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Tunneling in Fermi Systems with Quadratic Band Crossing Points

Ipsita Mandal
Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway

We investigate the tunneling of quasiparticles through a potential barrier of finite height and
width, in a system with a band structure consisting of a quadratic band crossing point (QBCP). We
compute the results of the transmission coefficient at various incident angles, and also the conduc-
tivity and the Fano factor. We discuss the distinguishing signatures of these transport properties in
comparison with other semimetals, as well as electrons in normal metals.
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I. INTRODUCTION

Multiband fermionic systems may exhibit a band crossing point in the Brillouin zone where two or more bands
cross. If the chemical potential is adjusted to lie exactly at that point, the Fermi surface shrinks to a Fermi node.
The most famous example of such a Fermi node is the case of a linear band crossing, whose low energy properties
are described by Dirac fermions, and are conspicuous in systems like nodal superconductors and graphene. In
this paper, we consider systems with a quadratic band crossing point (QBCP) somewhere in their two-dimensional
(2d)'3 or three-dimensional (3d)4% Brillouin zones. 2d QBCPs can be realised in checkerboard! (at 1/2 filling),
Kagome! (at 1/3 filling), and Lieb? lattices. On the other hand, pyrochlore iridates A2IroO7 (A is a lanthanide
element™®) have been shown to host a 3d QBCP. Such bandstructures have also been realised that in 3d gapless
semiconductors in the presence of a sufficiently strong spin-orbit coupling,® such that the resulting model of a
semimetal is indeed relevant for materials like gray tin (a-Sn) and mercury telluride (HgTe). These systems are
also known as “Luttinger semimetals”!? due to the fact that the low-energy fermionic degrees of freedom are
captured by the Luttinger Hamiltonian of inverted band-gap semiconductors.'!:12

Our aim is to compute the tunneling coefficients and other transport characteristics when the quasiparticles of
the QBCP semimetals are subjected to a potential barrier of finite strength and width along one direction, which
is chosen to be the z-axis. This scenario is represented in the cartoon in Fig. 1. Our results will show how these
transport characteristics are significantly different from those in normal metals, due to the presence of multiple
bands. We will also compare their features with those of other semimetals like graphene, bilayer graphene and
three-band pseudospin-1 systems.

The paper is organized as follows. In Sec. II, we study the 2d QBCPs, while Sec. III deals with the 3d QBCP
case. We compare our findings with the results for some other known bandstructures in Sec. IV. Finally, we end
with a summary and outlook in Sec. V.

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202006.0051.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202006.0051.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.aop.2020.168235

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 June 2020 d0i:10.20944/preprints202006.0051.v1

FIG. 1. Tunneling through a potential barrier in a QBCP material. The upper panel shows the schematic diagrams of the
spectrum of quasiparticles about a QBCP, with respect to a potential barrier in the z-direction. The lower panel represents
the schematic diagram of the transport across the potential barrier. The Fermi level (indicated by dotted lines) lies in the
conduction band outside the barrier, and in the valence band inside it. The blue fillings indicate occupied states.

II. 2D MODEL

For a 2d system, the particle-hole symmetric QBCP is described by the Hamiltonian:!

ki hQ
M e ) = 5

m

2k, by o0 + (2 K2) 0 | (2.1)
in the momentum space, with eigenvalues

h? (k2 4 k7)

+
EQd(kxa ky) ==+ 2m ) (22)
where the “+” and “—” signs, as usual, refer to the conduction and valence bands respectively. The corresponding
eigenvectors are given by:
1
U, = ——{ky,k;}, and U_ = (2.3)

1
7{_]617 ky}7
\/ K2+ k2 \/ k2 + k2
respectively.

The 2d system is modulated by a square electric potential barrier of height V) and width L, giving rise to an
z-dependent potential energy function:

Vo forO<ax<L
V(z)= 2.4
(z) {0 otherwise . (24)
Hence, we need to consider the total Hamiltonian:
Hyg = M (=105, -19,) + V(2) (2.5)

in position space. We choose the z-axis along the transport direction, and place the chemical potential at an energy
E > 0 in the region outside the potential barrier. The Fermi energy E can in general be tuned by chemical doping
or a gate voltage.
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A. Formalism

For a material of a sufficiently large transverse dimension W, the boundary conditions should be irrelevant for
the bulk response, and we use this freedom to simplify the calculation. Here, on a physical wavefunciton ¥ we
impose periodic boundary conditions:

Tt (z, W) = ¥ (x,0). (2.6)

The transverse momentum £, is conserved, and it is quantized due to the periodicity in the transverse width W,
and hence takes the form:

2mn
ky = W =dn; (2.7)
where n € Z. For the longitudinal direction, we seek plane wave solutions of the form e'*+*. Then the full
wavefunction is given by:

U (1, y,n) = const. x W, (x)e Y (2.8)

For any mode of given transverse momentum component k,, we can determine the z-component of the wavevectors

h2 k2 2
of the incoming, reflected, and transmitted waves (denoted by k¢), by solving Egtd(k‘w,n) = iw. In the
regions < 0 and x > L, we have only propagating modes (k; is real), while the z-components in the scattering

2m |E—Vp]|
A2

region (denoted by l~c), are given by k2 = — ¢, and may be propagating (imaginary part of k is z€ero) or

evanescent (imaginary part of kis NONZero).

We will follow the procedure outlined in Refs. 13 and 14 to compute the transport coefficients. We consider
the transport of positive energy states (V) corresponding to electron-like particles. The transport of hole-like
excitations (¥_) will be similar. Hence, the Fermi level outside the potential barrier is adjusted to a value E =
5%(1@;, k). Such a scattering state ¥,, ;, in the mode labeled by n, is constructed from the states:

¢, forxz <0,
U,(x)=C oy for0<z<L,
¢or forx > 1L,
W (e, 4a) €M7 1 B (ke g) o7 R
V(ke,n)

oL

)

Oa1 = [an Wi (ygn) €57 + B W (i, a) e757] © (B = Vo) + [ - (kv o) €57 4 B W (ki ga) 7 F2] © (Vo = B),

. eike(z—L)
:tnlll yin) — —/—/—/— >
or +(ke, qn) R

W2k 2mE - 2m|E -V,
V(ke,n) = |0k,e4 (ke,n)| = mf, k=" — a2 k:\/W—qg, (2.9)

where we have used the velocity V(k¢,n) to normalize the incident, reflected and transmitted plane waves. Note
that for Vy > FE, the Fermi level within the potential barrier lies within the valence band, and we must use the
valence band wavefunctions in that region.

The boundary conditions can be obtained by integrating the equation H5 W' = E ¥'" over a small interval in
the z-direction around the points x = 0 and z = L. The results are that the two components of the wavefunction be
continuous at the boundaries. These conditions are sufficient to guarantee the continuity of the current flux along
the a-direction. In particular, the reflection and transmission amplitudes r,,t,, and the two coefficients (ay, B,),
are determined from these boundary conditions. This mode-matching procedure gives us:

2ikkeq?
o (152 k§+q$l) sin~(l~cL)—2 ik kg q2 cos(ch) for £ < Vo

2ikk
GE kg)sin(ch)-s-;i;; e cos(kL) for E> V.

tn(E, Vo) = (2.10)
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4
The transmission coefficient at an energy F is given by
T(E, Vo.0) = (B, Vo) where 6 = tan~! (%) (2.11)
¢
is the incident angle of the incoming wave.
n? " n
Vo=1.0x Vo =25.0 Vo =50.0 x
2mr?

(a) (b) (c)

FIG. 2. 2d QBCP: The polar plots show the transmission coefficient T'(E, Vp, ¢)| By, 8 functions of the incident angle ¢
for the parameters E = 0.3V} (red), E = 0.5V, (green), E = 0.8V, (magenta) and E = 1.0V (blue).

(a) (b) (c)

FIG. 3. 2d QBCP: The polar plots show the transmission coefficient T'(E, Vo, ¢)|E>V0 as functions of the incident angle ¢
for the parameters E = 1.1Vj (red), E = 1.5V, (green), E = 1.8V} (magenta) and E = 2.5V} (blue).

B. Transmission coefficient, conductivity and Fano factor

Let us assume W to be very large such that ¢, can effectively be treated as a continuous variable. We then
numerically compute T'(E, ¢).

Using ky = 1/27‘:—;’3 cos¢, n=2mE V}?mE sing, dn= 2Wv2mE Vh2mE cos ¢ d¢, in the zero-temperature limit and for a
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FIG. 4. 2d QBCP: Plots of the (a) conductivity (o in units of 27), and (b) Fano factor (F), as functions of E/Vj, for various
values of Vp.

small applied voltage, the conductance is given by:'®
W\/
G(E,Vy) = §|u?+—/ﬁ dn = EWV2mE / T(E, Vo, $) cos ¢ dé . (2.12)
3
Therefore, the conductivity is given by:

L G(E, V)
o(E, Vo) = 37 2/h0 - W/ T(E,Vy, ¢) cos pdgp . (2.13)

Shot noise is the measure of the fluctuations of the current away from their average value. The zero-temperature
shot noise is given by:'®

2¢2® \/ h2/(2mL2)
S(E,Vp) = tnl? |rnl® — t/' T(E,Vy, ) [l — T(E, Vo, $)] dé, (2.14)

h

n

where @ is the applied voltage, and is characterized by the Fano factor:

jfi:jxl;av67¢)d¢
F(E, V) = — : . (2.15)
ffﬂ,jxl;avb7¢)[14’7Kl?7v63¢)]d¢

We express E and Vp in units of 5 LQ, and study the behaviour of T'(E, Vp, ¢), o(E,Vp) and F(E, Vy). Figs. 2
and 3 show the polar plots of T'(E, Vo7 ¢) as a function of the incident angle ¢, for the cases F <V and E > V)
respectively. From the expression of transmission coefficient in Eq. (4.1), it is clear that the transmission is zero
at normal incidence (¢ = 0), as long as E < Vh. Hence, we do not have a Klein tunneling analogue in the 2d
QBCP, unlike graphene!® or three-band pseudospin-1 Dirac-Weyl systems.'”'® However, we still have the resonance
conditions k L. = 7N, N € Z, under which the barrier becomes transparent (T = 1). In Fig. 4, we illustrate the
conductivity o(E, V) and the Fano factor F(E,Vp), as functions of E/Vp, for some values of V.

III. 3D MODEL

We consider a model for 3d QBCP semimetals, where the low energy bands form a four-dimensional representation
of the lattice symmetry group.® Then the standard (k - p) Hamiltonian for the particle-hole symmetric system can
be written by using the five 4 x 4 Euclidean Dirac matrices I', as:'?19

m h2 °
kam@m:5Emewm (3.1)
a=1
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The T',’s form one of the (two possible) irreducible, four-dimensional Hermitian representations of the five-
component Clifford algebra defined by the anticommutator { Ty, s} = 204. The five anticommuting gamma-
matrices can always be chosen such that three are real and two are imaginary.'?20 In the representation used here,
(T'y,T,T3) are real and (T'1,T'3) are imaginary:12

N=03®02, Ta=03001, I's=02®00, Tu=01®09, I's=03®0;3. (3.2)
The five functions d, (k) are the real £ = 2 spherical harmonics, with the following structure:

di(k) = —V3ky k., da(k) = —V3ky k., ds(k) = —V3k, ky,

— -1
dy(k) = ;[( kQ) ds(k) = - (2 oy ki) . (3.3)
The energy eigenvalues are
L2 4 R
53d(k ky k.) = 5 my , (3.4)
where the “+” and “—” signs, as usual, refer to the conduction and valence bands. Each of these bands are doubly
degenerate.
A set of orthogonal eigenvectors are given by:
or (ke tiky) (ktks) i(k+3k) §(2k(ktk) thitky)
(ke —1ky)? " VB(ky —ik,)’ V3 (ky —iky)2 ]
o (ko +iky) (k—k:)  i(k—3k) i (2k. (k — k) + k2 4+ K2) .
+2 (ke —iky)? 7 B(ky —iky)’ V3 (ky —iky)2 Y
o i(k+k)  k—ke 1 (2ke (ks —k) + K+ E])
TP VB (ke —iky) ke +iky V3 (ks +iky)? ’
i(k—k,) Btk L (2k, (k+kz) + k24 K2) (3.5)
V3 (kg —iky) kotik,’ " V3 (kg + k)2 ’ :

where k = | /kZ + kZ + k2, and the “+” (“~") indicates an eigenvector corresponding to the positive (negative)

eigenvalue.
The 3d system is modulated by a square electric potential barrier of height Vj and width L, as described in
Eq. (2.4). Here, we need to consider the total Hamiltonian:

Hif = HE (—i 05, —10,,—102) + V(2) (3.6)

in position space. As before, we choose the z-axis along the transport direction, and place the chemical potential
at an energy E > 0 in the region outside the potential barrier.

A. Formalism

We consider the tunneling in a slab of height and width W. Again, we assume that the material has a sufficiently
large width W along each of the two transverse directions, such that the boundary conditions are irrelevant for the
bulk response, and impose the periodic boundary conditions:

Wl (2, 0,2) = U (2, W, 2), ' (a,y,0) = U (z,y, W). 3.7)

The transverse momentum k; = (k,, k) is conserved, and its components are quantized. Due to periodicity, we
conclude that:

ky = =dn, k.= =dqn, (38)
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where (ng,ny) € Z. For the longitudinal direction (along the z-axis), we seek plane wave solutions of the form
ek Then the full wavefunction is given by:

Wz, y, z,n) = const. x Wy (x) el(any vtan.2) ) (3.9)
with
n = (ny,,n.). (3.10)

For any mode of given transverse momentum component k| , we can determine the z-component of the wavevec-
2 2 2

tors of the incoming, reflected, and transmitted waves (denoted by k), by solving egid(kgﬁ7 n) = i% . In the
regions < 0 and x > L, we have only propagating modes (k, is real), while the z-components in the scattering
region (denoted by l;:), are given by k2 = W
imaginary).

We will follow the same procedure as described for the 2d QBCP. Again, without any loss of generality, we consider
the transport of one of the degenerate positive energy states (V4 1) corresponding to electron-like particles, with
the Fermi level outside the potential barrier being adjusted to a value F = fs;d(k‘x, ky, k). In this case, a scattering

state Uy, in the mode labeled by n, is constructed from the states:

— k%, and may be propagating (I:: is real) or evanescent (l~c is

o forax <O,
Up(z) =L ¢y forO<z<L,
¢~SR forx > L,

\Ier’l(k;@, Iny> q”z) etker + Z Tn,s \IJJr,s(_kZ» Gn.y an) e ikex

7 s=1,2
oL = - 7
V(kg,n)
QNSM = [ Z On,s \I/+’5(l;:’q"y7qnz) ek + Z Bn,s qj+,s(_l;77qn97an) efikw}g (E - VO)
s=1,2 s=1,2
T [ Z Qn s ‘I'f,s(];HQnyy an) eikr + Z ﬁn,s \Ilf,s(_]%a Qnyz(Inz) e_ikm] () (VO - E) s
s=1,2 s=1,2
Z tms ‘II+,s(k7€a Qny 5 an)
g = 22 gihe(a=L)
f)(ke,n)
~ h2k 2mE - 2m|E -V,
Vlke,n) =[Ok ey (ke )| = == ke = \/ - —n, ~ ., k= \/'hz()' —an, —dn.,  (3.11)

where we have used the velocity f/(kg, n) to normalize the incident, reflected and transmitted plane waves. Note
that for Vy > FE, the Fermi level within the potential barrier lies within the valence band, and we must use the
valence band wavefunctions in that region.

The usual mode-matching procedure at x = 0 and = = L gives us:

12k kg et P E (qiy +qiz)

- - - = - for B < W

s (B, Vo) = § B2(e mom0) (13a, i ) + (o2 00 —1) (a2, ek, ) [1a (a2, o, ) [ Fo k(i) (a2, +a2) ’
' 2ikk

(k2 + k?)sin(léL)ﬁ[il% ke cos(kL) for 2> Vo,
tn2(B, Vo) =0. (3.12)
The transmission coefficient at an energy E is given by

T(E,Vo,0,0) = |tn1(E,Vo)[*, where § = cos™! (hq"z) and ¢ = tan™! (qny) (3.13)

OO B T VamE ke

define the incident angle (solid) of the incoming wave in 3d.
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FIG. 6. 3d QBCP: The polar plots show the transmission coefficient T'(E, Vb, 0, %)|E<V0 as a function of the incident angle

¢ (in the zy—plane with no k,—component) for the parameters £ = 0.3V (red), E = 0.5Vp (green), £ = 0.8V (magenta)
and F = 1.0Vp (blue).

B. Transmission coefficient, conductivity and Fano factor

Again, we assume W to be very large such that (qny , an) can effectively be treated as continuous variables. Using

2 . .
WgnE WVIBE o5, dny dn, = W2mE cos ¢sin® 0 dg, in

2mE
k£: 0 hZ

prosinfcosg, mny, =

sinfsing, n, =
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FIG. 7. 3d QBCP: Plots of the (a) conductivity (¢ in units of 872), and (b) Fano factor (F), as functions of E/Vp, for various
values of V.

the zero-temperature limit and for a small applied voltage, the conductance is given by:!?

4 2/2mE
G(E, Vi) = Zmuuf/nnn sy = T (2 [T (6 v, 0.0)cosssint 00
6=0 =73
(3.14)

leading to the conductivity expression:

(LN’ G(E, V) E T2 .
O'(E,‘/o) = <W> W = 871'2 |:h2/(2"77112):| \/O:O /’_72r T(E,V079,¢) COS¢7S]H20d¢. (315)

Note that there is a twofold degeneracy because we have two independent conduction band states, and hence an
extra factor of two has been included in the expressions for G and o. The shot noise and Fano factor can be
expressed as:

3SW?2 P 5
sE.vy) = 1 ‘I)§j|tn1|2 (1 ) STEW2 (2mE)/ T(E,Vo,8)[1 - T(E, Vo, #)] db,  (3.16)
0

h2
and
T(E,Vy, 0, 0d
F(E,Vy) = Jo- °f¢ 0.0 0) cossin” 0y , (3.17)
Jo Of¢ T(E Vo,e ) [1 — T(E, Vo, 0, )] cos psin® 0 de

respectively. Here, @ is the applied voltage.

As before, we express £/ and Vj in units of 3 L2 and study the behaviour of T(E,Vy,0,¢), o(E,Vy) and

F(E,Vy). From the expression of transmission coefficient in Eq. (3.12), it is clear that the transmission is zero at
normal incidence (0 = 7/2,¢ = 0), as long as E < V. This is analogous to the 2d case. In Fig. 5, we show the
angular dependence of T(E,Vp, 0, ¢) in 3d plots. Fig. 6 shows the polar plots of T(FE,Vy,7/2, ¢) as a function of
the incident angle ¢ for £ < V{4, which corresponds to k, = 0. Since the transmission coefficient for £ > V} has
the same expression both for the 2d and 3d QBCPs, the polar plots of T'(E, Vp, 7/2, ¢)|E>VO will be identical to
Fig. 3. In Fig. 7, we illustrate the conductivity o(E,V)) and the Fano factor F(E,V}), as functions of E/Vp, for
some values of V.

IV. COMPARISON WITH THE THE RESULTS FOR ELECTRONS IN NORMAL METALS

We compare the results obtained for QBCP semimetals with those in normal metals. For normal metals, we have
only one electron band to consider where the Fermi energy will intersect (irrespective of the height of the barrier).
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() (b) (c)

FIG. 8. Normal metal: The polar plots show the transmission coefficient T'(E, Vb, <;5)|E<VD as functions of the incident angle
¢ for the parameters £ = 0.3V} (red), E = 0.5V, (green), E = 0.8V, (magenta) and E = 1.0V, (blue).

F(E, Vo)

00}, . " . ]
0.0 0.5 1.0 1.5 20

0.0

(b)

FIG. 9. 2d normal metal: Plots of the (a) conductivity (o in units of 27), and (b) Fano factor ('), as functions of F/Vp, for
various values of Vg.

Using the continuity of the wavefunctions and their xz-derivatives at the two ends of the barrier, we can easily find
the transmission coefficient to be always given by:

2ikky
(F2+ k2 ) sin (L) +2ik ke cos (kL)

tE,Vy) = (4.1)

independent of whether E < Vj or E > Vj. As expected, this expression varies from the QBCP case only in the
E < Vy regime, as whenever E > Vj, a quasiparticle excitation moves across the barrier in the same way as a
normal metal electron does.

In Fig. 8, we show the plots of the transmission amplitude T'(F, Vo, ¢) = [t(E, Vp)|? as function of the angle ¢,
for the normal metal (in the 2d case, or 3d case with k, = 0). We also show the behaviour of conductivity and
Fano factor for 2d and 3d normal electrons in Figs. 9 and 10 respectively. As expected, Fig. 9 differs from Fig. 4,
or Fig. 10 differs from Fig. 7, only in the regions where E < V4.
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FIG. 10. 3d normal metal: Plots of the (a) conductivity (¢ in units of 27?), and (b) Fano factor (F), as functions of E/Vb,
for various values of Vj.

V. SUMMARY AND DISCUSSIONS

From our computations of the tunneling coefficients for the 2d and 3d QBCP semimetals, we have shown that
they exhibit different characteristics than those expected for normal metals. The answers also differ from those
expected for graphene'® and three-band pseudospin-1 semimetals.'”'8 In particular, QBCPs do not exhibit either
Klein or super-Klein tunneling.'® We also note that the transport characteristics for the 2d and 3d QBCP cases
show significant differences among themselves. All these observations can be used in experiments to identify the
QBCP semimetals.

In future, it will be useful to look at these transport properties in the presence of disorder?! (as has been done in
the case of Weyl?? and double-Weyl?? nodes) and/or magnetic fields.>* Another direction is to examine the effects of
anisotropy as well as particle-hole symmetry-breaking terms. Yet another direction is to explore the time-dependent
transport properties when subjected to a time-dependent potential,2® using the Floquet scattering theory, and find
out if Fano resonance can occur via quasibound states.
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