Enrichment in Antioxidant Flavonoids of Stamen Extracts from *Nymphaea lotus* L. using Ultrasonic-Assisted Extraction and Macroporous Resin Adsorption

Duangjai Tungmunnithum 1,2,3,*, Samantha Drouet 2,3, Atul Kabra 4, and Christophe Hano 2,3,*

1 Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; duangjai.tun@mahidol.ac.th (D.T.);
2 Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, University of Orleans, 45067 Orléans CEDEX 2, France; samantha.drouet@univ-orleans.fr (S.D.)
3 Bioactifs et Cosmetiques, CNRS GDR 3711 Orleans, 45067 Orléans CEDEX 2, France
4 School of Pharmacy, Raffles University, Neemrana 301705, Alwar, Rajasthan, India; atul.kbr@gmail.com
* Correspondence: duangjai.tun@mahidol.ac.th (D.T.); hano@univ-orleans.fr (C.H.); Tel.: +66-264-486-96 (D.T.); +33-237-309-753 (C.H.)

CONTENT:

Figure S1: Biplot representation of the linear relation between predicted vs. measured TFC in the 27 *N. lotus* sample extracts – page 2.

Table S1: Conductivity and total reducing sugar contents in the different extracts from *N. lotus* stamen – page 3.

Table S2: Characteristic and tentative identification of flavonoids from *N. lotus* stamen extract – page 4.

Table S3: Relative quantification of the different flavonoid glucosides in the *N. lotus* stamen extracts – page 5.
Figure S1: Biplot representation of the linear relation between predicted vs. measured TFC in the 27 *N. lotus* sample extracts.

Light blue lines represented 95% confidence interval.
Table S1: Conductivity and total reducing sugar contents in the different extracts from *N. lotus* stamen.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Conductivity (µS/cm)</th>
<th>Reducing sugar content (AU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRE</td>
<td>0.039 ± 0.005</td>
<td>0.056 ± 0.011</td>
</tr>
<tr>
<td>USAE</td>
<td>0.122 ± 0.010</td>
<td>0.065 ± 0.010</td>
</tr>
<tr>
<td>MPR</td>
<td>0.044 ± 0.012</td>
<td>0.007 ± 0.006</td>
</tr>
</tbody>
</table>

1 AU/mL: expressed in absorbance unit per mL of extract; HRE: *N. lotus* extract obtained by HRE; USAE: *N. lotus* extract obtained by USAE; MPR: *N. lotus* extract obtained by USAE followed by DAX-8 MPR purification step.
Table S2: Characteristic and tentative identification of flavonoids from *N. lotus* stamen extract

<table>
<thead>
<tr>
<th>Peak number</th>
<th>Retention time (min)</th>
<th>Amax (nm)</th>
<th>[M-H]-</th>
<th>Tentative identification</th>
<th>Commercial standard</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.11</td>
<td>263,349</td>
<td>479</td>
<td>Myr 3-O-Gal</td>
<td>+ (ES)</td>
<td>Zhu et al., 2012</td>
</tr>
<tr>
<td>2</td>
<td>31.67</td>
<td>254,305,366</td>
<td>449</td>
<td>Myr 3’-O-Xyl</td>
<td>+ (ES)</td>
<td>Zhu et al., 2012</td>
</tr>
<tr>
<td>3</td>
<td>32.26</td>
<td>257,348</td>
<td>447</td>
<td>Que-3-O-Rha</td>
<td>+ (SA)</td>
<td>Zhu et al., 2012; Yin et al., 2015</td>
</tr>
<tr>
<td>4</td>
<td>32.87</td>
<td>250,366</td>
<td>433</td>
<td>CNar-2’-O-Gal</td>
<td>-</td>
<td>Zhu et al., 2012; Yin et al., 2015</td>
</tr>
<tr>
<td>5</td>
<td>33.52</td>
<td>265,343</td>
<td>447</td>
<td>Kae-3-O-Gal</td>
<td>+ (SA)</td>
<td>Zhu et al., 2012</td>
</tr>
<tr>
<td>6</td>
<td>33.91</td>
<td>254,366</td>
<td>433</td>
<td>Que-3’-O-Xyl</td>
<td>+ (SA)</td>
<td>Zhu et al., 2012</td>
</tr>
<tr>
<td>7</td>
<td>34.71</td>
<td>268,350</td>
<td>477</td>
<td>Iso-7-O-Gal</td>
<td>-</td>
<td>Zhu et al., 2012; Yin et al., 2015</td>
</tr>
<tr>
<td>8</td>
<td>35.51</td>
<td>252,268,352</td>
<td>447</td>
<td>Iso-7-O-Xyl</td>
<td>-</td>
<td>Zhu et al., 2012; Yin et al., 2015</td>
</tr>
<tr>
<td>9</td>
<td>36.57</td>
<td>265, 343</td>
<td>447</td>
<td>Iso-3-O-Xyl</td>
<td>-</td>
<td>Yin et al., 2015</td>
</tr>
</tbody>
</table>

Table S3: Relative quantification of the different flavonoid glucosides in the *N. lotus* stamen extracts;

<table>
<thead>
<tr>
<th>Peak number</th>
<th>Tentative identification</th>
<th>HRE</th>
<th>USAE</th>
<th>MPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Myr 3-O-Gal</td>
<td>21.1 ± 1.3</td>
<td>28.3 ± 1.1</td>
<td>76.9 ± 3.8</td>
</tr>
<tr>
<td>2</td>
<td>Myr 3'-O-Xyl</td>
<td>34.4 ± 1.7</td>
<td>45.7 ± 2.1</td>
<td>129.3 ± 6.7</td>
</tr>
<tr>
<td>3</td>
<td>Que-3-O-Rha</td>
<td>62.1 ± 3.1</td>
<td>86.3 ± 1.4</td>
<td>244.2 ± 5.1</td>
</tr>
<tr>
<td>4</td>
<td>CNar-2''-O-Gal</td>
<td>16.4 ± 1.3</td>
<td>22.9 ± 1.3</td>
<td>64.7 ± 3.6</td>
</tr>
<tr>
<td>5</td>
<td>Kae-3-O-Gal</td>
<td>54.7 ± 2.3</td>
<td>73.4 ± 3.2</td>
<td>200.2 ± 5.4</td>
</tr>
<tr>
<td>6</td>
<td>Que-3'-O-Xyl</td>
<td>29.1 ± 1.5</td>
<td>41.2 ± 2.1</td>
<td>117.2 ± 2.4</td>
</tr>
<tr>
<td>7</td>
<td>Iso-7-O-Gal</td>
<td>24.8 ± 1.6</td>
<td>33.6 ± 1.7</td>
<td>90.4 ± 3.3</td>
</tr>
<tr>
<td>8</td>
<td>Iso-7-O-Xyl</td>
<td>41.4 ± 2.4</td>
<td>55.4 ± 2.3</td>
<td>144.2 ± 5.7</td>
</tr>
<tr>
<td>9</td>
<td>Iso-3-O-Xyl</td>
<td>13.2 ± 1.4</td>
<td>19.7 ± 1.1</td>
<td>56.6 ± 1.7</td>
</tr>
</tbody>
</table>

Expressed in absorbance unit per g DW; HRE: *N. lotus* extract obtained by HRE; USAE: *N. lotus* extract obtained by USAE; MPR: *N. lotus* extract obtained by USAE followed by DAX-8 MPR purification step.