreover, the chances and challenges of the drug-dependent identity of 

SH-SY5Y-derived neurons will be discussed regarding their utility to mimic neuronal sub-

types of brain regions that are early affected in AD and other tauopathies. 
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2 Suitability of SH-SY5Y-derived neurons for investigating 

TAU sorting  

2.1 Neuronal maturity 

Neuronal maturity is an important prerequisite for TAU sorting-related research as TAU is 

specifically enriched in the axon of mature neurons 2,3. The human SH-SY5Y neuroblas-

toma cells can be differentiated into neuronal cells with several substances, including the 

vitamin A derivative retinoic acid (RA), different phorbol esters, dibutyryl-cAMP, or the 

brain-derived neurotrophic factor (BDNF) 23. The maturation of SH-SY5Y-derived neurons 

is well characterized, especially for RA- and BDNF-based differentiation. 

There are observations that question the neuronal maturity of SH-SY5Y-derived neurons, 

such as the moderate outgrowth of dendritic processes 24,25 or the lack of spontaneous 

activity after RA-driven differentiation 26. Jahn and colleagues (2017) argue, however, that 

spontaneous activity, seen e.g. in rodent primary cultures, might not be mandatory to 

prove neuronal maturity. Further, Ankyrin G (ANKG) is weakly expressed in SH-SY5Y-

derived neurons without enrichment at the proximal axon 25. ANKG is known to be a key 

player for the development of the axon initial segment (AIS), a specialized region at the 

proximal axon, involved in the generation of action potentials and anterograde cargo 

transport 27,28. 

On the other hand, SH-SY5Y-derived neurons express classical neuronal maturation 

markers as neuronal nuclei (NeuN), high-weight neurofilament (NF-H), the microtubule-

associated protein 2 (MAP2), or growth-associated protein 43 (GAP43) 24–26,29–36. They 

are excitable due to the expression of voltage-gated sodium (e.g. Nav1.1, Nav1.2), calcium 

and potassium channels 37–41, and they exhibit activity-dependent synapse and vesicle 

formation 26,32,42, suggesting the presence of functional synaptic networks. Morphologi-

cally, SH-SY5Y-derived neurons exhibit pronounced axonal outgrowth (Fig. 1A) 23–25,36. 

Taken together, there is strong evidence for the neuronal maturity and function of SH-

SY5Y-derived neurons.  
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2.2 TAU expression & subcellular localization 

Little amounts of TAU protein are detectable in undifferentiated SH-SY5Y cells, where it 

is present in the cytoplasm and in the nucleus 43. Differentiation of SH-SY5Y cells with RA 

or the phorbol ester TPA results in a strong increase of overall TAU protein levels 24,44 

with a neuron-like subcellular distribution, i.e. increased axonal and decreased somatic 

TAU levels (Fig. 1A,B) 24,33,43. The use of combinatorial treatments, e.g. RA and BDNF or 

BDNF and the neuronal growth factor (NGF), further enhances the axonal outgrowth and 

the total TAU expression to levels 24,25,33,36, comparable to those of the human brain 33. 

The observed separation of axonal TAU and somatodendritic microtubule-associated pro-

tein 2 (MAP2) (Fig. 1B) 24,25,36 indicates the neuronal polarity 45.  

In this context, it would be worth to examine whether SH-SY5Y-derived neurons properly 

distribute also transfected TAU, an often-faced challenge in experiments with rodent pri-

mary cultures 25,46,47. Indeed, recent data suggest that SH-SY5Y-derived neurons tolerate 

overexpression of transfected HA-tagged TAU better than primary cultures (at least nine 

days), and that they sort transfected TAU with endogenous-like efficiency 25 (see Table 1 

for comparison). It is remarkable that efficient sorting of endogenous and transfected TAU 

obviously happens without classical ANKG-mediated AIS formation in SH-SY5Y-derived 

neurons 25. Former studies claimed that ANKG-mediated AIS formation is critical for the 

process of neuronal polarization 27,28,48, while more recent studies, indeed, question the 

necessity of ANKG for proper TAU sorting 49,50. More studies are necessary to clarify the 

role of ANKG and other AIS proteins, e.g. the tripartite motif-containing protein 46 

(TRIM46) or end-binding proteins (EBs), in the context of axonal TAU sorting.  
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Figure 1: Suitability of SH-SY5Y-derived neurons for TAU sorting research. A) Representative images 

of undifferentiated SH-SY5Y cells (left, top panel) and SH-SY5Y-derived neurons (left, bottom) in culture 

(cultures were grown on Poly-D-Lysine (20 µg/ml)-coated glass coverslips in DMEM/F12 (#10565018, TFS) 

and 10 % fetal bovine serum (BioChrom AG); for differentiation, cells were grown for 7 days in DMEM/F12, 

10 % fetal bovine serum and 10 µM retinoic acid (RA), followed by 7 days in serum-free DMEM/F12 and 10 

ng/ml brain-derived neurotrophic factor (BDNF). Note the altered morphology and pronounced neurite out-

growth upon differentiation. Scale bar: 50 µm. B) Immunostainings of SH-SY5Y-derived neurons (cells were 

fixed with 3.7 % FA for 1 h, blocked with 5 % BSA and 0.1 % Triton X-100 for 5 minutes, immunostained 

with polyclonal anti-TAU (K9JA, 1:1000 in PBS, A0024, DAKO, 2nd AB: donkey anti-rabbit + AlexaFluor488, 

1:1000 in PBS, A21202, TFS) and chicken anti-MAP2 (1:2000, ab5392, Abcam, 2nd AB: goat anti-chicken 

AF647, 1:1000 in PBS, A21449, TFS) antibodies, and mounted (PolyMount, Polysciences), procedure 

adapted from 92) demonstrate the strong expression and polarized distribution of neuronal maturation mark-

ers TAU (green, mainly axonal) and MAP2 (red, mainly somatic). Scale bar (top): 50 µm, scale bar (bottom): 

20 µm. C) Western blot analysis of TAU isoform expression (de-phosphorylated lysates) in undifferentiated 

SH-SY5Y cells (lane 1), differently treated SH-SY5Y-derived neurons (lanes 2 – 5) and human brain lysate 

(lane 6). The very left lane shows a recombinant TAU standard. Note the abundance of all six isoforms upon 

differentiation with varying ratios compared to the human brain. The blot was adapted and modified from 33. 

D) Overview of the TAU protein (grey bar, colored sections indicate distinct TAU domains) and common 

tauopathy-associated TAU hyperphosphorylation sites (yellow boxes, corresponding epitopes that are rec-

ognized by specific antibodies are indicated dashed boxes) that appear highly phosphorylated in SH-SY5Y 

cells. 
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2.3 Expression pattern of TAU isoforms 

Alternative splicing of the exons 2 and 3 (either 0N, 1N, or 2N isoforms) as well as exon 

10 (3R or 4R isoforms) results in six major TAU isoforms in the mature human brain 4,51,52, 

compared to only three isoforms in the adult rodent brain 53. It is thus clear that a suitable 

model for studying TAU sorting should be human-derived and display the expression of 

all human TAU isoforms. The isoform expression pattern in the human brain was depends 

on the developmental stage and the analysed brain region 51,54–56. Moreover, the axoden-

dritic distribution is markedly different between the six major TAU isoforms 57.  

Early studies on TAU isoform expression in SH-SY5Y cells showed consistently that un-

differentiated cells express only the shortest TAU isoform 0N3R 43,44,58,59. More recently, 

TAU mRNA containing exon 2 (1N) or exon 10 (4R) was found in untreated SH-SY5Y 

cells, suggesting at least basal expression of larger isoforms (Fig. 1C) 33. Reports about 

differentiated SH-SY5Y-derived neurons vary in their described isoform expression pat-

tern. Former studies detected either no shift in isoform expression upon RA treatment 44, 

weak expression of an additional 64 kDa-sized isoform (probably representing the 2N4R 

isoform) 58, or low levels of 4R isoform mRNA upon three weeks of RA treatment 43. More 

recent findings, however, showed that undifferentiated SH-SY5Y cells already express 

high amounts of 1N isoforms, and that differentiated cells express all six major isoforms 

(Fig. 1C) 33. 

The isoform ratio in SH-SY5Y-derived neurons differs notably from the human brain 60, 

with more 3R than 4R TAU, less 2N isoforms and more 0N3R-TAU 33. This may suggest 

that a cultivation time of up to three weeks produces SH-SY5Y-derived neurons at an 

intermediate stage of maturity. Later studies, however, found roughly equal amounts of 

3R and 4R isoforms, as typically seen in the adult human brain 61–64, after RA treatment 

65. Despite this discrepancy regarding the isoform ratio, these studies demonstrate the 

principal presence of all six TAU isoforms in SH-SY5Y-derived neurons.  
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AD animal models, which express all six human TAU isoforms while the endogenous 

mouse Mapt expression is knocked out 12,13, have already been available for years. How-

ever, one bottleneck for these AD animal models is to achieve a human-like isoform ratio 

of 3R and 4R isoforms. Recent mouse lines could overcome this issue by introducing 

multiple, partially mutagenized human MAPT transgenes into a Mapt-KO mouse back-

ground 10,11. However, these mice harbour a highly artificial genetic MAPT setup, and they 

still lack a human cellular environment, making e.g. isoform-specific interaction studies 

difficult to interpret. 

SH-SY5Y-derived neurons can serve to clarify whether certain TAU isoforms contribute 

differently to cellular TAU functions under physiological conditions and possibly convey 

tauopathy-related toxicity, e.g. by being more susceptible to mislocalization, hyperphos-

phorylation or aggregation. Taken together, the TAU isoform ratio of SH-SY5Y-derived 

neurons differs from that in the mature human brain, but the strong expression of all six 

major isoforms already upon brief differentiation periods allows investigating TAU isoform-

specific localization and disease-associated mislocalization.  

2.4 TAU phosphorylation state 

More than 90 reported phosphorylation sites illustrate the striking importance of these 

posttranslational modifications for TAU functionality 64. The phosphorylation state of TAU 

directly influences the microtubule-binding affinity and thereby its mobility and intracellular 

localization 66–70. Hyperphosphorylation correlates with somatodendritic missorting and 

aggregation of TAU 70–76.  

Consequently, early TAU studies with SH-SY5Y cells put great effort into analysing the 

phosphorylation state of TAU in SH-SY5Y cells. They revealed that many TAU residues, 

including Ser-199, Ser-202 (AT8 epitope), Thr-231/Ser-235 (AT180 epitope), Ser-262 

(12E8 epitope) and Ser-396/Ser-404 (PHF1 epitope) are phosphorylated in undifferenti-

ated SH-SY5Y cells (Fig. 1D) 44,59,77. As many of these residues are hyperphosphorylated 

also in AD, TAU was considered as phosphorylated in an AD-like manner 59. The phos-

phorylation state can be explained by the high levels of 0N3R-TAU in undifferentiated SH-
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SY5Y cells. In early developmental stages, when 0N3R-TAU is the predominant isoform, 

TAU phosphorylation is increased 51,75. Interestingly, no substantial change in TAU phos-

phorylation was seen upon differentiation with RA 44 despite the expression of larger TAU 

isoforms 33,65. This might be due to the fact that 0N3R-TAU appears as the major isoform 

also in differentiating SH-SY5Y cells 33.  

It was first shown in SH-SY5Y cells that okadaic acid and other phosphatase inhibitors 

can evoke AD-like TAU hyperphosphorylation, MT disassembly and cell death, by inacti-

vating PP1 and PP2A phosphatases and activating MAPK, CDC2 and CDK5 kinases 

58,78,79. These findings in SH-SY5Y cells provided a direct link between phosphorylation 

state, MT stability and cell death, as it was postulated from previous in vitro interaction 

assays 64. Many recent TAU studies in SH-SY5Y cells focused on TAU(hyper)phosphor-

ylation, including the role of kinases/phosphatases and cellular pathways in misbalancing 

the TAU phosphorylation state 77,80–83, the influence of microglia-mediated neuroinflam-

mation 65,84–86, the link between hyperglycaemia and TAU phosphorylation 87–90, or the 

correlation of TAU phosphorylation and sleep disorders in AD patients 91. 

Taken together, the TAU phosphorylation state in SH-SY5Y cells is similar to that of hu-

man brain neurons 59,64, and its regulation involves known TAU-interacting kinases and 

phosphatases 78,80,81. These great similarities in TAU phosphorylation are critical for the 

suitability of SH-SY5Y derived neurons for the investigation of TAU sorting since TAU 

phosphorylation and (mis)sorting are closely linked. 

2.5 Genetic engineering of SH-SY5Y cells 

SH-SY5Y-derived neurons display many features of matured neuronal cells, including the 

post-mitotic character. Post-mitotic cells are inaccessible for most stable genetic engi-

neering approaches. However, in the undifferentiated state, SH-SY5Y cells are rapidly 

dividing and can be used for the stable integration of transgenes, including variants of the 

TAU-encoding MAPT gene. In the past, transfection and stable integration of linearized 

1N3R- and 1N4R-MAPT cDNA into SH-SY5Y cells was used to mimic the misbalance of 
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3R/4R isoform ratios 93,94, which is caused by MAPT variants that affect alternative splicing 

in several tauopathies 95.  

Other studies generated SH-SY5Y cell lines with stable overexpression of only 4R 

isoforms 96, a exon 6 containing isoform 97 or a pro-aggregant TAU variant 86,98. These 

transgenic TAU isoforms or mutants are, however, lacking the features of endogenous 

MAPT expression regulation. The application of recent genome editing techniques, such 

as CRISPR/Cas9, was shown to work in SH-SY5Y cells 99–103. This allows the generation 

of complete or isoform-specific TAU knock-out lines or the introduction of gene edits on a 

single base level, e.g. by using base editor enzymes 104 or the recently described prime 

editing technique 105. 

However, one has to consider the genetic predispositions of SH-SY5Y cells, as large-

scale chromosomal abnormalities and imbalances are reported for neuroblastoma cell 

lines in general 106–110. Accordingly, SH-SY5Y cells show trisomy of chromosome (chr) 7, 

a duplication of the q-arm of chr1, and further complex rearrangements on the majority of 

chromosomes leading to both copy number gains and losses 111. Besides other loci of 

neurobiological interest, a copy number gain of the MAPT locus on chr17 was confirmed 

in different studies 111–115. This genetic arrangement of SH-SY5Y cells complicates the 

generation of homozygous MAPT mutant knock-out (KO) or knock-in cell lines, as it re-

quires successful editing of presumably three MAPT gene copies, and also impedes het-

erozygous edits, which usually lead to roughly 50 % of affected proteins. The successful 

generation of a MAPT-KO SH-SY5Y cell line recently demonstrated that in fact 

CRISPR/Cas9-based homozygous MAPT editing is possible in SH-SY5Y cells 116. 
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Table 1: Comparison of neuronal model systems for TAU sorting research. 

                     Model system 
       Feature 

SH-SY5Y-
derived 
neurons 

Rodent 
primary  
neurons 

‘Humanized’ 
mouse  
models 

hiPSC- 
derived 
neurons 

Human-derived + - - + 

No animal need + - - + 

Proliferative + - - + 

Low cultivation cost + (+) - - 

Accessible for 
genetic manipulation 

+ (+) + + 

Fast differentiation + + - (+) 

Culture homogeneity (+) (+) + (+) 

Neuronal maturity (+) + + (+) 

Expression of six 
TAU isoforms 

+ - (+) + 

Human brain-like 
Phosphorylation state 

+ n/a + n/a 

Efficient sorting of 
endogenous TAU 

+ + + + 

Efficient sorting of 
transfected TAU 

+ - n/a n/a 

+ = feature is present/available in this cell model,  
(+) = feature is partially present/available or dependent on the experimental (e.g. cultivation, differentia-
tion, (trans)genetic setup) conditions 
- = feature is not or almost not present/available for this model,  
n/a = no data available 

 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 December 2020                   doi:10.20944/preprints202006.0203.v2

https://doi.org/10.20944/preprints202006.0203.v2


15 

 

3 Neuronal identity of SH-SY5Y-derived neurons  

The susceptibility to TAU pathology varies drastically among different brain regions, neu-

ronal subtypes and depending on the type of disease 117–119, as well as TAU expression 

levels, the subcellular TAU distribution, or the TAU isoform ratio 54. This raises the ques-

tion whether TAU properties per se are crucial for the different susceptibility of different 

brain regions being affected by TAU pathology and TAU-mediated neurodegeneration. 

Thus, a cell model that mimics features of early affected brain regions would bear great 

potential for future research. 

Undifferentiated SH-SY5Y cells are considered immature catecholaminergic neurons 

since they express markers of immature neurons 34,35 and key proteins of the catechola-

minergic metabolism 23,34,35,120,121. Interestingly, the reports about the neuronal identity of 

mature SH-SY5Y-derived neurons vary depending on the substances used for differenti-

ation protocols 23 (see Fig. 2 for summary). The most common and often-used substance, 

the vitamin A derivative retinoic acid (RA), was shown to elevate the levels of activated 

choline acetyltransferase, which is typical for cholinergic neurons 34,122,123. However, the 

cholinergic character of RA-treated cells is under debate, as the expression of noradren-

aline 30 and of the vesicular monoamine transporter, a key enzyme of catecholaminergic 

neurons, was reported in some studies 34,122, but not in others 24. Another common differ-

entiation procedure, the combinatorial treatment of RA and the brain-derived neurotrophic 

factor (BDNF) results in extensively branched neurons, which are categorized based on 

the expression of marker proteins either as noradrenergic 24, dopaminergic 124 or cholin-

ergic 125. Besides RA and BDNF, phorbol esters (e.g. Phorbol-12-myristate-13-acetate 

(TPA)) 30,126–128, dibutyryl-cAMP (db-cAMP) 129–131 or other drugs are used alone or in 

combination 30,132 to generate SH-SY5Y-derived neurons with varying neuronal identity, 

e.g. noradrenergic (TPA, db-cAMP) or dopaminergic (RA+TPA). 

Taken together, the classification of SH-SY5Y-derived neurons may depend on the ap-

plied substances and be influenced by the focuses of the actual study. It is, however, 
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certain that SH-SY5Y-derived neurons display some key features of noradrenergic, dopa-

minergic, and cholinergic neurons. This gives rise to both i) the potential of SH-SY5Y-

derived neurons for studies on neuronal subtype-specific AD/tauopathy susceptibility and 

ii) the accompanying challenges, including the resemblance of age-related risk factors, as 

summarized and discussed below (see Table 2 for summary). 

3.1 Chances 

In the progression of AD and other neurodegenerative diseases, certain brain regions are 

typically early affected while other regions show pathological alterations only in late dis-

ease stages. In several subcortical nuclei, considerable neuronal loss can be observed in 

initial disease stages or even pre-clinically 64. These subcortical nuclei are, amongst oth-

ers, the Nucleus basalis (NB, containing mainly cholinergic neurons), the Substantia nigra 

(SN, dopaminergic neurons) and the Locus coeruleus (LC, noradrenergic neurons) 133. 

The formation of TAU-containing NFT’s in NB neurons and massive depletion of acetyl-

choline within cortical and hippocampal regions, resulting from a loss of NB cholinergic 

projections, coincide with early clinical symptoms of AD 133–139. Within the SN, TAU-NFT 

formation, pigmented neuronal loss and other pathological alterations are found in AD 140–

145 and other tauopathies 146,147. Also the noradrenergic neurons of the LC complex are 

early affected by NFT formation and degeneration in AD patients 148–153, and seem to 

become compromised even in young adults without any clinical phenotype 118. 

While comprehensive descriptions of TAU-NFT formation and neuronal loss in these sub-

cortical nuclei are available, the pathomechanisms underlying their vulnerability are still 

elusive 154. Since SH-SY5Y-derived neurons share properties of LC, NB, or SN neurons 

(see chapter 3), they may be a powerful tool for the evaluation of subtype-dependent vul-

nerability. This is particularly true as the TAU physiology specific for these neurons may 

contribute to their increased vulnerability. Several aspects mimicking neuronal TAU phys-

iology are available in SH-SH5Y-derived neurons: subcellular distribution, phosphoryla-

tion state, isoform expression levels and ratios, isoform-specific intracellular localization 
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of TAU and cell-stress induced development of NFT formation or, at least, NFT-like hy-

perphosphorylation (see chapter 2.1ff).  

 

 

Figure 2: Treatment-dependent neuronal identity of SH-SY5Y-derived neurons. Overview of the re-

ported neuronal identity for undifferentiated SH-SY5Y cells (left) and SH-SY5Y-derived neurons (right) with 

respect to commonly administered substances (middle) for differentiation. Undifferentiated SH-SY5Y dis-

play features of immature catecholaminergic neurons. Primarily noradrenergic neurons are reported after 

treatment with RA and BDNF, TPA or db-cAMP, primarily dopaminergic neurons after treatment with RA 

and TPA or RA and BDNF. Neurons with a cholinergic identity result from differentiation with RA or with RA 

and BDNF. Administration with two drugs always refers to sequential treatment in the order of appearance. 

Duration of drug administration varies between protocols but is usually between 5 and 14 days. 
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3.2 Challenges 

Besides the advantages of SH-SY5Y-derived neurons for studying neuron subtype-spe-

cific TAU vulnerability, there are also limitations that has to be considered. As for all cel-

lular models of AD or related tauopathies, which are largely ageing-dependent disorders 

155–158, it is questionable whether up to three-week-old neuronal cultures can resemble the 

cellular properties of subcortical neurons in the brain of aged AD patients. Furthermore, 

the expression profiles, e.g. of RA- and RA/BDNF-treated cells, appear inconsistent 

among different studies, and it remains questionable whether the neuronal subtype can 

be clearly defined. Especially, this is a non-negligible issue since a more comprehensive 

biochemical characterization of the generated neurons would be expensive and time-con-

suming, without the guarantee of a conclusive outcome. Indeed, the available data rather 

suggest that SH-SY5Y-derived neurons do not resemble clearly segregated and distinct 

neuronal subtypes, which can be separated by protein expression or transmitter release, 

but rather exhibit different manifestations of a gradual neuronal entity. 

Another obstacle of using SH-SY5Y-derived neurons may be that major features of LC, 

NB and SN neurons are difficult to recapitulate in cell culture, which is in fact a general 

problem for transferring findings from cell cultures to brain/living organisms. However, 

these features of subcortical neurons, which are hard to display in vitro, might have mas-

sive impact on the vulnerability of those neurons. Specific features of LC neurons 154 in-

clude i) the up to several cm-long, thin and poorly myelinated, heavily branched axons 

spanning throughout the cortex without relay, which leads to high energy demand and 

oxidative stress 159–161 (SH-SY5Y-derived neurons: axons range roughly between 50-150 

µm for RA, TPA or db-cAMP treatment 122,126,129,132 and up 200 µm and more for RA/BDNF 

24,36, and show only moderate branching), ii) increased energy demand and ROS produc-

tion due to the tonic activity 162 (SH-SY5Y-derived neurons: increased excitability and 

membrane potentials 38,163,164 but no tonic activity) and iii) elevated exposure to toxins and 

pathogens as LC neurons innervate the CNS capillary system and associated astrocyte 

end feet 165–167. As all subcortical nuclei share great similarities regarding morphology and 

innervation 168,169, the mentioned risk factors may be largely true for NB and SN neurons, 
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as well 159,160, probably contributing to their susceptibility for early TAU pathology in dis-

ease. 

In brief, the targeted differentiation of SH-SY5Y cells into neurons with features of nora-

drenergic, dopaminergic, or cholinergic neurons bears great potential for research on AD-

selective vulnerability since the mimicked subcortical nuclei are early affected in AD pa-

tients. However, the generation of distinct neuronal subtypes does not appear clearly de-

fined with current differentiation procedures, and SH-SY5Y-derived neurons lack major 

characteristics of their in vivo correlates, that might be crucial for tauopathy-related vul-

nerability. 

 

Table 2: Chances and challenges of the neuronal identity of SH-SY5Y-derived neurons 

Chances 
+ Targeted neuronal differentiation with straight-forward protocols 
+ Features of subcortical nuclei early affected in tauopathies 

+ Locus coeruleus (LC, mainly noradrenergic) 
+ Substantia nigra (SN, mainly dopaminergic) 
+ Nucleus basalis (NB, mainly cholinergic) 

+ Comparative studies on neuronal subtype-specific TAU vulnerability 

Challenges 

- Lack of age-related tauopathy risk factors 
- Inconclusive reports about neuronal identity upon differentiation 
- Lack of major features of LC, SN and NB subcortical neurons 

- Up to cm-long, thin axons spanning across the cortex without relay 
- Tonic activity with high energy demand and oxidative stress 
- Innervation of the capillary system (exposure to toxins & pathogens) 
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4 Conclusion 

Human-derived SH-SY5Y neuroblastoma cells are robust, cheap, highly proliferative, and 

can be differentiated into neuronal cells with straightforward protocols. Although the ma-

turity of SH-SY5Y-derived neurons is under debate, they meet several requirements for 

TAU sorting research: SH-SY5Y-derived neurons exhibit i) pronounced neuronal polarity 

after several days of differentiation, ii) high levels of total TAU protein, iii) expression of all 

major human isoforms, iv) efficient axonal targeting of TAU protein, and v) an human 

brain-like TAU phosphorylation state. Further, SH-SY5Y cells are accessible for genetic 

manipulation, i.e. stable integration of recombinant TAU transgenes and editing of the 

MAPT locus by means of recent CRISPR/Cas9-based methods prior to neuronal differen-

tiation. 

SH-SY5Y-derived neurons resemble, depending on the used treatment, neuron subtypes 

of distinct subcortical LC, NB and SN nuclei that are severely affected in AD and other 

tauopathies. This steerable differentiation bears great potential for comparative studies of 

neuron-specific TAU expression patterns, intracellular localization, and vulnerability to 

TAU pathology. However, there are inherent limitations regarding the translatability from 

SH-SY5Y-derived to subcortical neurons, e.g. the lack of age-dependent risk factors, the 

difficulty of defining the exact neuronal subtype or the lack of brain-spanning projections 

(on a cm-scale) leading to high energy demands and oxidative stress. These caveats have 

to be considered when addressing cell type-specific vulnerability in SH-SY5Y-derived 

neurons.  

All in all, the properties of SH-SY5Y-derived neurons discussed in this review make them 

a powerful neuronal cell model for investigating the mechanisms of and requirements for 

axonal TAU sorting under human-like conditions. 
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