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1. Introduction

The lack of large-angle correlation in the cosmic
microwave background (CMB) anisotropies, confirmed
by three independent satellite missions [1-3], raises
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serious questions concerning the viability of basic slow-roll inflation [4,5]. A reliance on cosmic
variance [6] for the missing correlations cannot avoid the correspondingly small probabilities
($0.24%) that disfavor the conventional picture at 2 3¢. This growing tension between the
theoretical predictions and the CMB observations was recently put on a much more rigorous,
formal footing with a detailed analysis of the recent Planck data release [3], showing quite
robustly that the absence of large-angle correlation in the CMB is due to a non-zero minimum
wavenumber, ky,iy, in the fluctuation power spectrum P(k) [7].

The inflationary paradigm posits that quantum fluctuations were generated shortly after the
Big Bang [8] with a power-law power spectrum P(k) distributed over an indeterminate range
of wavenumbers k. But the latest Planck measurements are precise enough for us to question
whether or not ki, is in fact zero. Ref. [7] demonstrated that the lack of large-angle correlation
in the CMB is due to a cutoff ki, 7# 0, and measured its value by optimizing the theoretical fits
to the measured angular-correlation function. These authors provided compelling evidence that
the Planck data clearly rule out a zero ky,j, at a very high level of confidence—exceeding 8c. This
measurement is critically important because—given an inflaton potential, V'(¢), and the notion
that a minimum wavenumber corresponds to the first mode leaving the horizon—=k;,, signals a
precise cosmic time, tssart, at which slow-roll inflation is supposed to have started.

Unconstrained slow-roll inflation would have stretched all fluctuations beyond the horizon,
resulting in a P(k) with kpin =0, which would have produced strong correlations in the CMB
at all angles, 6, in contrast to what is actually seen, i.e., an angular correlation function that

essentially goes to zero at § > 60°. The measured minimum wavenumber is instead

4.34 +£0.50
kypin = ——""", (1.1)
Tdec
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where rqe. is the comoving distance between us and redshift zge. = 1080, at which decoupling
in standard ACDM cosmology is thought to have occurred. Therefore, for the latest
Planck parameters (see below), one finds rqec ~ 13,804 Mpc, and a corresponding minimum
wavenumber

Fomin = (3.14 £ 0.36) x 10™* Mpc ™' . (1.2)

In the conventional inflationary picture, mode k exited the horizon at time ¢, satisfying the
simple condition [8]
Ap(ts) _ ¢

Ton T H. (1.3)

where A\ (t«) =2ma(t«)/k is its wavelength, a(t«) is the expansion factor in the Friedmann-
Lemaitre-Robertson-Walker metric (FLRW), and H. is the Hubble constant at that moment. This
strong observational constraint therefore implies that standard slow-roll inflation must satisfy the
initial condition

a(tstart) Hstart = 94.3 £ 10.9kms ™' Mpc ™! . (1.4)

But as we shall show in this paper, at least some inflationary models fail to solve the horizon
problem in light of this new measurement. We shall first consider pure slow-roll inflation on its
own, but then also demonstrate that the introduction of a kinetic-dominated (KD) or radiation-
dominated (RD) phase preceeding the slow-roll expansion cannot produce consistency with the
data either.

The missing angular correlation at large angles is related to the unexpectedly low power
measured in the small £ multiple moments. Several workers have previously attempted to resolve
this issue by introducing such an RD or KD phase preceding the flatenning of the inflaton
potential. We shall summarize several of these efforts in § 3 below, and provide a set of pertinent
references to this previously published work. Our analysis in this Letter differs from many of
these treatments principally because we require such modifications to—not only account for
the missing angular correlation at large angles, but simultaneously to also—fix the horizon
problem. This caveat is critical to our conclusion: that the measurement of k,;, impacts both
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the measured fluctuation spectrum and the ability of standard slow-roll inflation to equilibrate
the CMB temperatue across the visible Universe.

2. Pure Slow-Roll Inflation

We may clearly see the impact of this measurement by considering the simplest case of a
pure exponential (i.e., de Sitter) expansion. To ensure that the CMB temperature seen today
is equilibrated across the sky, a photon must have traversed a comoving distance prior to
decoupling at least twice rqe.. That is, the minimal condition for inflation is

r = 2rgec = 2¢ ro d (2.1)
preCMB = 4Tdec = o a(t) ) .
where a(t) is the aforementioned expansion factor. In terms of H = a/a, we may also put
@ da
Tdec = chec poy (2.2)

where H (a) is the Hubble parameter as a function of a, and ag is the expansion factor today. The
latest cosmological measurements all seem to be consistent with a spatially flat Universe [3], for
which ag may be normalized to 1.

From the Friedmann equation, we have

10000000 V 208 4 0014 Buo-BuysiandAieiosieforeds:

Om | ) . (2.3)

2 2
H"(a) = Hy (FJrajﬁL.QA

Thus, for the Planck optimized values Hg = 66.99 & 0.92 km s ! Mpcfl, 2m =0.321 £0.013,
24=0.679£0.013, and 2, =9.3 x 107° [3], for the Hubble parameter, and fractional matter
and cosmological constant energy densities, respectively, one finds rqec ~ 13,804 Mpc. By
comparison, rprecMB is calculated from the start of inflation, astart = a(tstart), to decoupling and
is mostly due to the expansion up to ae,q, when the inflaton field becomes sub-dominant. Thus,

Qend da

a?H "’

TpreCMB ~ CJ (24)

Astart

In simple exponential (i.e., pure de Sitter) expansion, H(a) = Hstart is constant during inflation,

SO
c 1 1
. _ _ , 25
preCMB Hgtart (astart Qend ) ( )

and since astart < dend, We may also put

C

TpreCMB = (2.6)

Hgtartastart

The newly measured constraint in Equation (1.4) therefore implies that r,,ccmB ~ 3, 181 Mpc,
much smaller than the required comoving distance 2r4e. =~ 27,608 Mpc. This factor 9 disparity
therefore rules out pure exponential inflationary models, because they could not solve the horizon
problem given the measured value of kpip.

But the focus today is on slow-roll inflation, for which H(a) due to the inflaton field is very
nearly—though not exactly—constant. It is not difficult to see that when the small parameter e
(see Eq. 2.9 below) is monotonic [9], H(a) < Hgtart for all a > astart. As such, one should expect
TpreCMB to be bigger than that in Equation (2.6) (corresponding to pure exponential expansion) if
the starting condition (Eq. 1.4) remains the same.

To quantify the difference, let us define a new variable

1
Bla) = T
(i-e., the integrand in Eq. 2.4). The boundaries relevant to the run of 3(a) with a are shown
schematically in figure 1. The measured cutoff k,;, corresponds to the solid blue hyperbola,

.7)
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expansion factor a(t)

Figure 1.Phase space of permitted 3(a) versus a trajectories for slow-roll inflationary models. Here,
Beutoft = (Hstartastart) L @~ oc 1/a (blue solid); Bexp = (Hstart) ta~2 o< 1/a? (red dashed); and Benq =
(Hendagnd)_1 = constant (black dashed). The shaded (yellow) area is the dominant contribution to the integral for
TpreCMB, for a specific slow-roll model with Sg1vw (@), and should therefore be compared with the comoving distance
Tdec 10 decoupling.

on which Beutof = (Hstart astart)_l a ol /a. Inflation must begin at astart Somewhere on this
curve. For example, if H is constant (red dashed curve), inflation initiates at the point where the
solid and dashed curves intersect, after which Sexp o< 1/ a’. Also, the Universe is believed to have
been radiation dominated right after inflation ended, for which

0
Hgnd_H(%( - > . (2.8)

end

Again, for exponential inflation with H(a) = Hgtart = Heng, Equation (2.8) corresponds to the

horizontal (black) short-dash line, with Bo,q = (Hendagnd)f1 = constant near the bottom of

the plot. Any slow-roll inflationary model (with H not exactly constant) would then follow a

trajectory Bsiow (@) (shown as solid black) somewhere between the Seyto and Bexp curves. It

could never cross the hyperbola because H can never be bigger than its starting value Hsgart.
The small parameter ¢ is defined according to [9]

2 I\ 2
_mp (H
€= - (H) , 2.9

where mp is the Planck mass and prime denotes a derivative with respect to the inflaton scalar
field, ¢. It is not difficult to show that

start

[
H(¢) = Hgtart exp <_ J 4L§¢) d(,b) y (210)

mpy
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where the subscript ‘start’ has its usual meaning. It is also useful to introduce the number of
e-folds during inflation,

¢
N(éstart: 6) =In ( a ) =, @)
Astart start mpy E(¢)

Clearly, e =0 if H is strictly constant. It is non-zero, but small, if H changes slowly (hence the
designation ‘slow-roll’). Thus, inflation in slow-roll models must end when ¢ increases to 1, at
which point the slow-roll approximation breaks down.

Let us therefore first consider the extreme case in which e =1 throughout the inflationary
phase, for which

H(a) = Hetar exp(—N) = @ . 2.12)

This is in fact the solid black hyperbola shown in figure 1. Therefore,

rereCOMB = € In ( %end ) . (2.13)

Hgtartastart Gstart

This comoving distance is bigger by a factor In(aend/astart) than that for pure de Sitter expansion
(Eq. 2.6), and would be sufficient to account for the required value of 2ryec. As we shall discuss
shortly, however, there are compelling reasons why such a persistently large value of € is
inconsistent with the data. Typically, slow-roll models have a very tiny e during most of inflation,
approaching 1 only towards the end, when the inflaton field is believed to somehow dissolve into
standard model particles, so that the magnitude of H " becomes very large.

To more accurately represent such models, we therefore define another new parameter 0 < b <
1 such that €2 is restricted to values < b during most of the inflationary expansion, breaking down

only at the very end. Then we have
¢ 4mb
Hgtars exp | — J —5 5 d¢
o < start m%16(¢)
= Hgtart exp(—\/l;N)

N
= Hstart ( ) ) (2-14)

Astart

10000000 V 208 4 0014 Buo-BuysiandAieiosieforeds:

H()

V

so that, assuming aenq >> astart,
2 2_ 1
e“<b e“=b —
T <r =
preCMB < "preCMB
(1 - \/B)Hstartastart

and, combining this with Equation (2.2), we find that v/b > 0.875 in order for the right-hand side
of Equation (2.15) to exceed 2r4.. and solve the horizon problem.

In other words, e must be quite large compared to typical values required in commonly studied
slow-roll models. Indeed, scenarios with € ~ 1 during the whole of inflation have already been
considered and eliminated on observational grounds [10], because either (i) inflation would not
have lasted long enough to fix the horizon problem, or (ii) the predicted extremely red spectral
index (ns < 1) in P(k) would be substantially different from its observed value 0.9649 £ 0.0042
[3]. Inflationary models with €2 > b are therefore not at all practical.

To demonstrate this general result more practically, let us examine its impact on four rather
well-known, specific types of potential that have been studied thus far, beginning with the
evolution of the slow-roll parameter e in so-called ‘small-field” inflation models, for which the

(2.15)

potential may be approximated locally by the expression

Vi(g)=Vo [1—(o/w)F] . (2.16)

As an illustration, we take p =2 and €(aenq) =1 (the value of p is irrelevant for the calculation
of ¢la]). Higher-order terms in V(¢) become important only towards the end of inflation.
Our numerical solution for €, based on the Planck optimized parameter values (see paragraph
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following Eq. 2.3 above), is shown in figure 2. Indeed, €2 > b for 8.5 x 10729 < a < agpq = 8.9 X “
10~29, but is far too small elsewhere for TpreCMB to exceed 27rec.
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Figure 2. The small parameter € as a function of the expansion factor a(¢) for the ‘small-field’ inflaton potential in
Equation (2.16). The (red) dashed line marks the value required for the model to comply with the Planck measurement
of kmin-

An alernative characterization of such an evolution may be written in terms of the number of
e-folds (Eq. 2.11) required during inflation in order to overcome the horizon problem, compared
to the actual number permitted by the ki, constraint in Equation (1.4). We have numerically
calculated ey (see Eq. 2.19 below) and N, subject to this constraint, for the following three slow-
roll potentials:

Vole) = %m:f (Quadratic)
Vi(e) = Voll— <%>2}2 (Higss — like)
Vn(gp) = W [cos(?) +1] (Natural) . (2.17)

For specificity, we have continued to use the Planck optimized parameters. The principal
difference between our calculation and those carried out in previous work is the inclusion of
Equation (1.4) as an initial condition. In addition, to this constraint, the other inputs informing
the calculation include: (1) the observed value of the scalar spectral index, ns = 0.96, which was
measured at the pivot point kpiyor = 0.05 Mpc_1 [3]; (2) an endpoint of inflation at ey, =1 (see
Eq. 2.19 below); and (3) a smooth transition from this inflated expansion to one driven by a
radiation-dominated equation-of-state, as shown in Equation (2.8).

At the early stage of inflation, these potentials may be used to define an alternative set of ‘small
parameters’ iy and ey [9], such that

ng ~ 277V - 66\/ y (218)
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where
2 2
v = mpj K/
16w \ V
2 "
mPIV
= — . 2.19
ny e (2.19)

The approximation breaks down when ey is large, which is conventionally taken to indicate the
end of the inflated expansion. The key results of our simulations are as follows:

o Quadratic: rp..cMmB = 5, 547 Mpc, which is still a factor ~ 5 too small compared to 2r4e =
27,608 Mpc. This potential would have expanded the Universe by 62 e-folds (see fig. 3),
but 64 e-folds would have been required to fix the horizon problem. The difference of 2
e-folds accounts for the factor 5 difference between r,.ccmB and 2rgec.

o Higgs-like: precMmB = 3, 339 Mpc, which is a factor ~ 8 too small. In this case, the Universe
would have expanded by 60 e-folds (fig. 3), but a little over 62 e-folds would have been
required to mitigate the horizon problem.

o Natural: rpeomB = 3, 650 Mpc, which is also a factor ~ 8 too small. The Universe would
have expanded by 63 e-folds, but a little over 65 e-folds would have been required to
completely mitigate the horizon problem.

For direct comparison, the small parameter ey, is shown as a function of N for each of these
three inflaton potentials in figure 3. As discussed earlier, inflation would have ended when ey, —
1. As was the case in figure 2, the horizontal red (dashed) line indicates the approximate value
ey requires to comply with the Planck measurement of ky,i,, and we see that, while ey does cross
this mark in each case, it is not sustained at this high level long enough for the Universe to have
expanded sufficiently to remove the horizon problem.

3. Slow-roll Inflation Preceeded by a KD or RD Fast-roll Phase

It appears, therefore, that to simultaneously resolve both the horizon problem and the missing
correlations at large angles, one must consider additional inflationary phases coupled to the
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standard slow-roll expansion. A closely related problem to the missing correlations at large
angles is the observed lack of power on the largest scales. Several authors have previously
attempted to mitigate this problem by introducing additional features to inflation, such as the
aforementioned KD and RD phases. For example, ref. [11] showed that an early fast-roll inflation
can lead to a depression of the cosmic microwave background quadrupole moment, with a
characteristic scale k1 ~ (3,759 Mpc)_1 of the implied attractive potential. This is consistent
with our previously measured minimum cutoff kmi, = (3,442 Mpc)_l. These authors did not,
however, simultaneously calculate the comoving distances rp.ccyvp and 7qec to ensure that
TpreCMB = 27dec- Subsequent work by these authors [12] to include both a decelerated fast-roll
and an inflationary fast-roll phase similarly did not address the horizon problem in terms of the
required comoving distances. In addition, this work appears to rely on the Bunch-Davies initial
conditions, which may be problematic in the context of trans-Planckian physics.

This general approach was followed by other authors [13], who found that a fast-rolling
KD initial phase improves the primordial power spectral fit to the data, but they similarly
did not consider the impact of this treatment on r,.ecMB Versus rqec. Likewise, the Planck
Collaboration [14] considered the impact of a cutoff on the spectrum, though not the angular-
correlation function. Their treatment apparently also lacks a discussion of the possible impact of
such a cutoff on 7prccvB and 7gec-

The work of ref. [15] was published after our measurement of k,y;,, [7], and they too considered
the impact of a sharp cutoff to the fluctuation spectrum. They concluded that the standard power-
law is preferred by the data, but made no mention of the horizon problem and the lack of
correlations at large angles, however, and the impact of this approach on rp..cmB versus 7qec-

An early phase of KD inflation was also introduced in ref. [16], though restricted to only
polynomial and exponential potentials. These authors confirmed that such a transition exhibits
a generic damping of power on large scales, but did not explicitly consider its impact on the
angular correlation function and rp..cMB Versus 7qec-

The work that comes closest in spirit to our analysis in this paper is that reported in ref. [17].
These authors, however, considered specifically the )\<1>4 potential and imposed the condition of
“just-enough" inflation. They found that the slow-roll conditions are violated at the largest scales,
and that this approach cannot explain the lack of power at the largest angles. In subsequent
work [18], this treatment was expanded to include quadratic and hybrid-type potentials, but still
without a consideration of their impact on the angular correlation function.

10000000 V 208 4 0014 Buo-BuysiandAieiosieforeds:

Finally, ref. [19] analyzed how much inflation one should expect for a given energy scale of
order 10'® GeV. But this work lacks direct relevance to our proposed coupling of &y, measured
from the angular correlation function to the number of e-folds itself, and its bearing on r,,ecMB
Versus rdec-

Quite clearly, many authors have by now noted the glaring inconsistency associated with
low power in the CMB fluctuations on large scales, which is closely related to their lack of
correlation at large angles. Our work amplifies this general view by providing a much stronger
argument for a cutoff ky;, in the primoridal fluctuation spectrum, and its direct impact also on
the horizon problem itself. To complete this discussion, we shall now consider whether a KD or
RD modification to the basic slow-roll inflationary picture can help mitigate the inconsistency
between 7prccMmB and rgec When a cutoff ky, is invoked to suppress the correlation at large
angles.

We shall first follow a simplified approach in which we gauge the impact of a KD or RD
modification to the horizon problem based solely on the previously measured hard cutoff k. It
is well known, however, that the angular power Cy of each multipole ¢, from which the angular
correlation function C(0) is calculated, depends on the entire fluctuation spectrum P(k) [7].
Thus, any modification to the power spectrum produced during the KD or RD phase alters
C(0) from that expected under pure slow-roll conditions. Following our initial discussion of
the impact of KD or RD on the horizon problem using the previously measured ky,i,, we shall
therefore quantitatively assess how much the cutoff wavenumber changes when the angular
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correlation function is re-optimized for a representative inflaton potential that contains a KD
phase transitioning into slow-roll at kstart. We shall find that kstart, signalling the start of
inflated expansion, can differ fractionally from ki, when C(6) is fit to the Planck data, though
insufficiently to qualitatively alter any of the results.

We begin with a radiation-dominated Universe from the Big Bang to the onset of inflation,

Thus, combining this with Equation (3.1), we have

TRD = ¢ (35)

Hstart astart

Do
‘o
Do
3
during which ‘o
— 2]
H=Qa 2, 3.1) 19
D@
where @ is a constant. Solving for the scale factor, one therefore has : %’
L c
a? =2Qt, (3.2) =
h =
so that =]
dr = 24 (3 o
=0 . &
. . . . . ]
The comoving distance traveled by a photon during this period is therefore §
tatart dt CQstart s
TRD = CJ —=— (3.4) :
o a Q : &
- 0
>
‘o
)
)
)
]
S
O

The addition of an RD period preceeding slow-roll inflation can therefore double the comoving
distance travelled by a photon prior to the end of the inflation. Even this, however, is still far too
small to solve the horizon problem, which requires the comoving distance to be at least 10 times
bigger.

The addition of a KD fast-roll expansion may hold more promise. For such a scalar field-
dominated Universe, we have [9]:

2_ 81 (159
P =g (3974 v) 66)
and
¢+3Hp+V' =0. (3.7)

From these two expressions, we derive

=273, (38)
mp)
and )
: m
b= _T?H ", (3.9)
For a KD scalar-field potential, Equation (3.6) reduces to
8m .
H(9)* g (3.10)
mMp
and, solving for H, we find that
2V37w (4
H(¢) = Hgtarte ™P1 (@ Fatare) y (311)
for which
\/ 2vV3mw (4
H/ _ 243w Hstarte mp] (¢ d’start) . (312)

With Equation (3.9), we therefore find that

dt T 2 2V (¢ i —b)
- = — — —— e ™MPI1 star s 313
d¢o \/;mPletart ( )
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so that

L 2855 (giari—0)
— e mp1 7 otAT R 3.14
3Hstart ( )

t—1t;

where t; is the time at which the KD expansion begins. Thus, with

t

t—t;, (3.15)
we also have

= (3.16)

during this phase prior to the onset of slow-roll inflation.
We may now solve for the scale factor a(t), finding that

a=MIY?3, (3.17)
so that
2
dt =di= % da, (3.18)

where M is another constant. Therefore, the comoving distance travelled by a photon during this
period is

10000000 V 208 4 0014 Buo-BuysiandAieiosieforeds:

Estart dt 3c
TKD = CLi v m(agtart —af). (3.19)
As long as the KD period begins right after the Big Bang, we may therefore approximate this
expression as

3c o
TKD ~ mastart , (3.20)

and therefore we find, with the use of Equations (3.11) and (3.12), that

C

TKD ~ (321)

2astart Hstart
Clearly, even combining this comoving distance with that from the slow-roll inflationary period,
we find that rp..cmB is still far too small to solve the horizon problem.

Finally, we consider all three phases together, beginning with an RD period, followed by a KD
Universe and a subsequent slow-roll expansion. It is not difficult to show that

TRD+KD = % (’lgtart - a%) + c%* ) (3.22)
where a is the scale factor at the RD to KD transition. Thus
a? c c
"RD+KD = <1 * agtm) <2astartHstart) < astart Hstart (323)

In the last step, we examine the possibility that a more careful calculation of the angular
correlation function C'(¢) with a modified P(k) from the KD phase may yield an optimized
wavenumber Kgiart (signalling the start of inflation) differing from the hard cutoff &,,;,, we have
been using in this analysis. It is not difficult to show from Equations (3.10-3.12) that the fluctuation
spectrum produced during KD is P(k) ~ k3. To estimate the change one should expect to see with
this more detailed approach, we therefore now proceed to re-optimize C(0) with

(3.24)

pry= 1 Ask/ko)™ itk > kstart
As (kstart/ko)ns_4(k/k0)3 ifk < kstart 5

invoking the usual pivot scale kq.
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Figure 4. The best-fit angular correlation functions for P(k) with a hard cutoff ki, (blue) and for P(k) given in
Equation (3.24) (red), with an optimized value kstart = 4.12 x 10~%4 Mpc 1. These theoretical curves are compared to
the angular correlation function measured with Planck (dark solid curve) [14], and associated 1o errors (grey). (Adapted
from ref. [7])

We follow the procedure outlined in ref. [7], and infer that the angular power of multipole ¢
relevant to the Sachs-Wolfe domain of fluctuations may be approximated as

Ustart 3 2 oo -2
Cg:BJ (L) #duﬂaj 3@ 4, (3.25)

0 Ustart Ustart

where B is a normalization constant encompassing As and several other factors; the variable u
is defined by the expression u = krqec, in terms of the comoving distance 74 to the decoupling
surface; and jy is the spherical Bessel function of order ¢. The angular correlation function itself is
then given by the expression

o) = %: (2t = V¢, Py(eost), (326)
where Py(cos 6) are the Legendre polynomials [20].

Using Equation (3.26) to refit the angular correlation function measured by Planck [7,14], we
find that the optimized fit corresponds to the value ustart = 5.9. Thus, according to the definition
of u, we find that

Kstars = 4.12 x 10~* Mpc ™1 . (3.27)

In figure 4, we show a comparison of the optimized angular correlation functions for P(k) with
a hard cutoff kp,in (blue) and P(k) given in Equation (3.24) (red) with this kstart. The curves are
almost indistinguishable, though the blue one is a slightly better fit to the Planck data at both small
(6 £ 45°) and large (9 > 120°) angles [7]. This difference, however, is too small for us to decide
which of these fluctuation distributions is preferred by the Planck data. Instead, the principal
outcome of this comparison is the change in wavenumber signalling the initiation of inflated
expansion: from ki, in Equation (1.2) for the hard cutoff, to kstart in Equation (3.27) for the KD
plus slow-roll potential.
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Thus, replacing ki in Equation (1.3) with kstart, and using Equations (2.6) and (3.23), we find
that 7precmB < 4, 848 Mpc, which is still much smaller than the value (i.e., 27, 608 Mpc) required
to solve the horizon problem. In effect, the more detailed treatment of P(k) has increased r,;ecMB
by about 50%, but nowhere near the factor ~ 9 required for this purpose.

No matter when the transition from RD to KD would have occurred, we find that no such

modification to the basic slow-roll scenario can render inflation consistent with the measured
Emin cutoff in the primordial fluctuation spectrum. The key point here is that, while introducing
a cutoff to the fluctuation distribution can account for the observed CMB anisotropies, it cannot
simultaneously solve the horizon problem.

4. Conclusion

The most recent Planck data have affirmed the absence of large-angle correlations in the CMB
anisotropies, seen previously with several instruments over several decades. A prevailing view
is that this feature may simply be due to ‘cosmic variance,” based on the reasonable argument
that we have only one Universe to observe, and that a variation away from its most probable
configuration should not be unexpected. Certainly none of the work reported in this paper can
completely eliminate that possibility. Nevertheless, seeking to find alternative explanations, as
we have attempted to do here, is motivated by the presumed low probability of cosmic variance
being the sole answer. The analysis reported in ref. [7] shows that a more probable explanation
for the lack of large-angle correlations in the CMB is the presence of a hard cutoff ki, in
the P(k) spectrum. If true, this cutoff has profound consequences on the viability of slow-roll
inflationary models because ki, points to a well-defined time at which inflation could have
started. Quantifying this impact on the possible form of the inflaton potential has been the main
goal of this paper.

The constraint implied by ki, allows inflation to simultaneously solve the horizon problem
and produce a near power-law fluctuation spectrum only if e~ 1 throughout the inflationary
expansion. But such a scenario then predicts an extremely red spectral index completely at odds
with the measured value. Here, we have examined in detail the consequences of ki, on four
well-studied slow-roll inflationary models proposed thus far, showing that, if our interpretation
of kpip is correct, the Planck CMB data rule out such slow-roll potentials at a very high level of
confidence.
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