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Abstract 

In the last three decades, the robust scientific data emerged, demonstrating that the immune-

inflammatory response is a fundamental component of the pathophysiology of major depressive 

disorder (MDD). Psychological stress and various inflammatory comorbidities contribute to such 

immune activation. Still, this is not uncommon that patients with depression do not have defined 

inflammatory comorbidities, and alternative mechanisms of immune activation need to take place. The 

gastrointestinal (GI) tract, along with gut-associated lymphoid tissue (GALT), constitutes the largest 

lymphatic organ in the human body and forms the biggest surface of contact with the external 

environment. It is also the most significant source of bacterial and food-derived antigenic material. 

There is a broad range of reciprocal interactions between the GI tract, intestinal microbiota, increased 

intestinal permeability, activation of immune-inflammatory response, and the CNS that has crucial 

implications in brain function and mental health. This intercommunication takes place within the 

microbiota-gut-immune-glia (MGIG) axis, and glial cells are the main orchestrator of this 

communication. A broad range of factors, including psychological stress, inflammation, dysbiosis and 

other,  may compromise the permeability of this barrier. This leads to excessive bacterial translocation 

and the excessive influx of food-derived antigenic material that contributes to activation of the immune-

inflammatory response and depressive psychopathology.  This chapter summarizes the role of increased 

intestinal permeability in MDD and mechanisms of how the "leaky gut" may contribute to immune-

inflammatory response in this disorder. 
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1. Introduction 

For over four decades, the monoaminergic hypothesis mostly defined our understanding of 

major depressive disorder (MDD). This hypothesis postulated that deficits in certain neurotransmitters, 

including serotonin (5-HT), noradrenaline, and dopamine, contribute to MDD symptomatology and that 

antidepressant treatment improves depressive symptoms due to the restoration of the appropriate 

neurotransmission. However, in the last two decades, a piece of robust scientific evidence emerged 

indicating that MDD is accompanied by the low-grade immune-inflammatory response, which has a 

crucial role in the pathophysiology of this disorder. Consequently, various immune hypotheses of this 

disorder emerged, including the macrophage hypothesis of depression (1), the monocyte-T-lymphocyte 

hypothesis (2), a neurodegeneration hypothesis (3), the cytokine hypothesis (4) the glutamate 

hypothesis (5), "leaky gut" hypothesis (6, 7), or depression as a glial-based synaptic dysfunction (8), to 

name a few. Those hypotheses reciprocally complement each other and represent a continuum of 

evolving understanding of depression. It also became clear that the monoaminergic paradigm is just a 

part of the much bigger and intriguingly complicated psycho-neuro-immunological picture.  

Some of the crucial aspects of immune-inflammatory response in MDD include increased levels 

of pro-inflammatory cytokines i.e., IL-1β, TNF-α, IL-6 (4, 9), activation of oxidative and nitrosative 

stress (O&NS)  and decreased levels of crucial antioxidants and total antioxidant capacity in depressed 

patients (10-13). Also, it has been demonstrated that O&NS may generate neoepitopes with subsequent 

autoimmunity in depressed patients (14). Furthermore, MDD is accompanied by abnormalities in the 

metabolism of tryptophan and its catabolites in the kynurenine pathway (TRYCATs / kynurenines) what 

manifests with the decreased amount of tryptophan available for conversion to 5-HT and increased 

conversion of tryptophan to TRYCATs. Those kynurenines may exert neurotoxic, pro-oxidative effects 

on the CNS, and increase glutamate neurotransmission (3, 15-18). Moreover, MDD is often comorbid 

with various inflammatory and autoimmune disorders, which could contribute to the activation of the 

inflammatory response in MDD. Those, for instance, include inflammatory bowel diseases (IBD) i.e., 

Crohn's disease, ulcerative colitis or irritable bowel syndrome (IBS), further, rheumatoid arthritis, 

multiple sclerosis (MS), coronary artery disease, chronic obstructive pulmonary disease (COPD), HIV 

infection (human immunodeficiency virus), Alzheimer's disease and other, and their comorbidity 

reciprocally worsens the course and prognosis. Still, this is not uncommon that patients with MDD do 

not have defined inflammatory comorbidities, and alternative mechanisms of immune activation in this 

disorder need to take place.  

One of the major contributors to activation of immune-inflammatory response is psychological 

stress, which with the involvement of hypothalamic-pituitary-adrenal (HPA) axis and the activation of 

the sympathetic nervous system (SNS), upregulates the expression of nuclear factor kappa beta (NF-

κB) in mononuclear cells what results with an increase of pro-inflammatory cytokines release (19-21). 

Moreover, catecholamines induce activation of microglia, the release of pro-inflammatory cytokines in 
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the periphery and within the CNS, and increase the trafficking of macrophages to the CNS. 

Psychological stress also upregulates the TLR-4 pathway and exacerbates response to bacterial LPS 

(21-24).  

Another crucial element that links the effects of psychological stress and immunity is the 

gastrointestinal (GI) tract with the gut-associated lymphoid tissue (GALT). GI tract, along with GALT, 

constitutes the largest lymphatic organ in the human body, and it is responsible for the production of 

70-80% of immune cells. Given that, in the last decade, there is a growing interest in reciprocal 

interactions between the GI tract, intestinal microbiota, increased intestinal permeability, activation of 

immune-inflammatory response, and the CNS. This intercommunication takes place within the 

microbiota-gut-brain axis or recently proposed the microbiota-gut-immune-glia (MGIG) axis (25), 

since glial cells are the main orchestrator of the immune response within CNS, and mediate the central 

response to the systemic inflammation. GI tract forms the biggest surface of contact of the human body 

with the external environment, and it is the most significant source of bacterial and food-derived 

antigenic material.  

Bacterial LPS/endotoxin, which is a cell wall component of Gram-negative bacteria, along with 

other bacterial-derived antigenic material including flagellins, lipoproteins, peptidoglycans belong to 

so-called pathogen-associated molecular patterns (PAMPs) and are recognized by pattern recognition 

receptors (PRRs) including Toll-like transmembrane receptors (TLRs).  TLRs constitute broad antigen 

sensing "machinery" and, of particular interest, TLR4 are responsible for recognizing bacterial LPS. 

Those receptors are expressed on various immune and non-immune cells both in the periphery and 

within the CNS, such as dendritic cells, lymphocytes, monocytes, macrophages, granulocytes, 

astrocytes, microglia, oligodendrocytes and tissues including intestinal tissue (26). LPS can also 

activate receptors for advanced glycation end products (RAGE) which can lead to endothelial 

hyperpermeability (27). The second group of gut-derived antigens, which could play a significant part 

in the immune-inflammatory mechanism in MDD are food-derived antigens.  

Permeability of the intestinal barrier is the main determinant of the extent of bacterial 

translocation from the intestinal lumen and subsequent activation of TLR4 receptors. Importantly, this 

barrier's permeability may be compromised by a broad range of factors, including psychological stress 

with the involvement of HPA axis activation and corticotropin-releasing hormone (CRH)-mediated 

mast cells activation (Fig.1) (28-34). Also, psychological stress may contribute to increased intestinal 

permeability via activation of SNS and activation of β2-adrenergic receptors expressed on epithelial 

cells (33, 35, 36). Moreover, factors compromising gut barrier include pro-inflammatory cytokines such 

as IFN-γ (37), TNF-α (38, 39), IL-1β (40), O&NS (30, 41), NF-κB (42), alcohol (43-46), high-fat diet 

(47) and obesity (48), traumatic brain injury (49), food additives and pesticides (50-55), prolonged 

strenuous exercise  (56, 57), heat stress (58), infections (59, 60), some medications for instance, 

antibiotics (61-64) and non-steroidal anti-inflammatory drugs (NSAID) (65, 66). Finally, since gut 

microbes are the "natural guardians" and modulators of this barrier's integrity, abnormalities in their 
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composition, including dysbiosis and small intestine bacterial overgrowth (SIBO), contribute to 

increased intestinal permeability (46, 67, 68). Importantly, MDD is accompanied by changes in the 

intestinal microbiota composition (69-73), and dysbiosis was also demonstrated in other psychiatric 

disorders, including chronic fatigue syndrome (CFS) (74), schizophrenia and bipolar disorder (75, 76), 

autism (77-81) and alcoholism (46). Additionally, psychological stress has a detrimental influence on 

intestinal microbiota composition what has a negative impact on mucosal immunity and results with an 

increase of parameters of peripheral and central inflammation (82-84). In view of the above, growing 

scientific data demonstrates that various psychiatric disorders including MDD (6, 7, 14, 76, 85-87), 

schizophrenia (88-90), bipolar disorder (76), CFS (91, 92), autism (93-95), alcohol dependence (44-46) 

are accompanied by increased intestinal permeability. Furthermore, numerous inflammatory disorders, 

which are comorbid with MDD, including celiac disease, IBD, IBS, rheumatoid arthritis, ankylosing 

spondylitis, MS, type 1 and type 2 diabetes, asthma, atopic eczema, are also accompanied by increased 

intestinal permeability (96-99). 

Finally, glial cells, which are non-neuronal and most abundant cell types in the CNS, play a 

crucial role in the brain's immune response to both systemic and central inflammation, and reciprocally 

cross-talk with neurons. Those cells include astrocytes, microglia, oligodendrocytes, ependymal cells, 

Schwann cells, and satellite cells. In particular, astrocytes, microglia, and oligodendrocytes are mainly 

involved in psychiatric manifestations of gut-derived immune-inflammatory response, and various glial 

abnormalities accompany MDD. It is noteworthy that these cells express TLR4 receptors for endotoxin, 

and subsequently, bacterial translocation influenced their functions and structure.  Astrocytes are 

involved in different metabolic processes, including ion and fluids balance and energetic metabolism. 

Those cells produce a broad range of gliotransmitters, including glutamate, adenosine triphosphate 

(ATP), D-serine, and are the source of different neurotrophic factors involved in neurotransmission and 

synaptic plasticity. Astrocytes play a significant part in the regulation of glutamate and gamma-

aminobutyric acid (GABA) neurotransmission and are responsible for the reuptake of about 90% of the 

glutamate. Subsequently, their dysfunction leads to glutamate excess and inappropriate balance between 

excitatory and inhibitory neurotransmission (Fig.1). Astrocytes also have a pivotal role in the blood-

brain-barrier (BBB) function and its permeability (100). Abnormalities in astrocytes function and 

structure, namely astrogliosis, accompanies MDD, and depressed patients have decreased number and 

density of those cells in brain regions involved in MDD such as the hippocampus, amygdala and 

prefrontal cortex (101-103). Also, psychological stress has a negative influence on the structure and 

functions of astrocytes and microglia (104). Consequently, antidepressant treatment, including 

antidepressant medication, lithium, and electroconvulsive therapy (ECT) has a beneficial influence on 

the structure and functions of astrocytes (101, 105).  

Microglia is another group of glial cells involved in MDD. Those brain resident-macrophages are 

mainly participating in immune regulation, and they are "the first line" immune defense of the CNS. 

Those cells are equipped with a broad plethora of pro-inflammatory mechanisms, including cytokines, 
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chemokines, nitric oxide (NO), prostaglandins, pro-oxidative kynurenines, such as 3-

hydroxykynurenine (3OHKYN) and quinolinic acid (QUIN). These immune mechanisms can be life-

saving, but when excessively and chronically triggered, can be detrimental to brain functions and mental 

health. Microglia release neurotrophins, including brain-derived neurotrophic factor (BDNF) and 

neurotransmitters, i.e., ATP and glutamate, and are involved in synaptogenesis, synaptic pruning, 

sampling, and elimination. Interestingly, glutamate influences microglial chemotaxis, and microglia 

migrate towards the origin of increased glutamate release (106). Consequently, abnormalities in 

microglia proportions (primed v.s resting cells), functions, and morphology, namely microgliopathy, 

were demonstrated in MDD and suicidality (107, 108). It was also shown that antidepressant treatment 

attenuates microglial activation, including the release of glutamate and pro-inflammatory cytokines 

(109-111). Moreover, psychological stress has a negative impact on microglia morphology, particularly 

in brain areas related to MDD and anxiety, such as the hippocampus, prefrontal cortex, amygdala, 

hypothalamus, and nucleus accumbens (112). 

Last but not least are oligodendrocytes, which are mainly involved in myelin formation. Astrocytes and 

microglia profoundly influence these glial cells. Pro-inflammatory cytokines, O&NS, and glutamate 

may compromise functions of oligodendrocytes, particularly myelin formation and abnormalities in 

oligodendrocytes function and myelin formation were demonstrated in MDD (113-115). 

In this chapter will summarise the role of increased intestinal permeability in major depression 

and mechanisms of how the "leaky gut" may contribute to immune-inflammatory response in this 

disorder. 

 

2. The evidence of increased intestinal permeability in depression 

Increased intestinal permeability to bacterial antigens 

It is becoming increasingly evident that MDD is accompanied by increased intestinal 

permeability, which could contribute to the low-grade immune-inflammatory response in patients with 

MDD (Fig.1). The first evidence of the "leaky gut" in depression was demonstrated in two consecutive 

studies, which revealed that MDD patients had increased serum levels of immunoglobulins A (IgA) and 

M (IgM) against LPS of enteric commensal bacteria. Additionally, patients with chronic depression 

(duration > two years) had higher IgM responses compared to non-chronically depressed patients  (6, 

7). It was also demonstrated that patients with melancholic versus non-melancholic depression had 

higher IgA to gut commensal Citrobacter Koseri, and Hamilton Depression Rating Scale (HAM-D) 

score was significantly associated with IgA to Citrobacter Koseri (76). Moreover, IgG to oxidized LDL 

(oxLDL) was significantly associated with increased bacterial translocation what is consistent with 

earlier results, which demonstrated that increased translocation of gut microbes might drive oxidative 

and nitrosative stress and autoimmune responses against O&NS generated neoepitopes in depressed 
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patients (14, 76). Another research demonstrated increased plasma levels of bacterial LPS along with 

increased levels of zonulin and intestinal fatty acid-binding protein-2 (FABP2) in patients with anxiety 

and depressive symptoms (85). Zonulin is a regulator of intestinal permeability, and FABP2 is a marker 

of the defective intestinal barrier. It should be noted that increased zonulin levels were also revealed in 

various inflammatory and autoimmune disorders, which are often comorbid with MDD  (116). In the 

same study, patients with depression and anxiety presented with gut dysbiosis and their abnormal 

intestinal bacterial flora composition was correlated with levels of LPS, zonulin, and FABP2 what 

indicates that dysbiosis may contribute to increased intestinal permeability in MDD. In another study, 

patients with MDD had significantly elevated plasma level of 16S ribosomal RNA (rRNA) subunit (16S 

rDNA) of intestinal microbiota, and this parameter is an indicator of bacterial translocation (117). 

Furthermore, patients had increased plasma expression of TLR-4 RNA and protein and increased 

expression NF-kb RNA, and increased concentration of IL-6. Strikingly, sixteen weeks of cognitive-

behavioral therapy (CBT) significantly decreased expressions of TLR-4 RNA and protein, NF-kb RNA, 

and reduced level of 16S rDNA what indicates that CBT contributed to decrease of intestinal 

permeability. Additionally, greater decrease in pro-inflammatory parameters during CBT was 

associated with more pronounced clinical improvement in Hamilton Depression Rating Scale (HAM-

D).  Using another approach of intestinal barrier assessment, namely measurement of the 

lactulose/mannitol ratio (LMR), a positive association between intestinal permeability and depressive 

symptoms severity in unmediated adolescents, particularly neurovegetative symptoms, was 

demonstrated (86). Authors also revealed the association between sympathetic nervous system (SNS) 

activity and the gut permeability and suggested that intestinal permeability could mediate the 

association between MDD symptoms and the activity of SNS.  

 

Increased intestinal permeability to food-derived antigens 

Another aspect of "leaky gut" in MDD is an increased gut permeability to food-derived antigens 

(Fig.1).  It was proposed that increased intestinal permeability to food antigens with subsequent type III 

hypersensitivity and formation of IgG complexes may contribute to low-grade immune-inflammatory 

response in MDD (118, 119). Recently Tao et al. demonstrated that depressed adolescents had a higher 

rate of serum food-specific IgG that was accompanied by increased serum levels of histamine, S100 

calcium-binding protein B (S100B), and homocysteine (120). S100B is considered as a marker of 

increased permeability of BBB and is primarily expressed in astrocytes. Authors concluded that IgG-

mediated type III hypersensitivity against food antigens could be the principal cause of increased 

histamine level, which in turn contributed to increased BBB permeability in depressed patients. It is 

worth noting that increased histamine release from i.e., mast cells is not exclusively mediated by IgE 

and that binding of IgG with receptors for the Fc portion of immunoglobulins (FcR), for instance, 

FcγRIII, also contributes to histamine release (121). Another study revealed that when depressed 
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patients were tested for IgG levels against 39 selected food antigens, patients had significantly higher 

serum total IgG and IgG against celery, garlic and gluten compared to the control group (122). It was 

also previously demonstrated that IgG concertation against 5 out of 44 food products (11.36%) 

positively correlated with the length of depressive episodes (119). Those results could indicate that the 

longer duration of depressive symptoms could be related to more pronounced intestinal permeability 

and subsequent inflammatory response. This seems consistent with the previous report that patients 

with chronic depression had significantly higher IgM responses against commensal bacteria compared 

to healthy controls (7). Still, two scenarios seem plausible regarding the activation of low-grade 

immune-inflammatory response and "leaky gut" in depression. On the one hand, activation of the 

immune-inflammatory response can be secondary to increased intestinal permeability. On the other 

hand, increased intestinal permeability can be secondary to inflammatory factors i.e., activation of HPA 

axis, pro-inflammatory cytokines, Nf-kb, and O&NS which all are the essence of the immune response 

in various inflammatory disorders.    

To summarise, the current literature demonstrates that increased intestinal permeability to 

bacterial and food-derived antigens accompanies MDD. However, what are the immune consequences 

and mechanisms which may lead to gut-derived psychiatric manifestations, particularly depressive 

symptomatology? 

 

3. Crossing the barriers beyond the brain's privileged immunity 

Central consequences of peripherally LPS-induced immune-inflammatory response 

There are various mechanisms of how bacterial LPS contribute to the activation of the immune-

inflammatory response both in the periphery and in the CNS (Fig.1). It is, however, important to 

emphasize that activation of the immune-inflammatory response due to an increase of LPS level in the 

circulation is not restricted to the periphery but also results with activation of inflammatory response 

within the CNS and glial cells are primarily involved in this process. Therefore, it is well established 

that peripheral LPS challenge leads to sickness behaviors, depressed mood, anxiety, and a decline in 

the cognitive functions both in humans and animals (123, 124). Peripheral LPS administration also led 

to robust activation of brain microglia in humans what was assessed using PET brain imaging (125). 

This was accompanied by an elevation of circulating cytokines TNF-α, IL-6, IL-8, and IL-10 and 

sickness behaviors, including fatigue and reduction in social interest.  In addition, peripheral stimulation 

with LPS induced microglial proliferation in the circumventricular organs, hypothalamus, limbic 

system and medulla oblongata (126). Consequently, it was demonstrated that peripheral administration 

of LPS led to increased expression of cortical and hippocampal IL-1β, TNF-α, GFAP and iNOS. This 

was accompanied by decreased expression of BDNF and depressive-type behaviors in laboratory 

animals. Inhibition of astrocytes resulted in a decrease in above mentioned neuroinflammatory 
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parameters, reversed LPS-induced decreased in BDNF and attenuated depressive-like behaviors (127). 

Consistently, antidepressant treatment with tricyclic antidepressants (TCA), selective serotonin 

reuptake inhibitors (SSRIs), transcranial magnetic stimulation and electroconvulsive therapy had a 

beneficial effect on number and morphology of those glial cells (101). Similarly, TCA and SSRIs 

inhibited LPS-induced depressive-like behaviors and IL-6 release in laboratory animals (109), 

attenuated the release of TNF-α, NO (110), and glutamate, and D-serine release by activated microglia  

(111). Also, lithium prevented LPS-induced activation of astrocytes, TLR4 expression and pro-

inflammatory cytokine production and this mood stabilizer also has a strong antidepressant and 

antisuicidal properties (105). Furthermore, minocycline, which is a tetracycline antibiotic with 

antidepressant properties, has known anti-neuroinflammatory and microglia modulatory properties 

(128). In LPS-stimulated brain microglial cells, minocycline blocked the secretion of pro-inflammatory 

cytokines. In the second part of this study minocycline reduced mRNA levels of IL-1β, IL-6, and IDO 

in the cortex and hippocampus of laboratory animals, which were peripherally stimulated with LPS. 

This was accompanied by a reduction in anhedonia and sickness behaviors (129). Furthermore, LPS 

have a detrimental influence on oligodendrocytes maturation and myelination (130). 

Bacterial LPS after translocation binds to PAMP, such as TLR4 and activate MyD88-dependent 

and MyD88-independent pathways of the innate immune response through NF-kB signaling what leads 

to increased release of pro-inflammatory cytokines including IL-1b, TNF-α, IL-6 and type I interferons 

(IFNs). Endotoxin can also activate RAGE what can lead to endothelial hyperpermeability (27). 

Moreover, this bacterial molecule can activate the classical component system what may lead to 

neuropathology, including dopaminergic neurons loss (131, 132).  

LPS-induced release of pro-inflammatory cytokines can influence brain and behavior via 

humoral, neural and cellular pathways (133). The humoral pathway includes passage of cytokines 

through more permeable areas of BBB such as choroid plexus and circumventricular organs, activation 

of BBB endothelium and subsequent release of second messengers including prostaglandins and nitric 

oxide which further activate inflammatory cascade within the brain parenchyma. Moreover, some 

cytokines do have specific transport molecules in the endothelium, which allows for active transport 

via BBB. Cytokines can also act through neural route, for example, by activating afferent fibers of the 

vagal nerve. Furthermore, cytokines contribute to the entry to the brain parenchyma of monocytes 

activated in the periphery. During peripheral inflammation, cerebral microglia recruit monocytes into 

the brain via the release of cerebral monocyte chemoattractant protein (MCP)-1 and increased numbers 

of circulating CCR2-expressing monocytes. Also, peripheral TNF-α is required to stimulate microglia 

to produce chemokine MCP-1/CCL2 (133, 134).  It was also recently demonstrated that peripheral LPS 

challenge results with the influx of leucocytes to the brain parenchyma. Respectively, prolonged, 

repeated exposure to peripheral LPS resulted in microglia activation and increased expression of various 

chemokines, which attracted neutrophils, monocytes to the brain parenchyma. This led to increased 

BBB permeability and transient recruitment of neutrophils and monocytes and sustained infiltration of 
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monocytes, T-cells, NK cells and NK T cells to the brain parenchyma. Interestingly, following 

consecutive challenges, peripheral tolerance to LPS developed, which manifested with not as 

pronounced inflammatory response in the periphery, however in the brain, the inflammatory process 

progressed and manifested with increased transcription of inflammatory cytokines and chemokines 

(135).  

 

"The TLRs perspective" 

There is a broad presence of the TLR4 microbe sensing "machinery" in different brain cells, 

including astrocytes, microglia, oligodendrocytes, neurons, perivascular macrophage, endothelium, 

meninges and circumventricular organs (136). Those receptors are also expressed on dendritic cells, 

lymphocytes, monocytes, granulocytes, and tissues, including intestinal tissue (26). Such a broad 

expression of PAMPs within-CNS and periphery surely have to serve its purpose and indicate that brain 

tissue is well familiar with the endotoxin molecule  (137). It is even more so in MDD and various 

neurodegenerative disorders. However, the latter are beyond the scope of this chapter. When it comes 

to depression, post mortem study revealed over-expression of TLR3 and TLR4 in the dorsolateral 

prefrontal cortex of depressed suicide victims and depressed non-suicide subjects, compared with 

controls (138). Animal studies demonstrated that exposure to LPS (139, 140) and psychological stress 

(141) enhances expression of TLR4 and higher expression of TLR3, 4, 5, and 7 mRNA was 

demonstrated in peripheral blood of depressed patients (137). TLR4 mRNA expression was associated 

with the severity of MDD measured with the Hamilton Depression Rating Scale (HAMD-17). 

Moreover, it was demonstrated that four weeks of antidepressant treatment of MDD patients 

significantly decreased expression of TLRs (1-9) in peripheral blood mononuclear cells (PBMCs) (142) 

and lithium inhibited LPS-induced astrocytes activation via inhibition of  TLR4  expression (105). Also, 

sixteen weeks of cognitive CBT significantly decreased the expressions of TLR-4 RNA and protein, 

which was accompanied by the improvement of intestinal barrier function (117). 

 

LPS and kynurenines 

Another essential element in this depression-related inflammatory puzzle is the kynurenine 

pathway. Bacterial lipopolysaccharides, O&NS and pro-inflammatory cytokines, including IFNγ, IL-

1β, IL-6, TNF-α, and cortisol, can activate the first step enzymes in the kynurenine pathway particularly 

indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) (Fig.1). The former is 

expressed in antigen-presenting cells during immune reactions, and TDO is mostly expressed in the 

liver and neurons. Those enzymes are involved in the conversion of tryptophan (5-HT and melatonin 

precursor) to kynurenine and its further catabolites (TRYCATs) what subsequently decreases the 

amount of tryptophan available for conversion to 5-HT. TRYCATs perform numerous critical 

physiological roles, including immunomodulatory functions however, their excess may have an adverse 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2020                   doi:10.20944/preprints202006.0058.v1

https://doi.org/10.20944/preprints202006.0058.v1


 

 

effect on the CNS functions. For instance, quinolinic acid (QUIN) is an N-methyl-D-aspartate (NMDA) 

receptor agonist and has neurotoxic activity due to stimulation of synaptosomal glutamate release and 

inhibition of its reuptake by astrocytes. This results in an increase in its concentration in the synapse 

and excessive stimulation of the NMDA receptors (143, 144), and increased oxidative stress (145). This 

is particularly important in the context of glutamate hypothesis of depression where due to dysfunction 

and decreased number of astrocytes, there is not sufficient reuptake of glutamate what leads to an 

imbalance between glutamate and GABA neurotransmission. Therefore, it was demonstrated that 

activation of microglia resulted in IDO activation, the elevation of detrimental kynurenines, and an 

increase in glutamate neurotransmission (107). This also resulted in inhibition of the brain's tropic 

factors synthesis, including BDNF, and in decreased neurogenesis.   

Another kynurenine metabolite - 3-hydroxykynurenine (3HKYN) has neurotoxic, 

neuroapoptotic and pro-oxidative effects and is further metabolized to pro-oxidative 3-

hydroxyanthranilic acid (3HAA). In contrast, kynurenic acid (KYNA) is an NMDA receptor antagonist 

and modulates acetylcholine 7 alpha nicotinic receptor (α7-nACh) functions, and it is believed that 

KYNA counteracts the neurotoxic effects of the above-mentioned QUIN (146, 147). Accordingly, 

Myint and Kim proposed the neurodegeneration hypothesis of MDD and demonstrated that an 

imbalance between neuroprotective and neurodegenerative metabolites in the kynurenine pathway 

contributes to MDD (3, 15). Still, it is important to keep in mind that despite "neuroprotective" effects 

of KYNA and its antagonism to QUIN, those kynurenines, when in excess, contribute to 

neurodegeneration and cognitive decline, in schizophrenia, bipolar disorder,  Alzheimer's, Parkinson's 

and Huntington's diseases, dementia related to HIV infection, amyotrophic lateral sclerosis (ALS), post-

surgical cognitive decline and other (148-150). The negative impact of QUIN and KYNA on cognitive 

functions is mainly due to their ability to modulate glutamate and acetylcholine neurotransmission 

(148). It is noteworthy that the brain's glial cells are the site of TRYCATs metabolism and tryptophan, 

and kynurenine after crossing BBB became substrates for further TRYCATs synthesis within CNS. 

More precisely, the "neuroprotective" KYNA synthesizing branch is located in astrocytes and 

neurotoxic QUIN synthesizing branch is compartmentalized in microglia. Peripheral LPS challenge 

influences the metabolism of TRYCATs in the brain and in the periphery. LPS challenge increased 

kynurenine/tryptophan ratio both in the periphery and in the CNS. It resulted in increased expression of 

pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 in the hippocampus, amygdala, and striatum, and 

was accompanied by an increase of neuroinflammatory glial cellular markers. In addition, kynurenine 

metabolism in the hippocampus was skewed toward the neurotoxic branch (151). Also, peripheral 

chronic, intermittent administration of LPS in laboratory animals resulted in depressive-like behaviors 

assessed by levels of anhedonia and despair. This was accompanied by hippocampal microglia 

activation and increased expression of IDO, increased levels of NF-kB p65 and IL-1β levels, elevated 

QUIN/tryptophan ratio, increased levels of kynurenine and QUIN, and decreased hippocampal levels 

of tryptophan, and 5-HT (152). Importantly kynurenine, besides being a precursor for TRYCATs, also 
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has various immunomodulatory roles. For instance, it activates monocytes and astrocytes and is 

involved in the trafficking of monocytes to the brain, and those neuroimmune mechanisms are 

accompanied by depressive-like symptoms in laboratory animals (153). Above mentioned effects of 

kynurenine on monocyte chemotaxis take place with the involvement of the aryl hydrocarbon receptor 

(AhR). Moreover, kynurenine is involved in mast cell activation, also through AhR (154). 

Numerous studies indicate the crucial role of kynurenine pathway activation in the pathogenesis 

of depressive disorders. For example, the interferon-α treatment of hepatitis C patients resulted in 

depressive symptoms along with changes in the kynurenine:tryptophan (KYN:TRP) concentration ratio 

and this ratio can indirectly characterize the activity of the enzymes of the IDO and TDO  (155). Besides, 

the peripheral supply of interferon-α led to an increase in the concentration of KYN in cerebrospinal 

fluid (CSF) of patients, which was associated with a significant increase in the concentration of QUIN 

and KYNA in CSF. Also, the levels of these kynurenines correlated with the severity of depressive 

symptoms (156). Interestingly, it has been suggested that kynurenines may also play an important role 

in suicidal behavior. Post mortem study of severely depressed patients, who died due to suicide, 

demonstrated a significant upregulation of microglial QUIN in the anterior cingulate gyrus (18). Also, 

suicide attempters in the course of depression had a significantly increased level of QUIN but not 

KYNA in CSF (157). The CSF QUIN level was associated with higher CSF IL-6 levels, and QUIN 

correlated with suicidality. Moreover, MDD patients who attempted suicide had elevated KYN levels 

compared to MDD patients who did not have suicidal attempts (158). Another study demonstrated that 

adolescents with suicidal tendencies had a reduced level of TRP and an increased ratio of KYN:TRP 

(159).  

 

LPS and blood-brain-barrier  

Another essential aspect is the interaction of peripheral LPS with BBB. Crucial questions that 

call for the answer in this context are whether peripheral LPS can increase BBB permeability and 

whether BBB is penetrable for those bacterial antigens? And if so, does disruption of BBB integrity 

accompanies MDD?  

Through decades the common consensus was that the CNS and particularly the brain is an immune-

privileged organ well protected by highly selective BBB. However, recent years of research revealed 

another side to it demonstrating that this barrier might be compromised by multiple factors, including 

psychological stress via (CRH)–mediated mast cell activation (160), bacterial LPS, O&NS, pro-

inflammatory cytokines (TNF-α, IL-1β, IFN-γ) and CCL11 (eotaxin) (90, 161-165). Interestingly, those 

factors also compromise the intestinal barrier. Additionally, intestinal microbiota modulate BBB 

permeability and short-chain fatty acids (SCFAs) produced by those bacteria, including butyrate and 

propionate, have a protective effect on BBB and decrease its permeability (166, 167).  Furthermore, a 
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relatively recent discovery that the central nervous system is equipped with the lymphatic system 

additionally advocates re-evaluation of the above consensus (168).  

A respective number of in vivo animal studies demonstrated that peripheral LPS challenge results in 

disruption of BBB permeability (for review of the mechanisms see (169, 170)). Varatharaj and Galea, 

in their systematic review, concluded that 60% of studies included in analysis revealed disrupted BBB 

after LPS challenge (169). Authors noted that variability in those results might be attributed to different 

LPS doses and dosing protocol used in studies, different species, age, health status, the gender of 

experimental animals, the time course of permeability estimation, and finally, types of solutes used as 

markers of BBB permeability. Vargas-Caraveo et al. were the first who revealed that LPS could 

penetrate BBB under physiological conditions and proposed mechanisms for that (171). The authors 

demonstrated the presence of two distinct LPS domains, namely, lipid A and core LPS in 

circumventricular organs, choroid plexus, meningeal cells, astrocytes, tanycytes, and endothelial cells 

and those domains were co-localized with CD14, TLR-4, and NF-kB. The results of the study also 

suggest that LPS crossed BBB via a lipoprotein-mediated transport mechanism.  

Regarding human studies, so far, the field of neurodegenerative disorders, which are often comorbid 

with MDD, gives us the most compelling data indicating that translocation of LPS and other bacterial 

molecules via BBB is possible and, interestingly, this accounts for not only patients with dementia but 

also healthy individuals. There is a piece of strong evidence from post mortem studies of patients 

suffering from Alzheimer's disease, which demonstrated the increased LPS levels in grey and white 

matter compared to controls (172). Interestingly, LPS and  Escherichia coli K99 pili protein were also 

present in the control group but in a much lower concentration. Moreover, E coli DNA was present in 

the brain tissues of patients and controls. This indicates that besides increased BBB to LPS in the course 

of the illness, highly likely, there are also physiological mechanisms of bacterial molecules 

translocation via BBB. Also, another study of brain lysates from patients with Alzheimer's disease 

demonstrated significantly higher LPS concentrations in the hippocampus and neocortex, which in the 

most severe case reached a 26-fold higher level compared to the control (173). 

Regarding MDD, recently, it was demonstrated that depressed adolescents had a higher S100B serum 

level, and this parameter is considered as a marker of increased BBB permeability and is primarily 

expressed in astrocytes. Moreover, patients had a higher rate of serum food-specific IgG, and this was 

accompanied by increased serum levels of histamine and homocysteine (120). The authors of this study 

suggested that IgG-mediated type III hypersensitivity against food antigens could be the principal cause 

of increased histamine level, which in turn contributed to increased BBB permeability in depressed 

patients. It was also demonstrated in the course of bipolar disorder, that patients with increased BBB 

permeability had more significant symptoms of depression and anxiety and a more chronic course of 

the illness (174).   

Still, it seems that the permeability of BBB in major depression is not a "black or white" scenario. 

Likely, it might vary depend on various factors, including genetic ones, the severity of the illness and 
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the level, and the source of immune-inflammatory response accompanying the MDD and other. 

Moreover, the disruption of BBB is highly dependent on astrocyte function, and their abnormal function 

was reported in MDD. It also seems likely that interaction between peripheral inflammation, 

astrogliosis, and abnormal BBB permeability may progress in a vicious cycle manner where progressive 

dysfunction of those glial cells contributes to increased BBB permeability and subsequent, further 

neuroinflammatory changes contribute to astrocytic dysfunction and psychopathology.  

 

Lipoproteins – regulators of the peripheral endotoxin load 

As reviewed above, Vargas-Caraveo et al. suggested that LPS can cross BBB via lipoprotein-

mediated transport (171). When discussing the role of lipoproteins in the context of LPS transport, it is 

also important to point out lipoproteins' crucial homeostatic role in neutralizing LPS and their 

elimination in the liver (175, 176). For instance, high-density lipoprotein cholesterol (HDL-C) and its 

apolipoprotein A-I (ApoAI) have anti-inflammatory properties and high affinity to LPS and are 

involved in LPS neutralization, and transport to hepatocytes for their degradation. This mechanism 

prevents further LPS activation of inflammatory response and synthesis of pro-inflammatory cytokines 

(171, 177). Consequently, lipoproteins are one of the major determinants of LPS load in the circulation, 

and likely in CNS, and abnormal lipoproteins concentration may contribute to increased LPS-derived 

immune-inflammatory response both in the periphery and CNS. Interestingly, the connection between 

abnormal lipoproteins levels and MDD has been previously established. For instance, MDD patients 

had decreased HDL-C levels compared to controls, and patients with a history of serious suicide 

attempts had significantly lower HDL-C compared to MDD patients without such attempts (178-180). 

Moreover, patients with chronic depression had significantly lower HDL-C compared to healthy 

controls, or patients with shorter duration of depression (181, 182), and melancholic features of MDD 

were independently associated with lower HDL-C (180). The data above indicates an intriguing 

connection between increased intestinal permeability, adverse lipoprotein patterns, and depressive 

symptoms. Further exploration of this area might have implications for MDD treatment.  

 

LPS and glucocorticoids  

Another vital connection between LPS and depression is the involvement of endotoxin in 

glucocorticoid (GKK) functions and the immune response to those anti-inflammatory hormones. So far, 

there is compelling scientific data that suggests that LPS may contribute to GCC resistance what could 

also highly likely have a negative impact on intestinal barrier function. It is well established that 

hyperactivity of the HPA axis accompanies MDD, and  50% to 80% of patients experience 

hypercortisolemia with the highest rates in severe depression (183), and the severity of depression 

correlates with cortisol plasma levels (119). Consistently, it was also proposed that the modulation of 

glucocorticoid receptors (GR) is one of the mechanisms involved in antidepressants' action (183). 
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Furthermore, psychological stress and chronic inflammation are known to contribute to GCC resistance 

(184, 185). It was previously demonstrated, particularly in patients with Crohn's disease, that GCC 

treatment decreased intestinal permeability and retightened intestinal tight junctions (TJ) via inhibition 

of TNF-α – induced increase in myosin light chain kinase (MLCK) protein expression, and GCC 

beneficial influence on the intestinal barrier was mediated by GR (186, 187). Unfortunately, it is not 

uncommon that the longer time of GCC treatment, the less effective it is due to the gradual development 

of resistance to those anti-inflammatory hormones. Consequently, the deletion of intestinal epithelial 

GR receptor NR3C1 led to increased intestinal permeability (188). It was demonstrated that exposure 

to LPS increases the expression of GRβ in macrophage what contributed to GR resistance and inhibited 

the anti-inflammatory action of GCC (189, 190). Furthermore, LPS led to the loss of the GCC inhibitory 

effect on the secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) (191). 

However, the effect of LPS on expression of GR isoforms is not consistent and may vary depending on 

the cell types (191). Still, this seems an intriguing direction for further investigations whether the 

mechanism of GR resistance (due to i.e., LPS, pro-inflammatory cytokines, and cortisol) also 

contributes to intestinal GR resistance and subsequent increased intestinal permeability. This could, for 

example, take place due to the lack of GCC inhibitory role on  TNF-α – induced increased intestinal 

permeability. Finally, it is worth mentioning that BBB is highly influenced by GCC, which decrease its 

permeability. There are many analogies between structure and functions of BBB and intestinal barrier, 

and both those barriers and their permeabilities are susceptible to analogous immune detrimental 

factors, including TNF-α, IL-1β, IFN-γ, O&NS, and LPS.  

 

Increased intestinal permeability – the source of autoimmunity in MDD 

Another crucial aspect of how the "leaky-gut" may contribute to MDD, is the involvement of 

the compromised intestinal barrier in the autoimmunity (Fig.1). This is a very interesting and broad 

topic which introduction in-depth is beyond the scope of this chapter (for further reading see (25)). 

However, it is briefly worth mentioning that highly likely it is not an epidemiological coincidence that 

autoimmune disorders increase the risk of major depression and other psychiatric disorders (192, 193), 

and that there is growing evidence of increased intestinal permeability and dysbiosis in various 

autoimmune disorders, comorbid with MDD, such as IBD, MS, coeliac disease, diabetes, to name a few 

(96, 194-196). On the one hand, bacterial translocation leads to increased O&NS, hypernitrosylation 

and generation of immunogenic neoepitopes (14). On the other hand, food-derived antigenic material, 

for instance, lectins and agglutynins, bind with the tissue and form neoepitopes in a covalent-binding 

mechanism what leads to autoimmunity. Another mechanism is a molecular mimicry/cross-reactivity, 

where due to unfortunate molecular coincidence, there is a structural homology between antigenic 

material (i.e., gut-derived or newly O&NS/hypernitrosylation-formed) and own structure of the 

organisms what leads to the autoimmune reaction against this structure i.e., cell membrane, tissue etc. 
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For instance, molecular mimicry between casein and butyrophilin with myelin, cerebellum or even a 

key enzymes responsible for GABA synthesis were demonstrated (197-200). Those fascinating, but 

concerning interactions clearly indicate to a substantial role of a healthy intestinal barrier, well balanced 

intestinal microbiota and a diet, in the context of inflammation, autoimmunity and mental health.  

 

4. Conclusions 

We are facing exciting times in neuroscience and psychiatry research and it is becoming evident 

that the mind-body connection takes place on the sites of interaction between the immune, endocrine, 

and nervous systems. Given that it is also becoming clear that a more holistic approach in the context 

of mental health diagnosis and treatment is required to warrant its truly efficient and long-term effects. 

Surely, the intestinal barrier with GALT and intestinal microbiota, which until quite recently remained 

the "forgotten organ" do play a major part in the above mind-body interactions. It is crucial to promote 

this knowledge among medical professionals and patients and to implement accessible and cost-

effective markers of intestinal permeability, gut-derived inflammation, and autoimmunities driven by 

bacterial and food-derived antigens. It is also important to bring more attention to the prophylactics and 

the treatment focusing on the improvement of the integrity of the intestinal barrier. This could include 

specific supplementation and dietary interventions with known benefits to the gut barrier, and those 

include, for example, probiotics, prebiotics, turmeric, zinc, glutamine and other. Diet is another crucial 

factor contributing to mental health and the field of nutritional psychiatry is recently receiving growing 

attention. A diet when is not well balanced i.e., Western, high-fat, high-carbohydrate diet, contributes 

to neuroinflammation and depression. Contrary, a good quality diet rich in antioxidants, polyphenols, 

fiber, pre and probiotics, healthy fats will have a therapeutic value. Making those healthy and conscious 

choices may be the first step towards wellbeing and a healthy body and mind. 
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Figure 1. The Overview of mechanisms involved in increased intestinal permeability and 

subsequent activation of the immune-inflammatory response in depression 

(Image generated using Servier Medical Art. Partially adapted and modified from Rudzki et al. 2012 (201)) 

1) Various factors contribute to increased intestinal permeability (i.e., psychological stress, 

inflammation, dysbiosis, O&NS, diet and other);  2) Increased translocation of bacterial LPS through 

the intestinal epithelium and subsequent activation of the immune-inflammatory response (i.e., via 

activation of TLR4, RAGE, NF-kB) and increase levels of pro-inflammatory cytokines, O&NS 

peripherally and within the CNS, LPS may contribute to the peripheral and within the CNS 

autoimmunity;  3) Increased translocation of food-derived antigens and formation of IgG immune 

complexes and IgG-mediated type III hypersensitivity;  food antigens-associated molecular mimicry 

and covalent binding may lead to peripheral and within the CNS inflammatory response and 

autoimmunity);  4) Further disruption of the gut barrier due to released pro-inflammatory cytokines, 

O&NS and activation of NF-kB;  5) Activation of IDO by LPS, pro-inflammatory cytokines, O&NS 

with subsequent increased synthesis of TRYCATs and decreased availability of tryptophan for 

conversion to 5-HT and melatonin;  6) Detrimental influence of TRYCATs on the CNS;  7) Influence 

of pro-inflammatory cytokines and LPS on CNS by humoral route with subsequent: activation of HPA 

axis, increase expression of GRβ leading to GCC resistance; increase of BBB permeability, astrogliosis, 

microgliopathy, oligodendrocyte abnormalities, priming of glia, abnormalities in CNS TRYCATs, 

gliotransmitters and neurotropic factors, imbalance between GABA and glutamate and increased 

glutamate neurotransmission, abnormalities in 5-HT, NA and DA neurotransmission;  8) Peripheral 

LPS and pro-inflammatory cytokines activate the CNS inflammatory response via neural route (n.X);  

9) Activation of HPA axis and subsequent increase in cortisol level;  10) Activation of TDO by elevated 

cortisol with subsequent increase in synthesis of TRYCATs and decreased availability of tryptophan 

for conversion to 5-HT and melatonin;  11) Further detrimental influence of TRYCATs on the CNS   

BBB: blood-brain-barrier; BDNF: brain-derived neurotrophic factor; CNS: the central nervous system; 

CRH: corticotropin-releasing hormone; DA: dopamine; IgG: immunoglobulin G; GABA: γ-

aminobutyric acid; HPA: hypothalamic–pituitary–adrenal axis; GCC: glucocorticoids; GRβ: 

glucocorticoid receptor β; IDO: indoleamine 2,3 dioxygenase; LPS: bacterial lipopolysaccharides; L-

TRP: tryptophan; NA: noradrenaline; NF-κB: nuclear factor kappa B; NSAIDs: nonsteroidal anti-

inflammatory drugs; n.X: vagal nerve; O&NS: oxidative and nitrosative stress; RAGE: receptors for 

advanced glycation end products; SIBO: small intestinal bacterial overgrowth; SNS: the sympathetic 

nervous system; TLR: toll-like receptors; TRYCATs: tryptophan catabolites; 5-HT: serotonin  
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