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Summary 
Neuroinflammation, defined as inflammatory reactions mediated by cytokines, chemokines, 

reactive oxygen species, and secondary messengers in the central nervous system (CNS) including 

the brain and spinal cord is the basis of many neurological disorders [1] Recently, erythropoietin 

(EPO) has been considered and studied as a modulator of neuroinflammation.[2-4] On this article 

minireview of pathophysiology of neuroinflammation and the neuroprotective effects of EPO is 

discussed and a case of subacute huge subdural hematoma with double mydriasis operated 

urgently, treated with low daily dose (vs high dose once or twice a month in the literature) of EPO 

and recovered fully and discharged home with good consciousness is reported. In addition, the 

probable outcome of erythropoietin administration in patients with neuroinflammation in 

COVID19 is considered.    

 

Introduction 
Neuroinflammation has a deleterious effect on the CNS in a time- and severity-dependent fashion;  

short mild form of it may be considered as rather repairing which contributes to the 

neurodevelopment, neuroprotection and neuroplasticity, yet its severe prolonged version may be 

debilitating to the patients.[5, 6]  This phenomenon, with its energy-consuming metabolic-
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demanding nature has been linked to the secondary pathological changes elicited in hypoglycemia 
[7], the ischemic brain disorders [8, 9], intracerebral hemorrhage [10, 11], traumatic brain injury (TBI) 
[12, 13], Alzheimer’s disease [14-16], Parkinson’s disease [17, 18] and other neurodegenerative disorders 

such as amyotrophic lateral sclerosis (ALS) [19], and multiple sclerosis (MS) [20, 21]. It has recently 

been related to the neurobiological disorders like of epilepsy [22], depression [23, 24], obsessive-

compulsive disorder [25] and schizophrenia [26]. There are lots of data in the literature showing that 

EPO could be an appropriate drug to subside neuroinflammation specially in traumatic brain 

injuries. The dosage of EPO used in these articles was reported to be between 10000 and 40000 

units. [27, 28] As to the debating subjects associated with administration of EPO like hypertension 

and thrombophilia we decided to use lower doses of EPO (4000 units/day for 3 weeks or till a 

reasonable level of consciousness is observed) in our patients with neuroinflammatory disorders. 

 

Low Daily Dose of Erythropoietin in a Patient with Huge Subdural Hematoma 

Prone to Brain Death  
A 56-year-old woman was admitted to emergency room of Bazarganan Hospital, Tehran, Iran in 

November 22, 2018 due to gradual loss of consciousness (GCS:11 on admission) after falling down 

and having been traumatized to the head about two weeks prior to admission. She had right-sided 

hemiparesis started the day of admission. Mild mental retardation and drug-controlled epilepsy 

could be seen on her past medical history since her early ages of life. Physical examination of other 

organs revealed nothing. Her GCS deteriorated soon after non-contrasted CT scan was done for 

her (figure 1A, 1B) which showed a huge rightward shift of the brain due to subacute pooling of 

blood in subdural area in the left hemisphere of the brain.  

 
Figure 1A and 1B. Rightward huge shift of the brain due to subacute subdural hematoma 
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As unilateral mydriasis occurred in the left pupil, the patient was sent to the operating room (OR) 

urgently to evacuate the blood after an open peripheral vein was secured and infusion of 1 liter of 

normal saline and loading dose of phenytoin were started. 8000 units of EPO was injected 

subcutaneously (SC), as well. Unilateral mydriasis turned to double mydriasis as she was put on 

the operating table. Operation terminated uneventfully and mydriasis turned to midsize pupils with 

sluggish reaction to the light as she arrived at ICU. Postop CT scan showed that the blood was 

evacuated successfully despite mild shift of the brain remained due to the edema of the left 

hemisphere (figure 2A and 2B). 

 
Figure 2A and 2B. POD1 brain CT scans 

 

The patient was given 4000 units of SC EPO a day for the rest of her stay at ICU till reasonable 

recovering of her consciousness (2 weeks) with taking care that her hematocrit not rise to more 

than 33. No rise in the blood pressure or thrombotic vascular complication was seen in this period. 

MRI on the fifth post operation day (POD) showed ischemic lesions in the midbrain and left 

occipitotemporal area due to the pressure of the hematoma on these areas prior to operation (figure 

3A and 3B).  

She started to show some sluggish motor reactions gradually and could open her eyes to some 

degree in December 1, 2018. Her consciousness improved day by day and her GCS reached to 14 

in January 26, 2019 without any major neurologic deficit but some retardation in her speech and a 

mild degree of right-sided hemiparesis which improved within the next 3 months.  
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Figure 3A and 3B. High intensity lesions in MRI in the midbrain and left occipitotemporal area; POD5 

 

 

Discussion 
Neuroinflammation is triggered by any type of stress to the nervous system.[29] In this phenomenon 

astrocytes and microglia contribute as components of innate immunity to initiate cascade of 

synergistic effects of cytokines. Astrocytes, the most distributed glial cell type in the CNS, support 

the homeostasis of microenvironment of neural cells and regulate neurotransmitters and synaptic 

functions. Stimulation of astrocytes may morphologically and functionally turn them into two 

distinct forms: radial glial-like and reactive astrocytes. [30, 31] Radial glial-like astrocyte lineage 

represents mitogenically active multipotent stem cells in the adult brain which eventually 

constitute the source of  neural cells and other astrocytes.[32, 33] Reactive astrocytes along with 

microglial, which change from M2 (anti-inflammatory) to M1 (pro-inflammatory) morphology, 

along with neural cells, with different innate immunity programs in different regions of the brain, 

contribute  to defend against pathogens.[34, 35] These sentinel cells express pattern-recognition 

receptors (PRRs) including Toll-like receptors (TLR), NOD-like receptors (NLRs), receptor for 

advanced glycation end products (RAGE), and scavenger, complement and mannose receptors. 
[6],[36-38]  

Brain cells can recognize pathogen-associated molecular patters (PAMPs) or host-derived 

danger/damage-associated molecular patterns (DAMPs) (heat shock proteins, ATP, S100B and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 June 2020                   doi:10.20944/preprints202006.0107.v1

https://doi.org/10.20944/preprints202006.0107.v1


HMGB) through their PRRs.[35],[39] PAMPs and DAMPs activate signaling pathways such  

mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-𝜅𝜅B). These pathways 

promote generation and rapid gene amplification of the inflammatroy cascade and expression of 

ICAM-1, VCAM-1, E-selection, and iNOS.[40-43]  NF-𝜅𝜅B pathway activation has been linked to 

neuroinflammatory responses in Parkinson’s Disease, Alzheimer’s Disease and other insults to the 

brain such as TBI and ischemic brain disorders. [44-46] Furthermore, inhibition of NF-𝜅𝜅B was shown 

to slow than the speed of progression of neurodegenerative disorders. [47] 

Activation of astrocytes and microglia results in secretion of cytokines (IL-1β, TNF-𝛼𝛼, and IL-6), 

α-chemokines (MCP-1, MIP-1, and RANTES), and other inflammatory mediators such as 

cyclooxygenase-2 and MMP-9.[48-50] On the other hand,  MMPs are involved in the regulation and 

modification vascular endothelial growth factor (VEGF) in a positive feedback effect [51]. MMP 

inhibitors could halt releasing of mature TNF-α.[52] Consistent with their abilities, MMPs, with 

proteolysis of the extracellular matrix proteins remained from inflammatory process, open the 

space to accommodate the inflammatory cells as well as newly produced blood vessels. Although 

as an anti-inflammatory effect, MMPs may modulate pro-inflammatory cytokines, the former’s 

destructive potentials may damage the penumbra unless tissue inhibitors of matrix proteinase 

(TIMPs) come into action.[53, 54] 

Simultaneous occurrence of neuroinflammation and cell apoptosis in the CNS makes it difficult to 

uncover which one is the primary or secondary event. [55]  Moreover, blood brain barrier is 

disrupted in inflammatory reactions in the brain. This permits entry of inflammatory to the brain 

parenchyma. In this context, water content in the brain dysregulates as the function and distribution 

of aquaporins (AQPs) with constitutional pro-inflammatory effects are disturbed. These proteins 

are responsible for regulating transmembrane water transport, as well as some small molecules 

like glycerol. AQPs play a key role in astrocyte swelling and migration, function of BBB, and 

cytokine release, as well. [56, 57]  

Intriguingly, any type of the brain injury is associated with tissue hypoxia due to inflammation 

with high metabolic and oxygen demand, vascular injury and shortage of oxygen delivery. Relative 

oxygen deficiency and absolute hypoxic environment of acute phase of cerebral injury (6-12 hours 

post-injury period) induces expression of hypoxia inducible factor-1α (HIF-1α) which promotes 

pro-apoptotic genes (BNIP3, NIX and NOXA). HIF-1α in the genome binds with caspase 3 

promoter which leads to apoptosis of the injured cells or in the penumbra. [58] Furthermore, in the 

hypoxic environment, free radicals (ROS, RNS) generated by mitochondrial complex III induces 
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both destruction of vital and structural molecules and stabilization of HIF-1α. [59, 60]  In general, 

HIF-1α is upregulated in normoxia (for example in post-reperfusion state) by some factors such as 

insulin-like growth factor-1 (IGF-1), thyroid hormone (T3), cytokines (IL-β, IL-6, TGF-β, TNF-

α), NFƙB, free radicals (ROS, RNS), thrombin, PAMPs  and  DAMPs. [61-67] The initial  

proapoptotic effect of HIF-1α turns to pro-survival proteomes (like EPO, VEGF, glucose 

transporter-1, aldolase A, lactic dehydrogenase A, phosphofructokinase protein) after 48 hours.[68, 

69] Accordingly, most of the hazardous effects of acute neuroinflammatory state is observed in the 

first few days. Thus, applying early anti-inflammatory/anti-apoptotic measure would be legitimate 

to decline the severity of the damage.  

The beneficial effects of EPO on neuroinflammation have been discussed on a growing amount of 

literature in the last three decades.[70-73] Fetal brain in rats exhibits high level of EPO receptor 

(EPO-R) which decreases after birth up to 100fold. EPO-R can be found on neurons, astrocytes 

and microglia in the adults, as well. It is implied that EPO, a growth hormone, is involved in the 

CNS development in fetal period and must govern some trophic and protective cascades in the 

brain in adulthood.[74, 75] It is worth to know that EPO could induce proliferation of cultured neuro-

progenitor cell if added to the culture media.[76] In an animal study EPO could promote 

differentiation of precursor cells to increase mature neurons and oligodendrocyte population in the 

hippocampus.[77] Angiogenesis and neurogenesis in rats was shown to be induced if EPO is given 

in the first 24 hour of stroke.[78] Anti-inflammatory/anti-apoptotic properties of (EPO) have long 

attracted the attention of experts.[79-81] Arterial-thromboembolic induced brain ischemia treated 

with EPO in an animal study revealed limited neural loss and BBB disruption due to anti-apoptotic 

and anti-inflammatory potentials of EPO.[82] Moreover, it has also been demonstrated that EPO 

could downregulate HIF-1α expression in brain ischemia.[83] As a significant finding, EPO was 

demonstrated to expand expression of its receptor (EPO-R), reduce the axonal damage, decline the 

level of IL-β, suppress neuroinflammation and increase sensorimotor and cognitive responses in 

an animal model and decrease traumatic axonal injury specially when the rat were kept hypoxic, 

as well.[72]  

High-glucose induces apoptosis of retinal ganglionic cells which has been shown to be inhibited 

by EPO’s stabilization of mitochondrial membrane potential. In this context, EPO could prevent 

releasing of  cytochrome C and avoid upregulation of oxygen free radical and mitochondrial 

damage.[84] Treatment with EPO upregulates mitochondrial complex III, IV and respiration and 

neural energetics. [85] Similarly, EPO was found to be effective against neural cell apoptosis in 
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glaucoma through  PI-3-K/Akt pathway. [86] This growth factor in rats saves microglia through its 

dose-dependent anti-apoptotic effect without disturbing their pro-inflammatory activities. 

Elevation of Bcl/Bax ratio and prevention of caspase-3 and -9 are other EPO’s abilities to survive 

microglia. [87-89] In cell culture of murine microglia and astrocytes, EPO could protect astrocytes 

from oxidative stress injury and upregulate nitric oxide, while only exhibited antioxidant effects 

against ROS injury in microglia.[90] EPO in brain injuries has been shown to inhibit AQP-4-

induced astrocyte swelling and to downregulate MMP-9, the latter through increasing the 

expression of TIMP-1 and upregulation of JAK-2/STAT3/STAT5 pathways.[91, 92]  

In a recent in vitro study, it was reported that plasma membrane of human CD4+ and CD8+ T cells 

contain EPO-R and EPO which could suppress alloreactive human T-cell immunity via inhibition 

of downstream T-cell and IL-2 receptor signaling pathways.[93]  

Recently the potency of human recombinant type of EPO in treating neurodegenerative disorders 

has been considered. [94] EPO has been effective in improvement of non-motor symptoms in 

Parkinson’s disease and in preventing memory deficit by preserving hippocampal neurons in a rat 

model of Alzheimer’s Disease.[95, 96] In drug-resistant depression, EPO has shown a promising 

effect.[97] There are contradictory results regarding EPO efficacy in ALS, yet a new clinical trial 

has recently been conducted in South Korea. [98-100] 

It should be noted that EPO should not be given to patients with primary and secondary nervous 

system neoplasia or any neoplasia in other organs because EPO as a pleiotropic growth factor with 

an anti-apoptotic property may cause spreading of the tumors, especially solid ones.[101] 

 

EPO and Neuroinflammation in Brain Involvement in COVID19 
In general, administration of this cytokine in sepsis and infections is a debating subject; on one 

side of this spectrum, macrophage function is suppressed in Salmonella infection in the presence 

of EPO. This suppressing ability of EPO against macrophages might be deleterious in sepsis.[102, 

103] On the other side it was uncovered that EPO could improve survival of mice in sepsis as it 

reverses irresponsiveness of the aorta to norepinephrine (NE), upregulates eNOS and 

downregulates iNOS.[104] Neuroinflammation involving the brain in COVID19 needs special 

consideration. SARS-CoV2 follows the track of ACE2 in the brain. As to the proposed novel 

theory that is supported by a great amount of literature and attributes the pathophysiology of 

cytokine storm and inflammatory reactions in COVID19 to downregulation of ACE2 and 

subsequent hyperacute excess of angiotensin II (Ang II) relative to angiotensin(1-7) and supra-
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activation of angiotensin receptor type 1 (AT1R) [105], EPO should be administered in these patients 

cautiously because of reciprocal positive interactions of EPO and Ang II.[106, 107]  

It has been reported that Ang II blood level in patients with COVID19 is higher than that in non-

infected healthy people.[108] AT1R located in brain circumventricular area and cerebrovascular 

endothelial cells is activated by circulating Ang II with the ability to impair neurovascular coupling 

and reduce cerebral blood flow (low dose of 0.1 pmol/min  results in a 23% reduction).[109, 110] 

Local RAS has also been described in the brain, yet ACE2 was reported to predominate in the 

brain specially in the hypothalamus compared to angiotensin converting enzyme (ACE).[111] ACE2 

deficiency was shown to increase brain swelling and cell death in an animal model of brain 

ischemia. [112] EPO exhibits synergistic effect on Ang II and NE in mobilization of intracellular 

Ca2+ in vascular smooth muscle cells which may last for about 60 minutes.[107] Furthermore, EPO 

dose-dependently promotes expression of transient receptor potential canonical gene (TRPC) and 

TRPC channel protein up to 70%. Ang II induces TRPC-mediated Ca2+ current which soars up 

significantly in the presence of EPO.[113] Ca2+ though mediates many homeostatic surviving 

pathways, its intracellular concentration is tightly regulated as increased sustained intracellular 

calcium content induces programmed cell death. [114] Thus EPO in synergism with Ang II might 

induce apoptosis. 

 

Conclusion 
As the aforementioned patient’s brain MRI shows ischemic lesions in the midbrain and 

occipitotemporal areas, it seems that intracranial pressure prior to operation was high enough to 

make these areas bloodless and prolong coma or even give the patient the vegetative state, 

postoperatively. The patient’s double mydriasis on the operating room was a clue that brain 

parenchyma herniation was an imminent event. As the patient received routine neuroprotective 

medical care but it was just low dose of EPO that was added, and a great percentile of similar 

patients’ outcome is not favorable, it is justifiable to regard EPO as the drug that could help the 

brain recover fast and flawlessly despite this vast ischemic lesion in the midbrain and 

occipitotemporal areas. As the issue of safety of EPO is debating due to its thrombophilic, 

hypertensive and inducing TRPC properties [113],[115-117] , we use EPO with loading dose of 8000 

units and maintenance dose of about 4000 units EPO a day for 3 weeks or less till consciousness 

recovers reasonably. In this period, we take care that hematocrit does not rise more than 33. 
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It seems that low regular daily dose of EPO compared to doses found in the literature (10000-

40000 units once or twice a month) is promising in treating neuroinflammatory disorders in the 

future with less complications. 
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