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Abstract: For the generation of representative volume elements a statistical description of the relevant
parameters is necessary. These parameters usually describe the geometric structure of a single grain.
Commonly, parameters like area, aspect ratio and slope of the grain relative to the rolling direction
are applied. However, usually simple distribution functions like log normal or gamma distribution
are used. Yet, these do not take the interdependencies between the microstructural parameters into
account. To fully describe any metallic microstructure though, these interdependencies between the
singular parameters need to be accounted for. To accomplish this representation, a machine learning
approach was applied in this study. By implementing a Wasserstein generative adversarial network,
the distribution, as well as the interdependencies could accurately be described. A validation scheme
was applied to verify the excellent match between microstructure input data and synthetically
generated output data.
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1. Introduction

For modern applications, the microstructures and properties of steels become exceedingly
complex, utilizing multiple phases and alloying concepts to improve mechanical properties for the
specific use case. Even more basic materials, like dual-phase steels show complex correlations between
their microstructure and mechanical properties, as well as their damage behaviour. The morphology
of a given dual-phase microstructure plays an important role in the damage mechanisms, namely
initiation and accumulation [1]. Multiple parameters have been identified that each play an important
role, like grain size, martensite content, or grain shape. However, it is a very complex task to separate
the multiple microstructural influences experimentally. To seperately investigate each of the possible
influencing factors, a numerical approach is more useful and commonly applied.The method of
microstructure modelling has been of major interest in recent years and is continually developed.
Commonly, two different methods are applied: Modeling the real microstructure and representing the
microstructure by statistical distributions. For the first approach, the real microstructure is modeled
based on a microstructural analysis. For that procedure, mostly scanning electron microscopy is used
to gather the required information in a suitable resolution [2]. The second option requires a statistical
analysis of the base material. The acquired statistical information is then used to create small volume
elements that show a good statistical representation of the microstructure[3]. A key requirement
for these volume elements is that they need to contain enough information of the microstructure,
while also being small enough to be clearly differentiated from the macroscopic structural dimension
[4]. Due to this requirement, it is necessary to create statistical descriptions of the microstructure to
reasonably represent it. If a 2D RVE is to be created the required data can be acquired from pictures of
the microstructure, either via light optical microscopy (LOM) or scanning electron microscopy (SEM).
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Since the parameters of interest are on a singular grain level, SEM is used commonly. Here, multiple
different detectors can be applied, while the electron backscatter diffraction (EBSD) detector delivers
more in-depth information of each grain. The grain parameters that are most commonly applied in
the creation of RVEs are the grain size, its shape (elongation) and the slope of the grain describing
the angle between the main axis of the grain and the x-axis of the picture (or the rolling direction).
For three dimensional RVE these parameters need to be determined in all three directions in space.
This can be done by serial sectioning, where the sample rotates inside a strong radiation beam and is
scanned slice by slice, until a projection of the material can be acquired [5]. This method is, however,
a very complex and time-consuming task. Thus, pictures from all three directions in space are often
taken to create statistical distribution functions of the desired parameters depending on the respective
spatial direction.

For the generation of the RVE model, the statistical distribution of the microstructure needs to
be translated from the material to input parameters. For that reason, the parameters are commonly
described by distribution functions that follow a log-normal distribution or a gamma distribution.
Most often, histograms are used to fit the distribution functions to. It has to be mentioned though,
that histograms are very dependent on the bin size. Thus the resulting distribution function is also
depending on the bin size. Therefore, Kernel Density Estimation (KDE) should be the prevalent method,
since they deliver robust values, where every data point is weighted by a function depending on the
Kernel chosen (e.g. Gaussian) [6]. Modern RVE generation algorithms take many parameters into
account that describe the grain shape [7-10] . The input for these parameters are separate, independent
distribution functions of the applied parameters. Most materials, however show some kind of
interdependence of the parameters among each other. Thus this study analysed the interdependence of
the parameters to then find a deep learning solution afterwards, that is able to describe the distribution
of singular parameters as well as the interdependencies.

Figure 1. EBSD of steel DP800 where x-axis is the rolling direction (RD) and y-axis is the sheet normal
(SD) [11].

2. Analysis of the input data from the real microstructure

For the generation of statistically representative volume elements, representing a specific
microstructure, the analysis of the input parameters is of high importance. Usually, distribution
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functions of the input parameters are created and used to generate a discrete amount of input
parameters for the microstructure modelling. For the present study, a dual-phase steel (DP800) was
utilized as the base material, since multiple important parameters are present for the characterization
of the microstructure. In Figure 1 the microstructure of the DP800 steel is depicted as an EBSD picture.
In this study only one direction in space was chosen for the analysis, since strong differences between
different directions might apply. The rolling direction (RD) - sheet normal (SN) plane is the chosen,
since it shows the elongation of the grains and therefore a more complex microstructure.

From this picture it can already be seen, that multiple different parameters are inherent to the
microstructure. For any kind of microstructure modelling geometric parameters of the grains are
needed as input. In Figure 2 the geometric parameters of each individual grain are depicted. Probably
the most important aspect is the grains specific area, since the grain size also influences mechanical
properties. Apart form the size, the slope is an important factor and describes the tilt of a grain towards
the x-axis of the EBSD picture taken, in this case the rolling direction (RD), where angles close to
0° or 180° means an elongation of the grain along the rolling direction. The last parameter is the
aspect ratio (AR), the ratio of the two half-axis a and b. A high AR stands for a bigger elongation,
while an AR of 1 describes a circle. Apart from these geometrical factors, there are further material
specific characteristics. The first is the grain orientation this is especially important when a texture
is present in the material. Next are the different phases, in the case of DP800, ferrite and martensite.
Additionally neighbourhood relations between the grains might be taken into account. All of the
parameters mentioned above can be gathered from the data generated by EBSD measurement. From
this measurement a list of grains and their corresponding characteristics can be obtained that is
afterwards used for further analysis.

Area

Aspect ratio : AR =a/b
Figure 2. Schematic representation of a single grain with the associated shape parameters .

For the sake of simplicity, the focus was put on ferrite in this study. The geometrical factors of the
grain were chosen for a deeper analysis, while the grain orientation was not taken into account, since
no strong texture is present in the investigated material. For most RVE generators those geometrical
parameters (grain size, elongation and slope) are commonly implemented into the statistically
generated microstructure model by singular distribution functions of the separate parameters. From
these, separate sets of input is generated for each parameter that are not interconnected. However,
when the parameters are plotted against each other as two-dimensional scatter plots where each dot
represents a unique grain, certain trends can be observed between the parameters Figure 3.
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Figure 3. KDE plots of the dependencies between the three main grain parameters, grain size, aspect
ration and slope.

The scatter plots show the connectivity between the main parameters. In Figure 3 a) the grain size
against the aspect ratio is depicted. Most grains are concentrated in the bottom left corner meaning
they posses a relatively small area and aspect ratio. However, the most noticeable property is the fact,
that grains above 20um? grain size show a tendency towards smaller aspect ratios of 2.5 or lower, while
for the smaller grains higher aspect ratios become increasingly likely. Another strong connection is
visible in Figure 3 c). Here it is identifiable, that more grains have a slope around 0° or 180° respectively,
which both go along the x-axis (RD). Especially notable is the fact that towards a slope of 90°, which
goes perpendicular to the RD, a significantly smaller quantity of grains show aspect ratios above 2.5.
This means, that grains oriented perpendicular to the rolling direction are not as elongated as the
grains that go along it. The same can be said to lesser extent for Figure 3 b). For the comparison of area
and slope a concentration at 0° or 180° is notable, as is the smaller quantity of grains with bigger area
perpendicular to the rolling direction. A few dependencies can therefore be identified. Bigger grains
show comparable smaller aspect ratios. They are also less likely to be oriented perpendicular to the
rolling direction. Additionally, grains that have a larger aspect ratio tend to have a slope around 0° or
180° respectively.

This, however leads to some conclusions in regards to the way the microstructure model needs to
be created. Separate distribution functions, that provide input data for the creation are not suitable,
since that way the interdependencies observed above are not taken into account. If all parameters are
generated individually, it is possible to create a grain with a large grain size over 50um, a high AR near
5 and a slope value near 90°. This theoretical grain does not exist in the real microstructure. Thus, a
solution for the generation of input data is needed, that takes the interdependencies of the parameters
into account.
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3. Machine Learning Networks (MLN)

For any problem that revolves around understanding core similarities of any given data set,
machine learning (ML) is an ideal approach. Machine learning algorithms (MLA) are able to learn
dependencies in data, or even images, that would be hard to grasp for the human applicant. They
especially thrive, given multidimensional data frames, that show a certain degree of interconnectivity
or interdependency. For MLA the deep learning method roughly replicates the operating principle
of the human brain . Therefore, these neural networks (NN) are consisting of an input layer and a
number of hidden layers, one of which is the output. Inside each hidden layer is a number of neurons.
The schematic structure of a NN is depicted in Figure 4. Here, from each of the inputs, a synapse
is leading to the first Hidden layer. For each of the inputs, a weight and a bias is given to the input
values. At the subsequent neuron, in the hidden layer, the incoming values are summed up and an
activation function is applied to the weighted sum. The output of the neuron is the input with the
applied activation function, multiplied with a new weight. This new value is then again used for the
next layer, which would be the output layer in case of the schematic representation visible in Figure
4. After the output is created, a back propagation takes places where the weights of the neurons are
updated to improve the NN quality[12].

The activation function is one of the important parameters that need to be chosen carefully for the
MLA, while the weights of the neurons, as well as the bias are the training parameters of the NN, that
are iteratively fitted during the learning process. The number of hidden layers in a NN are called the
depth, while the number of Neurons in each layer is called the width.

O

Input Layer Hidden Layer  Output Layer

Figure 4. Schematic representation of a MLA showing the different layer, after [13]

The machine learning network that is to be applied in this study has to be able to represent a
distribution of different parameters, as well as their interdependencies. For the description of any
statistical distribution, unsupervised machine learning is best suited. Generative adversarial networks
(GAN) are especially useful to reproduce the statistical distribution of a set of parameters, as well as
their interdependencies [14]. The training of GANSs, however, is well known for being unstable and
delicate, main problems being mode collapse, non-convergence and diminished gradient [15].

The scheme of the GAN is that it pits two NNs against each other. The two NNs are a generator
and a discriminator. The generator generates data trying to reproduce the input data as good as
possible. The key mechanism for GANs is the adversary of the generator network, the discriminator.
This NN learns to distinguish between generated and input data. The competition between the two
networks leads to a distinct improvement in the results during the training epochs.

The instability issues of the GAN model stem from the applied loss function. A loss function in
neural networks reduces all aspects of a complex system whether good or bad to a single scalar number
which allows for ranking and comparison of solutions. Originally, the GAN model used a minmax
loss function, where the generator tries to minimize the target function, while the discriminator is
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maximizing it. To get rid of the major instabilities of the first GAN model, Arjovski et al. [16] changed
the loss function of the GAN model to the Wasserstein metric. This change leads to an improved
stability of the network during training, while still retaining the excellent capability to describe the
parameters distribution and their interdependencies.

4. Training of the MLA

To gather input data for the training of the machine learning networks, EBSD pictures of the
microstructure along the rolling direction of the thickness of the steel sheet were taken at the Institute
for Physical Metallurgy and Materials Physics . Only one direction in space was used for the MLA,
since the differences between the directions are quite significant. With these pictures a list of the
grains in the section of the material can be obtained. Since MLN require a large amount of input data,
a large area was measured in the same direction that is indicated in Figure 1. In this way, slightly
more than 3,000 grains were captured to be used as input for the training. As mentioned above, the
geometric grain data of ferrite were chosen as training data. Additionally, the mean misorientation
angle was used, as a mean to validate the results further. This angle defines the average deviation of
the orientation inside a grain and is used to define grain boundaries for EBSD pictures.

An implementation of the WGAN Algorithm was applied as the chosen algorithm, and an
effort was made to change the network to be able to run on a GPU type Tesla P100, which decreases
the training time required quite significantly. For the implementation of the WGAN scheme, two
feedforward neural networks were applied. One as the discriminator, one as the generator. For the
activation functions a ReLu function was used for all but the Output layer of the discriminator, which
uses a Sigmoid function, since the result of this layer has to be a probability and Sigmoid functions
give results between 0 and 1 [14]. For all of these implementations, the Pytorch library (version 1.5)
was used [17]. The approach that was used to find the best possible NN for the input data is described
in Figure 5 as a flow chart, and in more detail in the text below.

Neural networks require hyperparameters to be fully functional. These are a set of parameters that
are defined for the NN, before the training starts. The most important ones are the width and depth of
the network, as explained above. These two hyperparameters are key for the training process, since
they determine the number of neurons and the depth of the network. For each neuron, a weight exists
as was explained above. By adapting the weights of the neurons for each processed batch the network
actually learns the target distribution. Therefore, the number of neurons in a layer, as well as the
amount of layers contributes immensely to the quality of the trained NN. Thus, width and depth were
iteratively fitted in this study. This was done by training multiple NN with varying hyperparameter
sets (especially for width and depth) which were changed iteratively in a looped approach. Therefore
the parameter sets to be tested were defined before the training and then subsequently tested.

To train the MLA, a mini batch gradient descent procedure was utilized. In this procedure, the
training data set is split into many, randomly generated, sub sets. The algorithm processes each mini
batch separately and compares the cost function in relation to the current mini batch data. Subsequently,
the network parameters are updated accordingly. This is done iterating over all mini batches, until the
whole data set has been evaluated. This complete process is called an epoch. For the training in this
study, a batch size of 64 was used, which is in line with batch sizes recommended in literature [18,19].

Other hyperparameters usually describe the learning rate of both, the generator network, as
well as the discriminator network. However, the learning rate was automatically adapted, since
an optimization algorithm called RMSProp was used for the back propagation. This optimization
approach requires a low learning rate which is inherent to WGAN networks. Thus the influence of
these parameters is negligible. Two important parameters are the clipping value and the dropout. Both
variables represent values that are important in the NN to avoid overfitting and underfitting [20,21].

When the framework is defined, the training of the NN begins. Since the NN changes slightly
after every epoch, it is important to create intermediate snapshots of the NN, as well as the output data
in the form of a CSV file after a defined number of epochs, 200 in the case of this study. Additionally,
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Figure 5. Flow chart of the training approach and calibration regimen applied to find the best fit

parameters for the generation of synthetic microstructure data
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Figure 6. Development of the output of the NN over multiple epochs, compared to the input data.
Epoch 15400 is the best fit for the applied input values.

only a defined number of epochs should be trained, since MLA are prone to overfitting in higher
epochs.

After the training of all the different NN for multiple parameter sets is complete, the best fit needs
to be found. To do so, a script was written, that creates a KDE of every microstructural parameter taken
into account for the MLA training. Additionally, KDE of every taken snapshot are created of the same
parameters, since this is the output of the generator network. Subsequently the fit between the input
KDE and the synthetic data KDE are evaluated. This is done by investigating three types of deviation
between the KDE of the real and synthetic data: The mean deviation, the maximum deviation and the
mean value of both mean, and maximum deviation. All three are returned and can be checked by the
user. Ideally, a NN snapshot can be chosen that shows the smallest deviation for all three values in
comparison to the rest of the NN.

5. MLA results

After the training of the NN is completed, the network with the best results can be chosen. For this,
the deviation of the KDE are utilized as described before. Since they show a significant development
over the epochs, the best fit is the best averaged value, where most KDE curves fit the input KDE very
well. The comparison of the best fit at epoch 15400 with the input data, as well as former epochs can
be seen in Figure 6.

Here, a significant improvement of the fit is visible, where epoch 200 is an unoptimized guess,
while the network improves over time with the training and is able to represent the distributions of the
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Figure 7. Comparison between the input data used for the training of the MLA and the output of the
generator network at its best fit Epoch. Dependencies between the different microstructural parameters
shown for a better evaluation of the results.
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Figure 8. Development of the error of the output KDE compared to the input KDE over the course of
the training. (Bild noch nicht Final)

input parameters at the best fit epoch very accurately. From the trained generator network data can
then be extracted which is usable as input for e.g. RVE creation. The output of the NN follows the same
format of the input. This means, that every parameter contained in the input data will be present in the
output created by the MLA. Since the focus is the creation of input data that geometrically represents a
grain (Figure 2), the main features to compare are area, aspect ration and slope. In Figure 7 pairplots of
both the input data and the synthetically generated output data are presented. On the diagonal, the
KDE distributions are shown, while the other graphs show the respective parameters plotted against
each other. From these pictures the compliance between real and synthetic grain data appears to be
excellent.

As mentioned before, the best fit of the MLA and the input data is determined by a comparison of
the KDE for each investigated parameter. The course of this error margin between input and output
over the Epochs is depicted in Figure 8. The best fit was determined to be Epoch 15400 which is the
lowest point in the development curve.
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6. Validation of the MLA results

Only checking the appearance as well as the KDE of the plots however is not a sufficient validation
of the NN output. Since the most important task of the machine learning algorithm was to represent the
interdependencies of the microstructural parameters, a study was conducted to investigate, whether
the applied algorithm is capable of handling interdependencies between input data. Therefore the
MLA was trained on a specifically created data set with four parameters:

filx) =x 1)

fo(x) =e" (2)
1

fa(x) = sin(x) e 3)

fa(x) =€ (x+ )+ x 4)

Where x was generated from a uniform distribution. The other functions were arbitrarily chosen, with
the criteria being that they all need to be dependent amongst each other. In this case equation 2) is
dependent on equation 1), while 3) and 4) are dependent on both, 1) and 2). Thus all values were
interconnected, and the implemented MLA was trained on this data set. The results, presented in
Figure 9 show, that the MLA is able to reproduce the input data very accurately. Both the distribution
of each specific equation and the interdependencies as well show no significant deviation. It can
therefore be assumed, that the implemented MLA is capable of representing any interdependencies
that are present in the input data.
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Figure 9. Validation to see, whether the MLA is capable of representing the dependencies of its input
data set, by applying multiple different interdependent equations. (Achsenbeschriftung muss noch
angepasst werden)

To further investigate, whether the dependencies between the microstructural parameters were
accurately reproduced a clustering analysis was performed on the microstructure data. For this
analysis, the area data was divided in three evenly sized batches, that were subsequently plotted like
the results were before. To see if the dependencies were correctly reproduced, each of the batches
was given a different color, which allows individual batches to be tracked. This clustering analysis
is pictured in Figure 10. In this figure, the orange and green points are of special interest. The KDE
distributions fit very accurately, which was to be expected after the very good fit of the complete KDE
functions before. A comparison of the AR - Slope chart shows, that each of the orange and green points
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Figure 10. Comparison between the clustering analysis of the input data and the generated output
data. The area was divided into three equally sized sections for this analysis.

(which stand for grains with larger areas) is in a very similar position, but not the same. Most of the
relevant points are at smaller aspect ratios and positioned near the 0° or 180°. No outliers are found
in this analysis, which leads to the conclusion, that the interdependencies of the input data can be
accurately portrayed.

7. Conclusions

This study presented a solution on how to generate input for microstructure modelling that is true
to the real microstructure. Commonly, singular distribution functions are applied to describe the input
for the microstructure model. However this study showed, that an approach like that is not suitable to
describe any given microstructure in detail. Since there are at least three relevant parameters to each
grain for each direction in space (area, aspect ratio, slope) all of these have to be represented accurately
by statistic descriptions. The three aforementioned parameters are, in fact, all dependent on each other,
where a relatively large grain tends to have smaller aspect ratios as well as a slope more parallel to the
rolling direction.

To solve this challenge, this study applied a WGAN machine learning network to generate
input data that represents all of the interdependencies. The results show, that the NN learns the
distribution functions of the singular parameters very well. The generated output resembles the input
quite accurately, while also representing the dependencies between the parameters. To validate these
findings, a study was carried out to see, whether the implemented NN is able to recreate numerical
relations between the different parameters. It was found, that the WGAN algorithm is capable of
recreating the equations. To validate the results regarding the microstructural features, a clustering
analysis showed, that the output data resembles the input data very accurately.

The error of MLN when comparing input and output KDE oscillates quite strongly. In Figure 8 an
intial significant improvement can be observed, after which the curve starts to spike around a median
value. It can therefore be assumed, that the training required for this network can be significantly
shortened, since a comparably good result was achieved after about 9000 Epochs. Thus, the time
needed for the training of each network can be reduced if the amount of Epochs for a full training are
lowered.
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The implemented network in this study was trained on just one direction in space (rolling
direction x sheet normal). To precisely describe any microstructure, however, it is necessary to show
the influences of all three directions. Here the approach can be expanded. However, it is not an
easy feat to generate statistically relevant information of the three dimensional structure from two
dimensional pictures. A possible solution would be to simply train three networks, the question that
remains unanswered is how the individual parameters of the three spatial directions relate. Answering
this question will be a key focus in future work.

In comparison to other machine learning applications, this network was trained on a relatively
small sample size. This was done deliberately, since in everyday research it isn’t always feasible to
create a magnitude of EBSD pictures. The results from this study show therefore, that the applied
concept works very accurately even on small sample sizes, where bigger data sets could only improve
the quality of the output. Thus, this approach is suitable to be implemented even for small sample
sizes and projects with smaller amounts of time and resources dedicated. Additionally, it is as easy as
adding another column to and excel sheet, to train different parameters than the one used in this study
or even add further parameters for the network to learn.
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