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Abstract 

There has been a growing interest in incorporating psychological and neuroscientific 

knowledge about the development of cognitive functions in educational policies and academic 

practices. In this paper, we argue that the current knowledge about the interactions between 

these functions and their neurodevelopmental characteristics should also be considered in order 

to develop practices that could be better suited to pupils depending on their age. To facilitate 

this, we review current neuroscientific knowledge on the competitive interactions between two 

neural circuitry underlying distinct learning functions, their developmental trajectories and 

how they are linked to other functions such as cognitive control. The incorporation of this 

knowledge in education could help improve academic outcomes. 

 

Keywords: competitive learning and memory functions, cognitive development, basal ganglia, 

medial temporal lobe, prefrontal cortex, model-based learning, model-free learning 
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Our physical, economic and social environment is subject to constant changes. For example, 

old job types disappear and novel ones emerge within a generation or even within a few years’ 

time. There is also an increasing pressure to replace old routines with new ones and to develop 

new skills (e.g., learn how to use a new electronic device or software, or speak a second 

language). The changes to our environment present challenges both for individuals and for 

society as a whole. Education systems aim at providing skill sets to individuals to help them 

adapt to these changes more efficiently. National education authorities have increasingly 

incorporated recommendations into their national curriculum guidelines based on scientific 

evidence from developmental and cognitive psychology, although with a relatively long lag 

(Whitebread, 2011; Wood & Hedges, 2016). It is mainly in the last decade that links have been 

established between current neuroscientific knowledge and educational practices. A growing 

body of research has focused on how different neurocognitive functions, such as attention, 

executive functions, working memory and aspects of long-term memory are involved in 

learning in the classroom and linked to academic outcomes (Anderson, Betts, Ferris, & 

Fincham, 2013; Kaufman et al., 2010; Pluck et al., 2019; Posner & Rothbart, 2014). However, 

the accumulating knowledge on the interactions between different neurocognitive functions 

and how these interactions contribute to learning across development have largely been 

neglected. Here we aim to rectify this situation by briefly summarizing current neuroscientific 

knowledge on the interactions between two neural circuitry linked to distinct learning 

functions, their developmental trajectories, and how they interact with other neurocognitive 

functions, such as cognitive control or executive functions. We then discuss how this 

knowledge of interactive neurocognitive functions could inform educational policies and 

academic practices to improve academic outcomes.  

 

Insights from neuroscience into interactive learning and memory functions  

The existence of neuroanatomically distinct learning and memory functions that compute 

specific mnemonic operations is well established in the scientific community (Henke, 2010; 

Squire, 2004; Squire & Zola, 1996; Yin & Knowlton, 2006). In the last two decades, ample 

studies have reported that, depending on the task at hand, these functions interact intimately 

(Janacsek, Fiser, & Nemeth, 2012; Lee, Shimojo, & O’Doherty, 2014; Nemeth, Janacsek, 

Polner, & Kovacs, 2013; Otto, Gershman, Markman, & Daw, 2013; Packard & Knowlton, 

2002; Poldrack et al., 2001). These interactions can be of a cooperative or competitive nature 

(Poldrack et al., 2001), and are mediated through direct neuroanatomical projections between 

the brain structures involved in the specific learning/memory functions, or indirectly through 
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neuromodulatory influences of other brain structures (Poldrack & Packard, 2003). In the 

following subsections, we review evidence for interactive (in particular, competitive) 

learning/memory functions from cognitive, developmental and computational neuroscience 

research. 

 

Competition between neural circuitry underlying learning and memory 

Ample evidence from cognitive neuroscience research suggests that, during learning and 

memory tasks, a competitive relationship exists between the neural circuitry involving the basal 

ganglia (BG), particularly the dorsal striatum, and the circuitry involving medial temporal lobe 

(MTL) structures such as the hippocampus (Albouy, King, Maquet, & Doyon, 2013; Moody, 

Bookheimer, Vanek, & Knowlton, 2004; Packard & Knowlton, 2002; Poldrack et al., 2001; 

Poldrack & Packard, 2003). For example, neuroimaging studies have shown that the more the 

learning relies on the circuitry involving the BG, the smaller the reliance on the circuitry 

involving the MTL, and vice versa (Moody et al., 2004; Poldrack et al., 2001). Similarly, the 

hippocampus appears to be more active when the BG are ‘silenced’ during consolidation 

periods, in which acquired memories are typically stabilized (Logothetis et al., 2012).  

Traditionally, the BG and MTL have been associated with different learning/memory 

functions: the former has been linked to procedural memory that is involved in the acquisition 

of skills and habits, while the latter has been linked to declarative memory such as memory for 

events and facts (Squire, 2004; Squire & Zola, 1996). Another line of research has argued for 

differential involvement of the BG and MTL in habitual vs. goal-directed systems, which show 

some similarities with procedural and declarative memory, respectively (Yin & Knowlton, 

2006), although they refer to somewhat different aspects of learning and memory. Importantly, 

neither of these distinctions can explain the interactions observed in previous studies, as the 

competitive relationship between the neural circuitry involving the BG vs. the MTL has been 

observed within a certain (e.g., procedural memory) task and not across tasks. Instead, the 

competitive relationship between these neural circuitry suggests that they are linked to more 

specific neurocognitive processes that operate in parallel and compete for the control of 

behavior in a given task. 

Regions in the prefrontal cortex (PFC) seem to be good candidates to arbitrate between 

these competitive circuitry (Daw, Niv, & Dayan, 2005) as these brain regions a) have strong 

connections with both the BG and MTL (Aggleton, 2012; Draganski et al., 2008), b) have been 

traditionally associated with control functions (e.g., executive functions, inhibition, cognitive 

control) (Miller & Cohen, 2001; Yuan & Raz, 2014), and c) neuroimaging studies have 
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reported PFC activation in a wide range of learning and memory tasks (Blumenfeld & 

Ranganath, 2007; Fletcher et al., 2005; Watson, van Wingen, & de Wit, 2018). 

Evidence for competitive neural circuitry involving the PFC comes from intervention 

studies. For example, studies using non-invasive (transcranial magnetic) brain stimulation to 

disrupt the dorsolateral PFC in healthy young adults found that the disruption of this region led 

to improved performance in aspects of procedural memory, presumably due to a greater 

reliance on the circuitry involving the BG (Ambrus et al., in press; Galea, Albert, Ditye, & 

Miall, 2010). Another study employed relaxational hypnosis to decrease the reliance on control 

functions that are linked to PFC regions, which led to improved procedural learning (Nemeth, 

Janacsek, Polner, et al., 2013). 

On the functional level, a negative correlation has been observed between executive 

functions, that heavily rely on the PFC, and procedural learning, in that, better executive 

functions were associated with weaker learning (Nemeth, Janacsek, Polner, et al., 2013; Virag 

et al., 2015). In contrast, executive functions appear to have a positive relationship with other 

learning/memory functions, such as working memory and declarative memory (Ruchkin, 

Grafman, Cameron, & Berndt, 2004; Van der Linden, Meulemans, Marczewski, & Collette, 

2000).  

Overall, competition seems to exist between at least two neural circuitry underlying 

learning and memory, one that includes the BG and the other that includes the MTL. Regions 

in the PFC seem to be intimately involved in both circuitry and may arbitrate between them to 

determine which circuitry gains control over behavior in a certain situation (for more details, 

see the ‘Evidence from computational neuroscience on competitive neurocognitive processes’ 

subsection below). Thus, the relative dominance of the circuitry involving the BG vs. the MTL 

may affect what is learned and how learning occurs. Since these neural circuitry exhibit 

different developmental trajectories from childhood to adulthood (Blakemore, 2012; Raznahan 

et al., 2014), optimal learning strategies may also change during development.  

   

Competitive neurocognitive functions in typical and atypical development 

A growing body of research has shown that children (under the age of ~12-13 years) 

outperform adolescents and adults on learning/memory tasks that require the extraction of 

predictable patterns from the stimulus stream, which is an important aspect of procedural 

memory and skill learning (Janacsek et al., 2012; Juhasz, Nemeth, & Janacsek, 2019; Nemeth, 

Janacsek, & Fiser, 2013; Thompson-Schill, Ramscar, & Chrysikou, 2009). It has been proposed 

that this behavioral pattern can be explained by a relatively greater reliance on one neural 
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circuitry involved in learning compared to the other due to their different pace of maturation. 

Specifically, since the circuitry involving the PFC and MTL/hippocampal regions is not fully 

developed in childhood (Blakemore, 2012; Shaw et al., 2008), it has been suggested that 

children rely on the circuitry involving the BG to a greater extent (Janacsek et al., 2012). When 

the circuitry involving the PFC and MTL/hippocampus becomes more mature, starting around 

adolescence and reaching its peak in young adulthood, competition emerges between the two 

circuitry.  

An age-dependent shift in reliance on the two circuitry may explain previous findings 

and theories of reasoning and language learning (Goldowsky & Newport, 1993; Gopnik, 

Griffiths, & Lucas, 2015; Gopnik et al., 2017; Newport, 1990). For example, Gopnik et al. 

(2017) showed that during learning and reasoning about the causes of physical events, children 

perform better than adults despite their weaker executive functions, cognitive control and 

working memory capacity. They argue that across development from childhood to adulthood, 

learners become less flexible, in that they are less likely to adopt a novel hypothesis that is 

consistent with new evidence. Instead, adults learners prefer a familiar hypothesis even if it is 

less consistent with the evidence, suggesting an age-dependent shift in the relative reliance on 

exploration vs. exploitation (Gopnik et al., 2017). A childhood advantage was also reported in 

language learning (Newport, 1990). According to the ‘Less is More Hypothesis’, fewer 

cognitive resources (such as weaker executive functions and lower working memory capacity) 

can be advantageous in learning a complex combinatorial system such as language because 

these cognitive limitations constrain them to first address smaller units of language that have 

predictive value and carry meaning, and will acquire more complex constructions only as they 

mature (Goldowsky & Newport, 1993; Newport, 1990). 

A different level of reliance on the circuitry involving the BG vs. the MTL during 

learning may also explain several findings in neurodevelopmental disorders such as specific 

language impairment, dyslexia and developmental coordination disorder. Research has shown 

that the circuitry involving the BG are affected in these neurodevelopmental disorders, 

resulting in specific neurocognitive patterns, outlined in the Procedural Circuit Deficit 

Hypothesis (Ullman, Earle, Walenski, & Janacsek, 2020). Acquisition of predictable patterns 

and sequences appears to be impaired in disorders affecting this circuitry but this may not be 

seen in behavior because they may compensate with a greater reliance on the neural circuitry 

involving the MTL (Ullman & Pullman, 2015). Surprisingly, cognitive functions that have been 

shown to heavily rely on this latter circuitry, such as declarative memory, may even be 

enhanced in these cases (Lukacs, Kemeny, Lum, & Ullman, 2017). The opposite pattern could 
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also be observed: the hyperactivation of the circuitry involving the BG in Tourette syndrome 

could even lead to enhanced performance during the acquisition of predictable patterns (Takács 

et al., 2018), suggesting a disproportionately larger reliance on this circuitry that happens to be 

beneficial for this type of learning.  

 

Evidence from computational neuroscience on competitive neurocognitive processes  

Accumulating evidence from computational neuroscience suggests that the interactions 

between learning/memory functions are driven by more specific cognitive processes. In 

particular, a widely recognized computational model has postulated the existence of model-

based and model-free processes underlying learning, and more generally, behavior (Daw et al., 

2005). The central distinction between the two processes has been posited to lie in whether or 

not an internal model/representation of the task at hand is formed during learning, 

characterizing model-based vs. model-free processes, respectively. Since these processes 

appear to be relevant in a wide range of learning situations, they could potentially shed further 

light on the competition previously observed both on the neural and behavioral level (Daw et 

al., 2005; Decker, Otto, Daw, & Hartley, 2016; Lee et al., 2014; Otto, Gershman, et al., 2013). 

Tasks or situations typically involve the evaluation of the available information and 

some decision making, such as action selection. Model-based processes have been proposed to 

select actions via a flexible but computationally demanding process of developing and 

searching a cognitive model of the task at hand. These models include predictions of long-term 

outcomes by chaining together short-term predictions about the immediate outcomes of each 

action in a sequence (Daw et al., 2005). Thus, model-based learning involves the exploration 

of a branching set of possible future situations, which can be resource-expensive in terms of 

memory capacity and time and can also be prone to errors.  

In contrast, model-free processes have been proposed to provide a less resource-

demanding way of evaluating information and selecting an appropriate action (Daw et al., 

2005). In this view, instead of searching (sets of) possible future outcome sequences of our 

current decisions/actions, model-free processes rely on more recent outcomes when 

determining the action value associated with a stimulus, decreasing the burden of memory and 

time constraints during learning and decision-making. These processes have been posited to 

recruit trial-and-error feedback to optimize performance. Thus, overall, model-free processes 

can provide a faster, more parsimonious alternative to model-based processes, which may lead 

to more efficient learning and decisions depending on the circumstances. Adaptive control of 

behavior has been proposed to involve a fluid and contextually sensitive balance between 
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model-based and model-free learning processes (Daw et al., 2005). The existence of an 

arbitrator has been posited that determines whether the model-based or the model-free 

processes gain control of behavior when they disagree. Thus, this line of computational 

neuroscience research also posits a competition between parallel neurocognitive processes. 

On the neural level, an extensive network of regions, including regions in the PFC and 

the hippocampus, has been suggested to be involved in model-based processes, while the dorsal 

striatum in the BG has been linked to model-free processes (Daw et al., 2005). Evidence from 

studies combining neuroimaging with computational modelling suggests a more complex 

picture (Doll, Simon, & Daw, 2012). For example, Lee et al. (2014) found that the PFC is 

associated with both model-based and model-free learning, with more medial/orbital PFC 

regions being associated with model-based, and more dorsal regions being associated with 

model-free learning. Activity in the striatum was uniquely associated with model-free learning. 

Further, their findings suggested that other PFC regions (in particular, the inferior lateral PFC) 

implement the arbitration between model-based and model-free control. Remarkably, they 

found a negative correlation between activity in the inferior lateral PFC and the regions 

associated with model-free processes, suggesting that the arbitrator may work predominantly 

by acting on the model-free system, and suppressing its activity if the model-based system is 

deemed more efficient in a given situation. 

Thus, based on extant theoretical and empirical work, model-based and model-free 

processes are posited to compete for control over behavior in adulthood (Daw et al., 2005; Lee 

et al., 2014). Reliance on model-based vs. model-free processes appears to be sensitive to the 

cognitive and affective demands placed on the individual (Otto, Gershman, et al., 2013; Otto, 

Raio, Chiang, Phelps, & Daw, 2013). For example, based on the hypothesis that model-based 

processes require more cognitive resources, Otto et al. (2013) showed that having participants 

perform a demanding secondary task leads to increased reliance on model-free learning. 

Moreover, the trade-off between the reliance on the two learning processes changed 

dynamically as a function of concurrent executive function demands.  

Considering the cognitive and neurodevelopmental changes discussed above, the 

relative reliance on model-based vs. model-free learning might also change markedly with age. 

Indeed, Decker et al. (2016) tested children, adolescents and adults on a learning task, and 

showed that whereas model-free processes were present in participants’ choice behavior across 

all age groups, model-based processes were absent in children, emerged in adolescents, and 

strengthened in adults. These findings suggest that the model-free processes are already well-

functioning in childhood and the recruitment of model-based processes emerges during 
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development. This shows striking parallels with the marked structural and functional changes 

of the neurocircuitry involving the PFC and MTL from adolescence to adulthood (Blakemore, 

2012; Shaw et al., 2008) and the concurrent strengthening of control functions such as cognitive 

control and executive functions around the same time (Casey, Tottenham, Liston, & Durston, 

2005; Craik & Bialystok, 2006).  

 

Competitive neurocognitive functions: an integrative account 

Linking the evidence from cognitive, developmental and computational neuroscience, 

here we attempt to provide an integrative account of competitive neurocognitive functions. 

Learning linked to the neurocircuitry that involves the BG, particularly the striatum, seems to 

encompass associative learning processes whereby we extract predictable regularities (e.g., 

repeating patterns) from the environment automatically, that is, without intention or conscious 

monitoring (Janacsek et al., 2020). This form of learning appears to be primarily 

external/stimulus-driven and occurs implicitly, without any awareness or cognitive effort 

(Janacsek et al., 2012). It may recruit model-free processes that utilize trial-and-error feedback 

and provide a faster, less resource-expensive form of learning by relying on more recent 

experience instead of searching internal models of past experiences. The capacity to detect 

predictable regularities is crucial for aspects of procedural memory, which are involved in the 

acquisition of cognitive, social and motor skills and habits (Kaufman et al., 2010; Lieberman, 

2000; Nemeth & Janacsek, 2011; Romano Bergstrom, Howard, & Howard, 2012; Ullman, 

2004). Since many skills are acquired during childhood, this form of learning is a vital aspect 

of child development.  

By contrast, learning linked to the neurocircuitry that involves regions in the PFC and 

the MTL seems to represent a more controlled form of learning that relies more heavily on 

cognitive resources such as cognitive control and executive functions. This form of learning 

may occur incidentally or intentionally. It appears to involve the development of complex 

representations, internal models of the environment/task, whereby past experiences become 

more influential determining one’s current behavior at the expense of the reliance on more 

recent experiences (Nemeth, Janacsek, & Fiser, 2013). While this form of learning may be 

beneficial in multiple situations, it is cognitive resource-expensive and therefore can be prone 

to errors. In terms of related functions, it appears to be linked to cognitive control, executive 

functions, and working memory, and may be involved in aspects of declarative as well as 

procedural memory. In turn, these functions support abilities such as reasoning, planning and 

goal-directed decision making (see Figure 1).  
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Competition seems to exist between the neurocircuitry involving the BG vs. the PFC 

and MTL for gaining control of behavior, whereby the greater the reliance on the circuitry 

involving the BG, the smaller the reliance on the circuitry involving the PFC/MTL, and vice 

versa (Poldrack & Packard, 2003). Due to the different maturational trajectories of these 

circuitry, the reliance on the cognitive processes and functions they subserve also shows 

marked shifts during development. Children appear to outperform adults in tasks that require 

the extraction of predictable patterns of the environment typically occurring without mental 

effort such as in procedural learning (Janacsek et al., 2012; Juhasz et al., 2019; Nemeth, 

Janacsek, & Fiser, 2013). In contrast, other functions requiring more cognitive resources, such 

as cognitive control and executive functions demonstrate marked development through 

adolescence and peak in adulthood (Casey et al., 2005; Craik & Bialystok, 2006). These 

findings from cognitive and developmental neuroscience are consistent with the evidence from 

computational neuroscience on model-free and model-based learning, respectively. 

Specifically, there seems to be a greater reliance on faster, more parsimonious model-free 

processes until the neurocircuitry subserving the development and utilization of internal models 

becomes more influential, starting around adolescence (Decker et al., 2016).  
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Figure 1. Competitive neurocognitive circuitry underlying learning from childhood to adulthood.  A) 

Schematic representation of the relative reliance on two neurocognitive circuitry linked to the basal ganglia (BG) 

vs. regions in the prefrontal cortex (PFC) and the medial temporal lobe (MTL) across development. B) Whereas 

the neurocircuitry that involves the BG, in particular, the dorsal striatum, matures relatively early in childhood 

(solid line contour), the circuitry that involves the PFC and MTL, undergoes a more extended developmental 

trajectory, resulting in relatively less matured functions in pre-adolescents (dotted line contour). Consequently, 

the reliance on the latter circuitry that is linked to model-based processes is reduced in children (dotted black 

arrow), ‘liberating’ its competitive weight (dotted red arrow) on the other circuitry linked to model-free processes 

(continuous black arrow). Since both circuitry are fully matured in adulthood (continuous black arrows), they 

compete for gaining control over behavior (continuous red arrow). Regions in the PFC seem to arbitrate between 

the two circuitry by suppressing the circuitry involving the BG if the other circuitry deems more efficient in a 

given situation. C) Whereas children rely more on the circuitry involving the BG, the circuitry involving the PFC 

and the MTL becomes more influential from adolescence to adulthood. This relative reliance is associated with 

distinct cognitive processes and functions being more influential in different stages of development, which, in 

turn, support the development of different abilities. 

 

Competitive neurocognitive functions in schools  

As described above, the neurocircuitry subserving distinct cognitive processes/functions 

interact and compete with one another for the control of behavior. Moreover, they undergo 

different developmental trajectories, resulting in altered reliance on them during development. 

Considering the competitive interactions between these circuitry and their effects on learning 

across development in the academic curriculum could help improve academic outcomes. For 

example, for pupils under the age of 12-13, it may be beneficial to lower the number of tasks 

that rely on the circuitry involving PFC and MTL regions, which undergo marked changes 

through adolescence to adulthood, and instead, to increase the number of tasks that rely more 

on the circuitry involving the BG, which is fully functional already in childhood.  

Although learning situations in schools are typically complex and likely involve 

multiple circuitry, it may be possible to design tasks that rely more on one circuitry than on the 

other. Some academic practices already exist that seem to put a heavier weight on the circuitry 

involving the BG. For example, learning a foreign language through immersion is becoming 

increasingly popular (Cenoz & Gorter, 2015; Isabelli-García & Isabelli, 2020). For example, if 

someone wants to learn Spanish, spending 2-3 months in Spain can boost their knowledge of 

the Spanish language to a greater extent than staying in their home country and studying that 

foreign language for an equal amount of time. One possible explanation for this is that, by 

being immersed in the Spanish speaking environment, learning becomes more 

externally/stimulus-driven, and learners pick up knowledge without even fully realizing it, 
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likely relying more on the circuitry that involves the BG. After all, this is also how toddlers 

learn their first language.  

So what are the main characteristics of learning that relies on the circuitry involving the 

BG vs. the PFC and MTL? Although there is still intensive research on these two forms of 

learning, there are some characteristics that might help us distinguish between them in the 

classroom. As outlined above, learning linked to the former circuitry appears to be more 

externally/stimulus-driven, incidental and less cognitive resource-expensive, while learning 

linked to the latter circuitry is more internally-driven, memory-based and resource-expensive 

(see also Figure 1). Considering these characteristics, together with the pupil’s age may help 

design tasks for the classroom that could boost learning outcomes. It should also be noted that, 

even in a certain age group, individual differences may exist among pupils due to possible 

differences in the maturation of the underlying neurocircuitry. Thus, one size does not fit all, 

and individualized learning approaches should also be considered. 

 

Conclusion  

There has been a growing interest in incorporating psychological and neuroscientific 

knowledge about the development of cognitive functions in educational policies and academic 

practices. In this paper, we argue that the current knowledge about the interactions that occur 

between the neural circuitry underlying these neurocognitive functions should also be 

considered in order to develop practices that could be more suitable to pupils depending on 

their age. The implementation of this knowledge in the education system could potentially help 

improve academic outcomes and equip learners with a more flexible skill set that may help 

them adapt to environmental changes more efficiently even beyond school.  
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