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Abstract COVID 19 has caused social distancing 

and lead to the reductions of various 

anthropogenic activities. Correspondingly this 

study has two fold objectives. First, aims to 

provide quantification measurement of social 

distancing impacts on air quality. Second, to 

forecast the air quality if social distancing is 

continued. The measured air quality parameters 

consist of NO2, SO2, and O3. According to the 

results, the order of air quality parameters was 

NO2<SO2<O3. The NO2, SO2, and O3 levels were 

observed lower after social distancing than 

before social distancing was implemented.  The 

reductions of NO2, SO2, and O3 levels were 5%, 

3%, and 5% respectively. Likewise, 65% of study 

periods (30 days) after implementation of social 

distancing have lower NO2 than before social 

distancing. The exponential smoothing forecasts 

show the decreasing trends for NO2 and SO2. 

While O3 levels are estimated will remain stable 

after social distancing. This study has shown 

that the social distancing has an impact on the 

NO2, SO2, and O3. Correspondingly, if the social 

distancing is continued, then it is estimated can 

provide a positive impact on urban quality.  
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Introduction 

     One of factors that has an effect on the 

urban population is the outdoor air pollution. 

Several important ambient air pollutants 

including NO2, O3, and SO2.  Those air pollutants 

have consequences on the health of urban 

population. 

     In urban populations, NO2, O3, and SO2 have 

been recorded having high levels and increasing 

trends. The numbers of urban population 

exposed to NO2, O3, and SO2 were 70%, 15%, 

and 25% respectively (Jol and Aalst 2001, 

Schwela et al. 2012).  

     The origins of NO2, O3, SO2 can be related to 

either meteorological or anthropogenic 

activities (Chen et al. 2007). Those activities are 

including coal and oil burning for energy 

generation, industrial purposes, and vehicle 

activities as well. Since anthropogenic activities 

were also major determinant factors of air 

pollution, it was hypothesized that an activity 

restriction like social distancing will have an 

impact on air pollution levels.  

     Considering recent situation, this study aims 

to first measure quantitatively the impact of 

social distancing on urban NO2, O3, and SO2 

levels. Second, this study is also aiming to 

forecast the long term air pollution levels if the 

social distancing is continued.  

Methodology 

Air pollutant monitoring 
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     The monitored air pollutant parameters 

including NO2, SO2, and O3 and all measured in 

µg/m3. Those parameters were obtained daily 

from meteorology agency. The monitoring 

durations (30 days) were including before social 

distancing periods (March 2020) and after social 

distancing periods (April 2020) in Jakarta 

representing urban cities in Southeast Asian 

region.  

Wind and rainfall monitoring    

Since NO2, SO2, and O3 levels are influenced by 

meteorological factors, daily wind speed and 

rainfall were measured as well. These 

meteorological data were also collected from 

meteorology agency. 

Exponential smoothing 

     Exponential smoothing has been used widely 

to forecast the air quality parameters (Mahajan 

et al. 2018). Exponential smoothing has several 

advantages, first it is easy to implement and 

second it able to incorporate the dynamic and 

seasonality trend in the data (Roy et al. 2018). 

     The exponential smoothing principle based 

on setting smoothed observation (S2) to original 

observation (y1). The calculations refer to the 

time periods, 1,2,…,n. For the third period 

denoted as S3 = αy2 + (1−α)S2 and so on. The 

smoothed series starts with the smoothed 

version of the second observation. For any time 

period t, the smoothed value St is computed as 

follows.  

St = αyt – 1 + (1−α)St−1, with 0 < α ≤ 1 and t ≥ 3. 

In that equation, the constant or parameter α is 

called the smoothing constant. 

Results 

     Results for the air pollutants consisting of 

NO2, O3, and SO2 during COVID 19 social 

distancing are presented. Descriptive statistics  

(Figure 1, 2, 3, 4) shows the correlation of air 

pollutants with their environmental parameters 

and only NO2 and SO2 that have notably 

correlation. Regarding the environmental 

parameters, the air pollutant levels were not 

influenced by neither rainfall nor wind speed.  

     For all observed air pollutant levels, the 

comparative observations shows that the 

trends were always lower after social distancing 

than before. The notably low levels were 

observed especially for NO2. For 65% of social 

distancing periods or approximately equal to 

18-20 days, the NO2 was lower than before 

social distancing periods (Figure 5, 6, 7). The 

reductions of NO2, SO2, and O3 levels were 5%, 

3%, and 5% respectively. 

     Figure 8, 9, and 10 show the autocorrelation  

function (ACF) of daily air pollutant data. The 

ACF analysis confirms the stationary of the data. 

The exponential smoothing forecasts for all air 

pollutants if social distancing is continued 

confirm two trends. First, NO2 and SO2 were 

forecasted have declining trends. The 

forecasted NO2 will drop to levels <2-3 µg/m3 

while SO2 will decrease to levels equal to <10 
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µg/m3. Secondly, O3 will remain stable at level 

of  150 µg/m3 (Figure 11, 12, 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 . Trends of NO2 (µg/m3) 

before and after social distancing. 

Figure 6. Trends of SO2 (µg/m3) before 

and after social distancing. 

Figure 2. Correlation plots of daily NO2 

 with wind speed (km/h) and rainfall 
(mm/day). 

Figure 3. Correlation plots of daily SO2 

 with wind speed (km/h) and rainfall 
(mm/day). 

Figure 1. Correlation plots of daily 

NO2, SO2, and O3. 

Figure 4. Correlation plots of daily O3 

 with wind speed (km/h) and rainfall 
(mm/day). 
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Discussion 

     The daily NO2 values measured in this study 

were comparable from results obtained from 

other urban cities. Zhou et al. (2015) recorded 

the NO2 range (± standard deviation) was 

34.9±4.9 µg/m3. While Yoo et al. (2015) have 

divided the urban NO2 ranges based on the land 

use classifications included residence, 

commerce, and industry. The NO2 ranges for 

those land uses were 23.2±4.27 µg/m3, 

28.2±3.91 µg/m3, and 23.8±3.55 µg/m3 

respectively. In this study, the NO2 was 

dominated by the ranges equal to 1-5 µg/m3 

followed by 5-10 µg/m3 and the maximum was  

23 µg/m3 (Figure 1). The NO2 values were also 

lower after social distancing than before social 

distancing (Figure 1), even though there were 

some fluctuations observed.  

Figure 12. Exponential smoothing 

forecast of daily SO2 (red line).  

Figure 13. Exponential smoothing 

forecast of daily O3 (red line).  

Figure 11. Exponential smoothing  forecast 

of daily NO2 (red line).  

Figure 7. Trends of O3 (µg/m3) before 

and after social distancing. 

Figure 8. Autocorrelation  function (ACF) 

of daily NO2.  

Figure 9. Autocorrelation  function (ACF) 

of daily SO2.  

Figure 10. Autocorrelation  function 

(ACF) of daily O3.  
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     In this study SO2 was higher than NO2. The 

frequencies of SO2 values equal to 10-15 µg/m3 

were more common compared to NO2. SO2 

values exceeded the NO2 were also reported by  

Zhou et al. (2015). They found that the NO2 

range (± standard deviation) was 45.0±3.9 

µg/m3. While Yoo et al. (2015) observed that 

the SO2 was lower than NO2 with ranges equal 

to 7.5±0.76 µg/m3. 

     The measured O3 was the highest parameters 

compared to NO2 and SO2 in this study and this 

also reported in other literatures. Ho (2012) 

reported the O3 ranges were 225-546 µg/m3 as 

observed in big cities. Likewise, Saini et al. 

(2014) reported that in Agra city, the O3 was 

equal to 223 µg/m3. In this study, the O3 ranges 

equal to 150-200 µg/m3 have high frequencies 

following with 75-149 µg/m3 and 201-296 

µg/m3.  

     This study founds positive correlation 

between NO2 and SO2. Nonetheless, O3 has 

inverse correlation with both NO2 and SO2. This 

trend was also reported by Saini et al. (2020). 

According to their study, the ozone follows a 

negative relationship with ozone precursors 

including NO2. This inverse relationship was also 

observed in study by Freitas et al. (2020). In 

their results, besides negative correlation with 

NO2 and SO2, the O3 was higher after social 

distancing than before. Basically, O3 is 

developed through complex reactions evolving 

NOx, volatile organic compounds (VOC), and 

solar radiation. O3 itself was a secondary 

pollutant with no linear relationship with its 

precursors and the reduction of primary air 

pollutants does not necessarily can cause O3 

reductions. 

     Many factors including meteorological and 

anthropogenic are known having contribution 

to the dynamics of the air pollutants (NO2, SO2, 

O3). Meteorological factors are consisting of air 

temperature, rainfall, and wind speed (Zhou et 

al. 2015). SO2 and NO2 in earth surface were 

reported having negative correlation with 

atmospheric temperature.  When the 

temperature is high then the atmosphere is 

instable.  This will cause the thermal convection 

that makes air pollutants diffuse upwards 

resulting in lower pollutant concentrations. 

     Rainfall is also known having negative 

correlation with the air pollutants. Heavy 

rainfall will flush air pollutants and cause air 

pollutants and water droplets collide with each 

other during the rain. The rainwater functions 

to capture the pollutant particles and dissolves 

the pollution gases (Zhou et al. 2015). While 

rainfall tends to reduce pollutants, wind speed 

is known having dual effects on air pollutants. 

At low level, wind speed will reduce pollutants 

through favoring air pollutant diffusion and 

dilution as well. Nonetheless, at high level wind 

speed facilitate transports of pollutants from 

source and increase the pollutant levels.  
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     The analysis in this study shows that there 

was no significant correlation of air pollutants 

with neither rainfall nor wind speed (Figure 2, 3, 

4).  The study was conducted from March to 

April which is already near the end of rainfall 

season. During this time, when the rainfall was 

decreasing then the air pollutants should be 

increased as hypothesized. Nonetheless in April 

all measured air pollutants were decreased and 

lower than March or before the 

implementation of social distancing. Likewise, 

the low air pollutant levels presumably related 

with the other meteorological factors, in this 

case it can be the anthropogenic factors. 

     The high and even fluctuations of air 

pollutants are known sometimes are related to 

the anthropogenic factors rather than 

environmental factors. Zhou et al. (2015) 

identified that the urban air pollutants may be 

caused by the coal combustion, automobiles, 

road dust, biomass burning, long range 

transport dust, and even celebration activities. 

Even environmental policies, economic 

development, and industrial structure can also 

contribute to the air pollutant levels. Zhou et al. 

(2015) found that high recorded SO2 were 

related due to the fireworks. The fireworks 

were used as parts of spring holiday festival 

celebration.   

     Since the anthropogenic activities have been 

assumed having direct impacts on air 

pollutants, then the restrictions of these 

activities are hypothesized can reduce the air 

pollutants. During current COVID 19 pandemic, 

there are restrictions of anthropogenic activities 

in the form of social distancing. The results in 

this study inform that air pollutants were lower 

after social distancing has been implemented 

and this comparable with other studies. 

Likewise, 65% of total days included in this 

study period after implementation of social 

distancing have lower NO2 than before social 

distancing. While there were 50-55% of total 

days have low SO2 and O3 as well.  According to 

Navel et al. (2020), there was NO2 decrease by 

25% during quarantine in China. A similar 

decreasing trend was also reported in most 

cities around the world. In Europe, reduction of 

economic activity, transportation, and traffic, 

especially diesel vehicles has causes drop in NO2 

(Anjum 2020).  

     A more comprehensive study on how the 

social distancing can slash down the air 

pollutants can be drawn from Freitas et al. 

(2020). Their results also confirmed similar 

trends observed in here, which is the  general 

trend for NO2 in social distancing period was 

lower than 2019 with average equal to 10 

µg/m3. The reductions of NO2, SO2, and O3 

levels were 5%, 3%, and 5% respectively as 

recorded in  this study. While Bao and Zhang 

(2020) reported NO2 and SO2 decreased by 25% 

and 7%. 
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      Air pollutants have been object of 

forecasting study. The result obtained from this 

study is needed and very useful to design and 

develop the air pollution management 

framework. Various methodology have been 

developed and used in air pollutant forecasts, 

including time-series data regression, 

autoregressive moving average (ARIMA), and 

even Adaptive Neuro-Fuzzy Inference System 

that has been reported more accurate 

(Zeinalnezhad et al. 2020, Zhu et al. 2020). By 

using ARIMA, Sharma et al. (2018) have made 

365 day forecasts for NO2, SO2, and O3. Based 

on their study, they have forecasted an increase 

for NO2, SO2, and O3. This study forecasts the 

reductions of NO2 and SO2, while O3 remains 

stable.  

Conclusion 

     This study has succeeded to provide more 

comprehensive data regarding the impacts of 

social distancing on air pollutants mainly in 

urban of Southeast Asian. The forecasted air 

pollutant levels have been developed as well. 

Recommendation 

     This study has provided robust evidence 

regarding the possibility of air pollutant 

reduction if the social distancing is continued. 

Likewise continuing the nationwide restriction 

may benefit the current COVID 19 related 

slashed down air pollution and this is believed 

can reverse the future respiratory health. The 

air pollutant decreasing trends due to slowing 

down of transport, traffic, and travel in slashing 

down the air pollutant are expected can 

encourage the related stakeholders to judicious 

use of resources and at the end can minimize 

the global emissions and air pollutants along 

with their risks on health.  
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