Supplement

L_p Loss Functions in Invariance Alignment and Haberman Linking

Table of Contents

Supplement A: Additional Results for Study 1	2
Supplement B: Additional Results for Study 2	17

Enclosed in this document are the supplemental materials for our article entitled " L_p Loss Functions in Invariance Alignment and Haberman Linking".

Supplement A contains additional tables to the results of Study 1 reported in the article. Supplement B contains additional tables to the results of Study 2 reported in the article.

Supplement A: Additional Results for Study 1

The following pages contain additional results for Simulation Study 1. Tables A1 to A4 show the average absolute bias of group means as a function of the number of groups (G = 3 or G = 6) and in the case of no DIF and for DIF. Tables A5 and A6 show the average RMSE of group means for G = 3 groups and in the case of no DIF and for DIF. Tables A7 to A10 show the average absolute bias of group standard deviations as a function of the number of groups (G = 3 or G = 6) and in the case of no DIF and for DIF. Tables A11 to A14 show the average RMSE of group standard deviations as a function of the number of groups (G = 3 or G = 6) and in the case of no DIF and for DIF.

Table A1
Study 1: Average Absolute Bias (ABIAS) of Group Means as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 3 Groups

N = 250 0.02 $.003$ $.003$ $.001$ $.004$ $.003$ $.004$ $.004$ 0.1 $.003$ $.003$ $.001$ $.004$ $.002$ $.003$ $.004$ $.004$ 0.25 $.003$ $.002$ $.000$ $.002$ $.002$ $.002$ $.003$ $.003$ $.003$ 0.02 $.002$ $.002$ $.002$ $.002$ $.003$ $.003$ $.003$ 0.02 $.002$ $.002$ $.002$ $.002$ $.003$ $.003$ 0.02 $.002$ $.002$ $.002$ $.001$ $.002$ $.003$ $.003$ 0.02 $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ 0.02 $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ $.001$ </th <th>\overline{p}</th> <th>IA1</th> <th>IA2</th> <th>IA3</th> <th>IA4</th> <th>HL1</th> <th>HL2</th> <th>HL3</th> <th>HL4</th>	\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
0.1 .003 .003 .001 .004 .002 .003 .004 .004 0.25 .003 .002 .001 .004 .002 .003 .003 .003 0.5 .003 .002 .000 .002 .001 .002 .003 .003 1 .002 .002 .002 .004 .001 .002 .003 .003 2 .002 .002 .002 .004 .001 .002 .003 .004 0.02 .001 <td></td> <td>N =</td> <td>250</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		N =	250						
0.25 $.003$ $.002$ $.001$ $.004$ $.002$ $.003$ $.003$ $.003$ 1 $.002$ $.002$ $.002$ $.002$ $.002$ $.003$ $.003$ 2 $.002$ $.002$ $.002$ $.001$ $.002$ $.003$ $.003$ 2 $.002$ $.002$ $.002$ $.001$ $.001$ $.002$ $.003$ $.003$ 2 $.002$ $.002$ $.002$ $.002$ $.003$ $.004$ $.001$ $.002$ $.003$ $.004$ 0.02 $.001$	0.02	.003	.003	.001	.004	.003	.003	.004	.004
0.5 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.002 0.003 0.004 0.002 0.003 0.004 0.001 0.002 0.003 0.004 0.001	0.1	.003	.003	.001	.004	.002	.003	.004	.004
1 .002 .002 .002 .002 .002 .001 .002 .003 .003 2 .002 .002 .004 .001 .002 .003 .004 $N = 500$ 0.02 .001 </td <td>0.25</td> <td>.003</td> <td>.002</td> <td>.001</td> <td>.004</td> <td>.002</td> <td>.003</td> <td>.003</td> <td>.004</td>	0.25	.003	.002	.001	.004	.002	.003	.003	.004
2 .002 .002 .004 .001 .002 .003 .004 $N = 500$ 0.02 .001	0.5	.003	.002	.000	.002	.002	.002	.003	.003
N = 500 0.02 $.001$	1	.002	.002	.000	.002	.001	.002	.003	.003
0.02 $.001$	2	.002	.002	.002	.004	.001	.002	.003	.004
0.1 $.001$		N =	500						
0.25 $.001$	0.02	.001	.001	.001	.001	.001	.001	.001	.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	.001	.001	.001	.001	.001	.001	.001	.001
1 .001 .000 .000 .001 .001 .001 .001 .001 .001 2 .001 .001 .001 .001 .001 .001 .001 .001 $N = 1000$ 0.02 .003 .003 .004 .003 .002 .003 .003 .003 0.1 .003 .003 .004 .003 .002 .003 .003 .003 0.25 .003 .003 .004 .003 .002 .003 .003 .003 0.5 .003 .003 .004 .003 .002 .003 .003 .003 1 .003 .003 .004 .003 .002 .003 .003 .003 2 .003 .003 .003 .003 .003 .003 .003 .003 0.02 .002 .002 .002 .002 .002 .002 .002 .002 0.02 .002 .002 .002 .002 .002 .002 .002	0.25	.001	.001	.001	.001	.001	.001	.001	.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5	.001	.001	.000	.001	.001	.001	.001	.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	.001	.000	.000	.001	.001	.001	.001	.001
0.02 $.003$ $.003$ $.004$ $.003$ $.002$ $.003$ $.003$ $.003$ 0.1 $.003$ $.003$ $.004$ $.003$ $.002$ $.003$ $.003$ $.003$ 0.25 $.003$ $.003$ $.004$ $.003$ $.002$ $.003$ $.003$ $.003$ 0.5 $.003$ $.003$ $.004$ $.003$ $.002$ $.003$	2	.001	.001	.001	.001	.001	.001	.001	.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		N =	1000						
0.25 $.003$ $.003$ $.004$ $.003$ $.002$ $.003$ $.003$ $.003$ 0.5 $.003$ $.003$ $.004$ $.003$ $.002$ $.003$ $.002$ $.003$ 1 $.003$	0.02	.003	.003	.004	.003	.002	.003	.003	.003
0.5 $.003$ $.003$ $.003$ $.002$ $.003$ $.002$ $.003$ $.002$ $.003$	0.1	.003	.003	.004	.003	.002	.003	.003	.003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.25	.003	.003	.004	.003	.002	.003	.003	.003
	0.5	.003	.003	.004	.003	.002	.003	.002	.003
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	.003	.003	.004	.003	.003	.003	.003	.003
0.02 .002	2	.003	.003	.003	.003	.003	.003	.003	.003
0.1 .002		N =	5000						
0.25 .002 .002 .002 .002 .002 .002 .002 .002 .002 0.5 .002 <	0.02	.002	.002	.002	.002	.002	.002	.002	.002
0.5 .002 .002 .002 .002 .002 .002 .002 .002 .002 1 .002 .002 .002 .002 .002 .002 .002 .002 .002	0.1	.002	.002	.002	.002	.002	.002	.002	.002
1 .002 .002 .002 .002 .002 .002 .002 .00	0.25	.002	.002	.002	.002	.002	.002	.002	.002
	0.5	.002	.002	.002	.002	.002	.002	.002	.002
2 .002 .002 .002 .002 .002 .002 .002 .0	1	.002	.002	.002	.002	.002	.002	.002	.002
	2	.002	.002	.002	.002	.002	.002	.002	.002

Table A2
Study 1: Average Absolute Bias (ABIAS) of Group Means as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 6 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.007	.007	.005	.010	.008	.008	.007	.007
0.1	.007	.007	.005	.010	.008	.008	.007	.007
0.25	.007	.007	.006	.010	.007	.008	.007	.007
0.5	.007	.007	.006	.010	.007	.007	.007	.007
1	.007	.006	.007	.009	.007	.006	.006	.006
2	.006	.006	.007	.008	.006	.006	.005	.005
	N =	500						
0.02	.005	.005	.005	.004	.005	.005	.005	.005
0.1	.005	.005	.005	.004	.005	.005	.005	.005
0.25	.004	.005	.005	.004	.005	.005	.005	.005
0.5	.004	.005	.005	.004	.005	.005	.004	.005
1	.004	.004	.005	.004	.005	.005	.004	.004
2	.004	.004	.005	.004	.004	.004	.004	.004
	N =	1000						
0.02	.001	.001	.004	.005	.002	.002	.002	.002
0.1	.001	.001	.004	.005	.002	.002	.002	.002
0.25	.001	.001	.003	.005	.002	.002	.002	.002
0.5	.001	.001	.003	.005	.002	.002	.002	.002
1	.001	.001	.003	.004	.001	.001	.002	.002
2	.001	.001	.003	.004	.001	.001	.002	.002
	N =	5000						
0.02	.001	.001	.001	.001	.001	.001	.001	.001
0.1	.001	.001	.001	.001	.001	.001	.001	.001
0.25	.001	.001	.001	.001	.001	.001	.001	.001
0.5	.001	.001	.001	.001	.001	.001	.001	.001
1	.001	.001	.001	.001	.001	.001	.001	.001
2	.001	.001	.001	.001	.001	.001	.001	.001

Table A3

Study 1: Average Absolute Bias (ABIAS) of Group Means as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 3 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.016	.014	.044	.050	.010	.011	.019	.020
0.1	.017	.014	.044	.051	.010	.011	.024	.024
0.25	.017	.015	.045	.051	.012	.013	.022	.023
0.5	.020	.018	.047	.053	.016	.017	.024	.025
1	.036	.033	.070	.081	.033	.034	.044	.045
2	.073	.057	.119	.095	.061	.057	.066	.070
	N =	500						
0.02	.003	.002	.037	.037	.001	.002	.014	.015
0.1	.004	.003	.037	.038	.002	.002	.014	.015
0.25	.005	.004	.039	.040	.003	.003	.014	.014
0.5	.010	.010	.045	.045	.006	.006	.016	.017
1	.026	.024	.073	.081	.025	.026	.034	.035
2	.071	.053	.113	.087	.059	.053	.060	.068
	N =	1000						
0.02	.004	.004	.038	.037	.004	.004	.004	.004
0.1	.005	.005	.038	.039	.004	.004	.004	.004
0.25	.007	.007	.039	.040	.005	.005	.005	.005
0.5	.010	.009	.040	.042	.008	.008	.008	.009
1	.022	.021	.080	.086	.022	.023	.030	.031
2	.073	.055	.115	.090	.062	.055	.064	.071
	N =	5000						
0.02	.001	.001	.007	.008	.000	.000	.000	.000
0.1	.001	.001	.008	.008	.000	.000	.000	.001
0.25	.001	.001	.008	.008	.001	.001	.001	.001
0.5	.003	.003	.015	.015	.003	.003	.003	.003
1	.013	.012	.089	.094	.015	.016	.018	.018
2	.072	.054	.113	.086	.061	.054	.062	.070
_	_	·	·	_	_			

Table A4

Study 1: Average Absolute Bias (ABIAS) of Group Means as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 6 Groups

p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.011	.011	.028	.032	.009	.010	.014	.015
0.1	.011	.012	.029	.032	.010	.011	.014	.016
0.25	.011	.012	.032	.036	.012	.012	.016	.016
0.5	.015	.015	.037	.042	.016	.017	.020	.021
1	.033	.031	.065	.080	.032	.033	.037	.038
2	.071	.057	.114	.101	.060	.057	.065	.069
	N =	500						
0.02	.005	.004	.038	.040	.004	.004	.007	.007
0.1	.005	.004	.037	.040	.005	.005	.008	.008
0.25	.006	.006	.038	.041	.006	.006	.009	.009
0.5	.010	.010	.045	.048	.009	.010	.011	.012
1	.027	.025	.078	.091	.027	.027	.030	.031
2	.072	.056	.110	.102	.062	.056	.063	.070
	N =	1000						
0.02	.004	.004	.028	.033	.004	.004	.006	.006
0.1	.004	.004	.031	.033	.004	.004	.006	.006
0.25	.005	.005	.032	.039	.005	.005	.007	.007
0.5	.008	.007	.039	.048	.007	.008	.009	.009
1	.022	.020	.089	.099	.022	.023	.025	.026
2	.073	.057	.111	.102	.062	.057	.063	.070
	N =	5000						
0.02	.001	.001	.008	.015	.001	.001	.001	.001
0.1	.001	.001	.008	.021	.001	.001	.001	.001
0.25	.002	.002	.013	.024	.002	.002	.002	.002
0.5	.003	.003	.013	.016	.003	.004	.004	.004
1	.014	.013	.089	.096	.016	.016	.017	.018
2	.072	.055	.111	.098	.061	.055	.063	.070

Table A5

Study 1: Average Root Mean Square Error (ARMSE) of Group Means as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 3 Groups

-								
p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.052	.052	.061	.061	.051	.051	.052	.052
0.1	.052	.051	.060	.061	.051	.051	.051	.051
0.25	.051	.051	.060	.060	.051	.050	.051	.050
0.5	.051	.050	.058	.058	.050	.049	.050	.050
1	.049	.049	.055	.055	.049	.049	.049	.049
2	.048	.048	.054	.054	.048	.048	.049	.049
	N =	500						
0.02	.040	.039	.044	.045	.040	.040	.040	.039
0.1	.039	.039	.044	.044	.040	.040	.040	.039
0.25	.039	.039	.043	.044	.039	.039	.039	.039
0.5	.039	.039	.043	.043	.039	.039	.039	.039
1	.038	.038	.041	.041	.038	.038	.038	.038
2	.038	.038	.040	.040	.038	.038	.038	.038
	N =	1000						
0.02	.026	.026	.029	.029	.026	.026	.026	.026
0.1	.026	.026	.029	.029	.026	.026	.026	.026
0.25	.026	.026	.028	.028	.025	.025	.026	.026
0.5	.025	.025	.028	.028	.025	.025	.026	.026
1	.025	.025	.027	.027	.025	.025	.025	.025
2	.025	.025	.026	.026	.025	.025	.025	.025
	N =	5000						
0.02	.011	.011	.011	.011	.011	.011	.011	.011
0.1	.011	.011	.011	.011	.011	.011	.011	.011
0.25	.011	.011	.011	.011	.011	.011	.011	.011
0.5	.011	.011	.011	.011	.011	.011	.011	.011
1	.011	.011	.011	.011	.011	.011	.011	.011
2	.011	.011	.011	.011	.011	.011	.011	.011

Table A6
Study 1: Average Root Mean Square Error (ARMSE) of Group Means as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 3 Groups

p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.072	.070	.111	.116	.068	.067	.078	.077
0.1	.071	.069	.111	.116	.068	.067	.079	.078
0.25	.069	.068	.110	.114	.067	.067	.076	.077
0.5	.069	.067	.107	.111	.066	.066	.074	.075
1	.071	.068	.102	.111	.067	.067	.075	.075
2	.089	.080	.131	.114	.081	.080	.094	.093
	N =	500						
0.02	.043	.043	.092	.093	.042	.041	.061	.060
0.1	.043	.043	.091	.093	.042	.041	.060	.060
0.25	.043	.042	.090	.093	.042	.042	.058	.058
0.5	.043	.043	.090	.093	.042	.041	.057	.057
1	.049	.048	.091	.097	.048	.048	.057	.057
2	.080	.069	.120	.098	.072	.069	.079	.080
	N =	1000						
0.02	.028	.027	.083	.082	.026	.026	.028	.028
0.1	.028	.028	.083	.084	.026	.026	.028	.028
0.25	.028	.027	.082	.084	.026	.026	.028	.028
0.5	.028	.028	.080	.082	.026	.026	.029	.029
1	.035	.033	.090	.096	.034	.035	.045	.046
2	.077	.065	.118	.094	.067	.065	.075	.078
	N =	5000						
0.02	.011	.011	.038	.038	.011	.011	.011	.011
0.1	.011	.011	.038	.038	.011	.011	.011	.011
0.25	.011	.011	.038	.038	.011	.011	.011	.011
0.5	.011	.011	.048	.049	.011	.011	.012	.012
1	.017	.017	.092	.096	.019	.019	.023	.023
2	.072	.057	.114	.087	.062	.057	.065	.071

Table A7

Study 1: Average Absolute Bias (ABIAS) of Group Standard Deviations as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 3 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.004	.006	.006	.005	.007	.004	.007	.005
0.1	.004	.006	.006	.005	.006	.004	.007	.004
0.25	.004	.006	.006	.005	.006	.005	.007	.005
0.5	.004	.005	.005	.004	.006	.005	.007	.005
1	.003	.005	.005	.004	.006	.005	.006	.005
2	.003	.005	.005	.004	.006	.005	.006	.005
	N =	500						
0.02	.003	.002	.002	.003	.002	.002	.002	.002
0.1	.003	.002	.002	.002	.002	.002	.002	.002
0.25	.003	.002	.002	.003	.002	.002	.002	.002
0.5	.003	.002	.002	.003	.002	.002	.002	.002
1	.002	.002	.002	.003	.002	.002	.002	.002
2	.002	.002	.002	.002	.002	.002	.002	.002
	N =	1000						
0.02	.004	.005	.004	.004	.004	.005	.005	.005
0.1	.004	.005	.004	.004	.004	.005	.004	.005
0.25	.004	.005	.004	.004	.004	.004	.004	.005
0.5	.004	.004	.004	.004	.004	.004	.004	.004
1	.003	.004	.004	.003	.004	.004	.004	.004
2	.003	.003	.003	.003	.003	.003	.004	.004
	N =	5000						
0.02	.000	.001	.001	.001	.001	.001	.001	.001
0.1	.000	.001	.001	.001	.001	.001	.001	.001
0.25	.000	.001	.001	.001	.001	.001	.001	.001
0.5	.000	.001	.001	.001	.001	.001	.001	.001
1	.001	.001	.001	.001	.001	.001	.001	.001
2	.001	.001	.001	.001	.001	.001	.001	.001

Table A8

Study 1: Average Absolute Bias (ABIAS) of Group Standard Deviations as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 6 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.005	.003	.005	.008	.005	.004	.005	.004
0.1	.005	.003	.005	.008	.005	.004	.005	.004
0.25	.005	.003	.005	.008	.005	.004	.005	.004
0.5	.005	.003	.005	.008	.004	.004	.005	.004
1	.005	.003	.004	.007	.004	.003	.004	.004
2	.005	.003	.004	.006	.003	.003	.004	.004
	N =	500						
0.02	.004	.003	.003	.004	.003	.003	.003	.003
0.1	.004	.003	.003	.004	.003	.003	.003	.003
0.25	.004	.003	.003	.004	.003	.003	.003	.003
0.5	.004	.003	.003	.004	.003	.003	.003	.003
1	.004	.003	.003	.004	.003	.003	.003	.003
2	.004	.003	.003	.004	.003	.003	.003	.003
	N =	1000						
0.02	.002	.002	.003	.003	.002	.002	.002	.002
0.1	.002	.002	.003	.003	.002	.002	.002	.002
0.25	.002	.002	.002	.003	.002	.002	.002	.002
0.5	.002	.002	.002	.003	.002	.002	.002	.002
1	.002	.002	.002	.003	.002	.002	.002	.002
2	.002	.002	.002	.003	.002	.002	.002	.002
	N =	5000						
0.02	.001	.001	.001	.001	.001	.001	.001	.001
0.1	.001	.001	.001	.001	.001	.001	.001	.001
0.25	.001	.001	.001	.001	.001	.001	.001	.001
0.5	.001	.001	.001	.001	.001	.001	.001	.001
1	.001	.001	.001	.001	.001	.001	.001	.001
2	.001	.001	.001	.001	.001	.001	.001	.001

Table A9
Study 1: Average Absolute Bias (ABIAS) of Group Standard Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 3 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.009	.014	.017	.022	.013	.012	.016	.014
0.1	.009	.014	.018	.022	.014	.013	.017	.015
0.25	.008	.015	.018	.020	.014	.013	.016	.016
0.5	.009	.018	.021	.019	.017	.016	.019	.018
1	.012	.035	.035	.019	.037	.037	.037	.037
2	.020	.101	.094	.019	.083	.101	.082	.100
	N =	500						
0.02	.007	.010	.013	.011	.009	.009	.011	.011
0.1	.008	.011	.014	.011	.009	.009	.011	.011
0.25	.008	.013	.015	.011	.010	.010	.012	.012
0.5	.010	.016	.018	.013	.013	.013	.014	.015
1	.014	.032	.033	.018	.032	.034	.033	.034
2	.027	.105	.098	.025	.088	.105	.086	.104
	N =	1000						
0.02	.002	.002	.009	.010	.001	.001	.001	.001
0.1	.002	.002	.009	.010	.001	.001	.001	.001
0.25	.002	.003	.008	.010	.002	.001	.002	.002
0.5	.003	.006	.008	.009	.004	.004	.004	.004
1	.006	.019	.021	.015	.021	.022	.021	.022
2	.023	.101	.094	.022	.083	.101	.081	.100
	N =	5000						
0.02	.000	.001	.001	.001	.001	.001	.001	.001
0.1	.000	.001	.001	.001	.001	.001	.001	.001
0.25	.001	.002	.002	.001	.001	.002	.001	.002
0.5	.001	.003	.004	.002	.003	.003	.003	.003
1	.005	.014	.017	.013	.016	.018	.016	.017
2	.025	.103	.096	.023	.085	.103	.083	.101

Table A10
Study 1: Average Absolute Bias (ABIAS) of Group Standard Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 6 Groups

p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.008	.011	.014	.016	.013	.013	.014	.014
0.1	.008	.012	.014	.015	.013	.013	.014	.014
0.25	.009	.013	.015	.016	.015	.015	.015	.015
0.5	.011	.018	.019	.018	.019	.018	.020	.019
1	.022	.038	.037	.029	.041	.041	.041	.042
2	.048	.105	.099	.055	.088	.105	.088	.104
	N =	500						
0.02	.005	.003	.011	.014	.003	.003	.004	.004
0.1	.005	.003	.011	.014	.003	.003	.004	.004
0.25	.005	.003	.010	.014	.003	.003	.004	.004
0.5	.007	.007	.010	.015	.006	.006	.007	.006
1	.015	.023	.025	.025	.025	.027	.025	.026
2	.048	.099	.092	.056	.081	.099	.080	.098
	N =	1000						
0.02	.004	.003	.007	.010	.003	.003	.003	.003
0.1	.004	.003	.007	.009	.003	.003	.003	.003
0.25	.004	.003	.007	.010	.003	.003	.004	.004
0.5	.006	.006	.008	.011	.006	.005	.006	.006
1	.014	.021	.023	.023	.023	.024	.023	.024
2	.049	.102	.095	.056	.084	.102	.082	.100
	N =	5000						
0.02	.001	.001	.001	.003	.001	.001	.001	.001
0.1	.001	.001	.002	.004	.001	.001	.001	.001
0.25	.001	.002	.002	.004	.002	.002	.002	.002
0.5	.002	.003	.004	.003	.003	.004	.003	.004
1	.008	.014	.017	.016	.016	.018	.016	.018
2	.048	.103	.096	.054	.085	.103	.083	.101

Table A11

Study 1: Average Root Mean Square Error (ARMSE) of Group Standard Deviations as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 3 Groups

p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.046	.046	.047	.047	.045	.047	.045	.047
0.1	.046	.046	.047	.047	.044	.046	.045	.046
0.25	.045	.045	.046	.046	.044	.045	.044	.045
0.5	.044	.044	.045	.045	.043	.044	.043	.044
1	.042	.042	.043	.043	.041	.042	.041	.042
2	.041	.041	.042	.042	.040	.041	.040	.041
	N =	500						
0.02	.035	.034	.035	.036	.033	.033	.033	.033
0.1	.035	.034	.035	.035	.033	.033	.033	.033
0.25	.034	.033	.034	.035	.032	.033	.032	.033
0.5	.033	.033	.033	.034	.031	.032	.031	.032
1	.032	.031	.032	.032	.030	.031	.030	.031
2	.030	.030	.031	.031	.029	.030	.029	.030
	N =	1000						
0.02	.023	.023	.024	.024	.023	.023	.023	.023
0.1	.023	.023	.024	.023	.022	.023	.023	.023
0.25	.023	.023	.023	.023	.022	.023	.022	.023
0.5	.022	.023	.023	.023	.022	.022	.022	.022
1	.022	.022	.022	.022	.021	.022	.021	.022
2	.022	.022	.022	.022	.021	.022	.021	.022
	N =	5000						
0.02	.009	.009	.009	.009	.008	.009	.008	.009
0.1	.009	.009	.009	.009	.008	.009	.008	.009
0.25	.009	.009	.009	.009	.008	.009	.008	.009
0.5	.009	.009	.009	.009	.008	.009	.008	.009
1	.009	.009	.009	.009	.008	.009	.008	.009
2	.009	.009	.009	.009	.008	.009	.008	.009
_								

Table A12
Study 1: Average Root Mean Square Error (ARMSE) of Group Standard Deviations as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 6 Groups

p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.050	.049	.050	.052	.048	.049	.049	.049
0.1	.050	.048	.049	.051	.048	.049	.048	.049
0.25	.049	.047	.049	.050	.048	.048	.048	.048
0.5	.047	.046	.048	.049	.047	.047	.047	.047
1	.045	.045	.046	.046	.044	.045	.044	.045
2	.044	.044	.045	.045	.043	.044	.043	.044
	N =	500						
0.02	.034	.034	.035	.034	.035	.034	.035	.034
0.1	.034	.034	.034	.034	.034	.034	.034	.034
0.25	.034	.034	.034	.034	.034	.034	.034	.034
0.5	.033	.033	.033	.033	.033	.034	.033	.033
1	.033	.033	.033	.033	.032	.033	.032	.033
2	.032	.032	.033	.033	.032	.032	.032	.032
	N =	1000						
0.02	.024	.024	.025	.025	.024	.025	.024	.025
0.1	.024	.024	.025	.025	.024	.024	.024	.024
0.25	.024	.024	.025	.025	.024	.024	.024	.024
0.5	.024	.024	.024	.024	.023	.024	.023	.024
1	.023	.023	.024	.024	.023	.024	.023	.024
2	.023	.023	.024	.024	.023	.023	.023	.023
	N =	5000						
0.02	.010	.010	.011	.011	.010	.010	.010	.010
0.1	.010	.010	.011	.010	.010	.010	.010	.010
0.25	.010	.010	.011	.010	.010	.010	.010	.010
0.5	.010	.010	.010	.010	.010	.010	.010	.010
1	.010	.010	.010	.010	.010	.010	.010	.010
2	.010	.010	.010	.010	.010	.010	.010	.010

Table A13

Study 1: Average Root Mean Square Error (ARMSE) of Group Standard Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 3 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.051	.055	.061	.059	.057	.057	.058	.058
0.1	.051	.055	.061	.058	.056	.056	.058	.057
0.25	.050	.054	.060	.058	.055	.055	.056	.056
0.5	.050	.054	.059	.056	.055	.054	.056	.055
1	.047	.060	.061	.052	.062	.060	.062	.061
2	.048	.116	.115	.049	.097	.116	.097	.115
	N =	500						
0.02	.035	.035	.041	.041	.034	.034	.038	.038
0.1	.034	.035	.040	.040	.034	.034	.038	.038
0.25	.034	.036	.040	.040	.035	.034	.038	.037
0.5	.034	.037	.041	.039	.035	.035	.038	.038
1	.034	.046	.047	.039	.047	.047	.048	.047
2	.040	.111	.108	.040	.094	.111	.093	.110
	N =	1000						
0.02	.024	.025	.029	.029	.023	.023	.023	.024
0.1	.024	.024	.029	.029	.023	.023	.023	.023
0.25	.023	.024	.028	.028	.023	.023	.023	.023
0.5	.023	.024	.028	.028	.023	.023	.023	.023
1	.023	.030	.032	.028	.031	.032	.032	.033
2	.030	.105	.101	.030	.086	.105	.085	.104
	N =	5000						
0.02	.010	.010	.012	.012	.009	.009	.009	.009
0.1	.010	.009	.012	.012	.009	.009	.009	.009
0.25	.009	.010	.012	.012	.009	.009	.009	.009
0.5	.009	.010	.013	.013	.009	.010	.009	.010
1	.010	.017	.019	.017	.018	.020	.018	.020
2	.026	.104	.098	.025	.085	.104	.084	.102

Table A14

Study 1: Average Root Mean Square Error (ARMSE) of Group Standard Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 6 Groups

p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.057	.059	.062	.061	.062	.059	.062	.060
0.1	.057	.059	.061	.060	.061	.059	.062	.060
0.25	.056	.058	.061	.060	.061	.059	.062	.060
0.5	.055	.058	.060	.060	.062	.059	.062	.060
1	.057	.066	.067	.060	.073	.069	.073	.070
2	.071	.123	.123	.075	.107	.123	.107	.123
	N =	500						
0.02	.036	.036	.041	.041	.037	.037	.037	.038
0.1	.036	.035	.040	.041	.037	.037	.037	.037
0.25	.035	.035	.040	.041	.036	.036	.037	.037
0.5	.035	.035	.039	.041	.036	.036	.036	.036
1	.037	.041	.043	.043	.045	.044	.045	.044
2	.060	.108	.106	.066	.089	.108	.089	.107
	N =	1000						
0.02	.026	.026	.029	.030	.025	.025	.025	.026
0.1	.026	.025	.029	.030	.025	.025	.025	.025
0.25	.025	.025	.029	.030	.025	.025	.025	.025
0.5	.025	.025	.028	.030	.025	.025	.026	.026
1	.028	.032	.034	.034	.035	.035	.035	.035
2	.056	.106	.103	.061	.088	.106	.087	.105
	N =	5000						
0.02	.010	.010	.013	.015	.010	.010	.010	.010
0.1	.010	.010	.013	.016	.010	.010	.010	.011
0.25	.010	.011	.014	.016	.010	.011	.011	.011
0.5	.011	.011	.013	.014	.011	.011	.011	.011
1	.013	.017	.020	.020	.020	.021	.019	.021
2	.050	.104	.098	.055	.086	.104	.084	.102

Supplement B: Additional Results for Study 2

The following pages contain additional results for Simulation Study 2. Tables B1 to B4 show the average absolute bias as a function of the number of groups (G = 3 or 6) and no DIF and the presence of DIF. Table B5 shows the average absolute RMSE for G = 3 groups in the condition of no DIF.

The following pages contain additional results for Simulation Study 2. Tables B1 to B4 show the average absolute bias of group means as a function of the number of groups (G = 3 or G = 6) and in the case of no DIF and for DIF. Table B5 shows the average RMSE for G = 3 groups in the condition of no DIF. Tables B6 to B9 show the average absolute bias of group standard deviations as a function of the number of groups (G = 3 or G = 6) and in the case of no DIF and for DIF. Tables B10 to B13 show the average RMSE of group standard deviations as a function of the number of groups (G = 3 or G = 6) and in the case of no DIF and for DIF.

Table B1
Study 2: Average Absolute Bias (ABIAS) of Group Means as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 3 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.016	.012	.024	.003	.010	.011	.010	.008
0.1	.015	.013	.022	.004	.010	.011	.008	.006
0.25	.016	.013	.022	.002	.011	.012	.008	.006
0.5	.016	.013	.022	.002	.012	.013	.007	.006
1	.016	.014	.022	.005	.014	.014	.009	.010
2	.019	.017	.011	.020	.017	.017	.019	.019
	N =	500						
0.02	.003	.006	.017	.009	.006	.006	.005	.006
0.1	.003	.006	.018	.008	.006	.006	.005	.005
0.25	.003	.006	.017	.008	.006	.006	.003	.004
0.5	.003	.006	.017	.007	.006	.006	.003	.003
1	.003	.005	.013	.004	.005	.005	.003	.003
2	.003	.005	.004	.006	.006	.005	.007	.007
	N =	1000						
0.02	.002	.004	.020	.014	.003	.003	.006	.007
0.1	.002	.003	.020	.014	.003	.003	.006	.007
0.25	.002	.003	.019	.014	.003	.003	.005	.006
0.5	.001	.003	.019	.013	.003	.002	.005	.005
1	.002	.003	.015	.011	.003	.003	.004	.004
2	.002	.003	.009	.004	.003	.003	.001	.001
	N =	5000						
0.02	.001	.001	.018	.017	.001	.001	.000	.001
0.1	.001	.001	.018	.017	.001	.001	.000	.001
0.25	.001	.001	.017	.017	.001	.001	.000	.001
0.5	.001	.001	.016	.015	.001	.001	.000	.000
1	.001	.001	.012	.012	.001	.001	.000	.001
2	.000	.000	.005	.004	.000	.000	.000	.001

Table B2
Study 2: Average Absolute Bias (ABIAS) of Group Means as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 6 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.004	.010	.047	.041	.010	.010	.012	.018
0.1	.007	.010	.047	.049	.009	.010	.011	.017
0.25	.008	.011	.049	.084	.010	.010	.011	.014
0.5	.006	.012	.046	.073	.010	.011	.009	.013
1	.007	.013	.043	.056	.013	.014	.008	.008
2	.009	.017	.043	.076	.015	.017	.034	.030
	N =	500						
0.02	.004	.008	.031	.019	.007	.009	.005	.004
0.1	.003	.008	.031	.018	.006	.009	.004	.004
0.25	.003	.008	.031	.017	.006	.008	.004	.004
0.5	.003	.008	.031	.017	.006	.008	.003	.003
1	.002	.008	.030	.015	.006	.007	.004	.003
2	.003	.008	.021	.028	.008	.008	.009	.007
	N =	1000						
0.02	.005	.006	.027	.004	.005	.006	.004	.005
0.1	.005	.007	.027	.004	.005	.006	.004	.005
0.25	.005	.007	.026	.004	.004	.006	.004	.004
0.5	.005	.007	.025	.004	.004	.006	.004	.004
1	.005	.007	.021	.004	.004	.006	.004	.004
2	.005	.007	.014	.014	.005	.007	.006	.006
	N =	5000						
0.02	.001	.002	.034	.030	.003	.002	.002	.002
0.1	.001	.002	.033	.029	.003	.002	.002	.002
0.25	.001	.002	.032	.028	.003	.002	.002	.002
0.5	.001	.002	.029	.025	.003	.002	.002	.002
1	.001	.002	.020	.016	.003	.002	.003	.002
2	.001	.002	.008	.004	.002	.002	.004	.002

Table B3

Study 2: Average Absolute Bias (ABIAS) of Group Means as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 3 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4		
	N =	250								
0.02	.081	.079	.082	.090	.095	.095	.115	.112		
0.1	.081	.079	.085	.091	.096	.096	.117	.112		
0.25	.083	.081	.083	.093	.098	.099	.119	.116		
0.5	.094	.093	.091	.102	.099	.099	.121	.122		
1	.115	.112	.108	.112	.112	.112	.133	.133		
2	.139	.136	.133	.140	.136	.136	.165	.165		
	N = 500									
0.02	.037	.037	.066	.069	.048	.047	.076	.078		
0.1	.039	.038	.067	.070	.050	.050	.077	.082		
0.25	.044	.043	.072	.075	.054	.055	.078	.083		
0.5	.052	.051	.082	.085	.061	.062	.090	.093		
1	.095	.094	.107	.110	.094	.094	.119	.119		
2	.142	.140	.144	.148	.140	.140	.164	.164		
	N =	1000								
0.02	.018	.018	.046	.043	.025	.026	.054	.053		
0.1	.019	.019	.047	.045	.026	.026	.053	.052		
0.25	.024	.024	.050	.049	.029	.029	.059	.059		
0.5	.033	.033	.059	.059	.036	.036	.069	.069		
1	.076	.076	.100	.100	.077	.078	.110	.110		
2	.144	.144	.150	.151	.144	.144	.167	.167		
	N =	5000								
0.02	.002	.002	.029	.027	.002	.002	.003	.003		
0.1	.002	.002	.029	.028	.002	.002	.004	.003		
0.25	.004	.004	.029	.028	.003	.004	.006	.005		
0.5	.008	.008	.030	.029	.008	.008	.011	.011		
1	.038	.038	.068	.068	.041	.042	.063	.063		
2	.141	.141	.147	.147	.140	.141	.160	.160		

Table B4

Study 2: Average Absolute Bias (ABIAS) of Group Means as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 6 Groups

-	- · ·							
p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.106	.111	.118	.109	.070	.070	.094	.090
0.1	.104	.112	.119	.112	.069	.070	.095	.092
0.25	.106	.115	.123	.113	.071	.071	.098	.089
0.5	.112	.117	.125	.120	.078	.079	.096	.093
1	.119	.125	.137	.124	.092	.093	.106	.107
2	.133	.138	.155	.145	.137	.138	.146	.147
	N =	500						
0.02	.072	.075	.102	.089	.029	.030	.049	.051
0.1	.073	.076	.104	.088	.030	.031	.052	.056
0.25	.079	.081	.107	.092	.033	.034	.057	.060
0.5	.090	.093	.114	.096	.041	.042	.063	.062
1	.115	.118	.130	.111	.071	.072	.087	.088
2	.137	.140	.153	.135	.139	.140	.148	.149
	N =	1000						
0.02	.028	.031	.081	.080	.015	.016	.023	.019
0.1	.031	.033	.084	.081	.015	.016	.025	.023
0.25	.036	.038	.090	.080	.018	.019	.029	.028
0.5	.050	.050	.101	.094	.024	.025	.037	.036
1	.106	.107	.129	.119	.054	.055	.070	.071
2	.139	.141	.153	.143	.140	.141	.155	.156
	N =	5000						
0.02	.003	.004	.052	.048	.002	.003	.003	.003
0.1	.004	.004	.052	.049	.002	.003	.003	.003
0.25	.006	.006	.053	.049	.003	.004	.004	.005
0.5	.011	.011	.056	.054	.006	.007	.009	.009
1	.061	.062	.112	.110	.027	.028	.036	.037
2	.139	.139	.148	.146	.139	.139	.152	.153
-								

Table B5

Study 2: Average Root Mean Square Error (ARMSE) of Group Means as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 3 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.077	.075	.075	.075	.073	.074	.082	.073
0.1	.075	.072	.074	.075	.072	.073	.077	.071
0.25	.074	.072	.074	.073	.072	.073	.075	.071
0.5	.071	.069	.069	.071	.068	.069	.067	.065
1	.064	.062	.061	.061	.061	.062	.060	.060
2	.069	.065	.060	.067	.065	.065	.069	.069
	N =	500						
0.02	.044	.043	.054	.056	.043	.044	.056	.058
0.1	.044	.043	.055	.055	.043	.044	.055	.059
0.25	.043	.042	.053	.053	.042	.042	.054	.056
0.5	.041	.041	.049	.050	.041	.041	.052	.053
1	.040	.039	.046	.046	.039	.039	.048	.048
2	.041	.041	.047	.049	.041	.041	.053	.053
	N =	1000						
0.02	.037	.037	.044	.042	.037	.037	.040	.040
0.1	.036	.036	.044	.042	.037	.037	.039	.040
0.25	.036	.036	.043	.041	.035	.036	.037	.038
0.5	.034	.034	.040	.038	.034	.034	.036	.035
1	.033	.033	.036	.034	.033	.033	.034	.034
2	.032	.032	.035	.034	.032	.032	.036	.036
	N =	5000						
0.02	.015	.015	.027	.026	.015	.015	.015	.015
0.1	.015	.015	.026	.025	.014	.014	.014	.014
0.25	.015	.015	.025	.024	.014	.014	.014	.014
0.5	.014	.014	.023	.023	.014	.014	.014	.014
1	.014	.014	.020	.019	.014	.014	.014	.014
2	.014	.014	.016	.015	.014	.014	.014	.014

Table B6

Study 2: Average Absolute Bias (ABIAS) of Group Standard Deviations as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 3 Groups

p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.043	.007	.006	.044	.006	.010	.007	.010
0.1	.043	.007	.005	.044	.006	.009	.006	.009
0.25	.044	.008	.007	.045	.006	.010	.006	.010
0.5	.044	.008	.006	.045	.005	.008	.005	.008
1	.043	.007	.006	.043	.004	.007	.004	.008
2	.041	.006	.005	.040	.005	.006	.007	.007
	N =	500						
0.02	.019	.006	.006	.019	.009	.010	.009	.010
0.1	.019	.006	.005	.019	.009	.009	.009	.010
0.25	.021	.005	.004	.021	.009	.008	.009	.009
0.5	.021	.004	.004	.021	.008	.006	.007	.007
1	.020	.002	.002	.020	.005	.002	.005	.003
2	.018	.001	.001	.017	.004	.001	.004	.004
	N =	1000						
0.02	.009	.002	.003	.010	.007	.002	.007	.001
0.1	.009	.002	.003	.009	.006	.002	.007	.001
0.25	.009	.001	.003	.010	.006	.002	.006	.001
0.5	.009	.001	.003	.010	.005	.001	.006	.002
1	.009	.001	.003	.010	.004	.001	.004	.001
2	.009	.000	.001	.009	.002	.000	.002	.001
	N =	5000						
0.02	.001	.001	.004	.004	.004	.001	.004	.001
0.1	.001	.001	.004	.004	.004	.000	.004	.001
0.25	.001	.001	.004	.003	.003	.000	.003	.000
0.5	.001	.000	.003	.003	.003	.000	.003	.000
1	.002	.000	.002	.002	.002	.000	.002	.000
2	.002	.001	.001	.002	.001	.001	.001	.001

Table B7

Study 2: Average Absolute Bias (ABIAS) of Group Standard Deviations as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 6 Groups

p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.096	.006	.020	.079	.007	.009	.007	.009
0.1	.094	.005	.020	.077	.006	.008	.007	.008
0.25	.084	.005	.021	.118	.006	.007	.006	.008
0.5	.075	.004	.021	.091	.006	.006	.006	.007
1	.063	.003	.020	.051	.005	.006	.007	.006
2	.053	.007	.007	.064	.006	.007	.037	.034
	N =	500						
0.02	.034	.005	.015	.023	.003	.004	.004	.004
0.1	.034	.004	.015	.023	.003	.004	.005	.004
0.25	.034	.005	.015	.024	.004	.004	.005	.004
0.5	.034	.004	.015	.024	.003	.004	.005	.003
1	.032	.004	.015	.024	.003	.004	.005	.003
2	.031	.005	.009	.024	.003	.005	.008	.007
	N =	1000						
0.02	.016	.003	.014	.017	.005	.002	.005	.002
0.1	.016	.003	.014	.017	.005	.003	.005	.003
0.25	.016	.003	.014	.017	.005	.003	.005	.003
0.5	.016	.002	.013	.017	.006	.002	.006	.002
1	.015	.002	.011	.015	.005	.001	.006	.002
2	.014	.002	.006	.011	.003	.002	.005	.004
	N =	5000						
0.02	.003	.001	.020	.018	.005	.001	.005	.001
0.1	.003	.001	.020	.017	.005	.001	.005	.001
0.25	.003	.001	.019	.017	.005	.001	.005	.001
0.5	.004	.001	.018	.015	.005	.001	.005	.001
1	.004	.001	.013	.010	.004	.001	.004	.001
2	.004	.001	.005	.005	.002	.001	.003	.001
_								

Table B8

Study 2: Average Absolute Bias (ABIAS) of Group Standard Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 3 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.040	.017	.015	.040	.022	.019	.022	.019
0.1	.040	.017	.015	.040	.023	.019	.024	.019
0.25	.040	.017	.014	.041	.019	.018	.019	.018
0.5	.038	.013	.010	.038	.015	.013	.015	.013
1	.032	.012	.008	.033	.012	.012	.012	.011
2	.027	.018	.010	.028	.017	.018	.017	.017
	N =	500						_
0.02	.019	.006	.003	.019	.008	.006	.008	.007
0.1	.019	.006	.002	.019	.007	.006	.008	.006
0.25	.019	.005	.002	.020	.006	.006	.007	.006
0.5	.018	.005	.002	.018	.006	.006	.006	.007
1	.017	.009	.005	.018	.008	.009	.008	.008
2	.018	.017	.013	.016	.017	.017	.015	.015
	N =	1000						
0.02	.008	.001	.004	.010	.007	.002	.006	.003
0.1	.008	.002	.004	.010	.007	.002	.006	.003
0.25	.008	.002	.004	.010	.008	.002	.007	.003
0.5	.008	.003	.004	.009	.007	.002	.007	.003
1	.009	.004	.003	.008	.006	.004	.006	.003
2	.014	.014	.010	.011	.013	.014	.011	.012
	N =	5000						
0.02	.003	.001	.006	.005	.003	.001	.003	.001
0.1	.003	.001	.006	.005	.003	.001	.003	.001
0.25	.003	.001	.005	.005	.003	.001	.003	.001
0.5	.003	.001	.005	.005	.002	.001	.002	.001
1	.003	.001	.002	.004	.002	.001	.002	.001
2	.013	.013	.011	.011	.013	.013	.010	.011

Table B9

Study 2: Average Absolute Bias (ABIAS) of Group Standard Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 6 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4
	N =	250						
0.02	.105	.017	.031	.082	.017	.014	.017	.015
0.1	.098	.018	.031	.066	.018	.015	.017	.016
0.25	.094	.019	.033	.091	.017	.015	.017	.017
0.5	.084	.020	.035	.052	.018	.017	.018	.017
1	.078	.022	.036	.053	.021	.021	.018	.018
2	.069	.022	.030	.045	.022	.022	.009	.006
	N =	500						
0.02	.042	.012	.026	.037	.010	.008	.011	.012
0.1	.043	.013	.028	.037	.010	.008	.012	.013
0.25	.043	.014	.029	.037	.010	.009	.014	.014
0.5	.044	.016	.029	.037	.011	.011	.014	.013
1	.045	.020	.030	.037	.015	.015	.017	.017
2	.043	.021	.029	.034	.021	.021	.017	.018
	N =	1000						
0.02	.022	.008	.027	.029	.006	.006	.008	.006
0.1	.022	.008	.027	.028	.006	.007	.008	.007
0.25	.023	.009	.027	.029	.007	.007	.009	.009
0.5	.024	.012	.028	.029	.008	.009	.011	.011
1	.030	.019	.029	.030	.013	.014	.017	.017
2	.032	.022	.029	.030	.022	.022	.023	.023
	N =	5000						
0.02	.004	.002	.028	.026	.004	.002	.004	.002
0.1	.004	.002	.028	.026	.004	.002	.004	.002
0.25	.004	.002	.029	.027	.004	.002	.004	.002
0.5	.005	.003	.029	.026	.004	.003	.004	.003
1	.012	.012	.026	.024	.006	.007	.009	.009
2	.020	.020	.026	.024	.020	.020	.024	.025

Table B10
Study 2: Average Root Mean Square Error (ARMSE) of Group Standard Deviations as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 3 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4		
	N = 250									
0.02	.088	.076	.076	.088	.071	.076	.071	.076		
0.1	.088	.075	.075	.087	.071	.075	.071	.075		
0.25	.086	.072	.072	.086	.066	.072	.066	.072		
0.5	.081	.066	.066	.081	.061	.068	.060	.068		
1	.072	.057	.057	.072	.051	.057	.051	.057		
2	.071	.054	.053	.071	.049	.054	.049	.054		
	N = 500									
0.02	.059	.058	.059	.059	.052	.059	.052	.059		
0.1	.058	.057	.058	.058	.051	.058	.051	.058		
0.25	.057	.056	.056	.057	.050	.055	.050	.055		
0.5	.054	.051	.052	.054	.045	.051	.046	.051		
1	.047	.043	.043	.047	.038	.043	.038	.043		
2	.046	.039	.040	.046	.037	.039	.037	.040		
	N =	1000								
0.02	.038	.034	.035	.038	.032	.034	.032	.034		
0.1	.037	.033	.034	.038	.032	.033	.032	.033		
0.25	.036	.032	.032	.036	.030	.032	.030	.032		
0.5	.034	.030	.030	.034	.028	.030	.028	.030		
1	.029	.027	.027	.029	.025	.026	.025	.026		
2	.027	.026	.026	.027	.024	.026	.024	.026		
	N = 5000									
0.02	.015	.016	.016	.016	.014	.016	.014	.016		
0.1	.015	.015	.016	.016	.014	.015	.014	.015		
0.25	.015	.015	.015	.015	.014	.015	.014	.015		
0.5	.014	.014	.015	.014	.013	.014	.013	.014		
1	.013	.014	.014	.014	.013	.013	.012	.013		
2	.013	.013	.013	.013	.012	.013	.012	.013		

Table B11

Study 2: Average Root Mean Square Error (ARMSE) of Group Standard Deviations as a Function of Sample Size in the Condition of No Differential Item Functioning (No DIF) and 6 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4		
	N = 250									
0.02	.173	.081	.087	.177	.076	.081	.077	.082		
0.1	.156	.079	.085	.188	.075	.080	.076	.080		
0.25	.133	.076	.082	.262	.073	.076	.073	.076		
0.5	.117	.069	.075	.215	.068	.073	.068	.073		
1	.096	.062	.067	.098	.058	.064	.059	.064		
2	.088	.063	.082	.126	.057	.063	.107	.102		
	N = 500									
0.02	.068	.050	.055	.073	.052	.058	.051	.057		
0.1	.067	.049	.055	.071	.051	.058	.050	.057		
0.25	.065	.048	.053	.069	.049	.054	.049	.053		
0.5	.062	.044	.050	.064	.045	.049	.045	.049		
1	.056	.040	.045	.056	.039	.042	.040	.042		
2	.053	.040	.043	.055	.038	.040	.039	.041		
	N =	1000								
0.02	.042	.037	.042	.045	.037	.040	.037	.039		
0.1	.041	.036	.041	.044	.036	.039	.036	.038		
0.25	.040	.034	.039	.042	.035	.037	.035	.037		
0.5	.038	.032	.036	.039	.032	.035	.032	.034		
1	.035	.029	.033	.036	.028	.030	.028	.030		
2	.035	.028	.030	.036	.028	.028	.028	.029		
	N = 5000									
0.02	.014	.013	.026	.024	.015	.014	.015	.014		
0.1	.014	.013	.026	.024	.015	.014	.015	.014		
0.25	.014	.013	.025	.023	.014	.014	.014	.014		
0.5	.013	.013	.023	.022	.014	.013	.014	.013		
1	.013	.012	.018	.017	.013	.012	.013	.012		
2	.013	.012	.014	.013	.012	.012	.012	.012		

Table B12
Study 2: Average Root Mean Square Error (ARMSE) of Group Standard Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 3 Groups

p	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4	
	N = 250								
0.02	.095	.085	.085	.095	.083	.082	.083	.082	
0.1	.095	.083	.083	.095	.081	.081	.082	.081	
0.25	.093	.079	.079	.093	.074	.079	.075	.080	
0.5	.084	.069	.068	.083	.065	.072	.065	.073	
1	.070	.059	.059	.070	.054	.059	.054	.059	
2	.065	.058	.057	.064	.053	.058	.053	.058	
	N = 500								
0.02	.058	.052	.052	.058	.050	.051	.050	.052	
0.1	.057	.050	.051	.057	.049	.051	.049	.051	
0.25	.054	.048	.049	.055	.047	.048	.047	.049	
0.5	.050	.044	.044	.051	.042	.045	.042	.046	
1	.044	.039	.039	.044	.035	.039	.035	.039	
2	.042	.040	.039	.041	.036	.040	.036	.040	
	N =	1000							
0.02	.036	.035	.036	.037	.032	.036	.033	.037	
0.1	.036	.034	.035	.036	.032	.035	.032	.036	
0.25	.034	.033	.033	.035	.031	.034	.031	.035	
0.5	.033	.031	.031	.033	.029	.031	.029	.031	
1	.030	.028	.028	.030	.026	.028	.026	.028	
2	.032	.029	.028	.031	.029	.029	.028	.029	
	N = 5000								
0.02	.014	.015	.016	.015	.014	.015	.014	.015	
0.1	.014	.014	.015	.015	.014	.014	.014	.014	
0.25	.014	.014	.015	.015	.013	.014	.013	.014	
0.5	.014	.013	.014	.014	.012	.013	.012	.013	
1	.013	.013	.013	.013	.011	.012	.011	.012	
2	.018	.018	.016	.016	.017	.018	.015	.016	

Table B13

Study 2: Average Root Mean Square Error (ARMSE) of Group Standard Deviations as a Function of Sample Size in the Condition of Differential Item Functioning (DIF) and 6 Groups

\overline{p}	IA1	IA2	IA3	IA4	HL1	HL2	HL3	HL4		
	N = 250									
0.02	.170	.076	.083	.181	.077	.082	.078	.083		
0.1	.140	.075	.082	.196	.076	.082	.076	.083		
0.25	.133	.072	.080	.252	.072	.079	.073	.080		
0.5	.114	.067	.075	.146	.067	.073	.067	.073		
1	.100	.060	.069	.091	.059	.063	.058	.062		
2	.093	.064	.069	.087	.057	.064	.056	.062		
	N = 500									
0.02	.071	.057	.064	.071	.055	.057	.057	.059		
0.1	.070	.056	.064	.070	.054	.057	.056	.060		
0.25	.068	.054	.062	.068	.051	.055	.053	.057		
0.5	.065	.051	.059	.064	.048	.052	.050	.053		
1	.062	.048	.054	.059	.044	.047	.046	.049		
2	.060	.050	.054	.057	.045	.050	.045	.049		
	N =	1000								
0.02	.044	.041	.050	.050	.040	.042	.041	.042		
0.1	.044	.039	.049	.049	.039	.041	.040	.042		
0.25	.043	.038	.048	.048	.038	.040	.039	.041		
0.5	.042	.037	.046	.046	.036	.038	.037	.039		
1	.043	.037	.044	.044	.033	.035	.035	.037		
2	.045	.037	.042	.043	.036	.037	.037	.039		
	N = 5000									
0.02	.015	.014	.032	.031	.015	.015	.015	.015		
0.1	.015	.014	.032	.031	.015	.015	.015	.015		
0.25	.015	.014	.032	.031	.014	.015	.014	.015		
0.5	.014	.014	.032	.030	.014	.014	.014	.014		
1	.018	.018	.030	.028	.014	.015	.016	.016		
2	.024	.024	.029	.028	.024	.024	.027	.028		
_	_	_	·	_	_			_		

References

- [1] Tihomir Asparouhov and Bengt Muthén. Multiple-group factor analysis alignment. Struct. $Equ.\ Modeling,\ 21(4):495-508,\ 2014.$
- [2] Shelby J. Haberman. Linking parameter estimates derived from an item response model through separate calibrations (Research Report No. RR-09-40). Educational Testing Service, 2009.