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Table S1. Composition percent of soil (NAT-S) samples.

TOA  Method ™S e
water content 5.3% 5.3%
OM 41% 4.1%
non-volatile solids 85.6% 85.6%
volatile 5.0%
volatile + OM 9.1% 9.1%
SSW 13.1% 13.1%
non-soluble solids 77.4%

Total solids 90.6%
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Figure S1. KM Spectra of 20 and 3 % of DNT from the NAT-S sample.
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Figure S2. Vector Normalization of KM Spectra of 20 and 3 % of DNT from NAT-S sample.
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Figure S3. PLS models for DNT in KBr using VN prepossessing.
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Figure S4. a) b regression vector for models without preprocessing and with one loading, b) b regression
vector for models with vector normalization preprocessing and with one loading, c) b regression vector for
models without preprocessing and with eight loadings, d) b regression vector for models with vector
normalization preprocessing and with eight loading
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Figure S5. Plot of # of loading vs. analytical sensitivity for PLS models for DNT in KBr and Soil with VN
preprocessing and without preprocessing.
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Figure S6. Map of % of DNT from NAT-S model (VN) of NAT-S-M sample.
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Figure S7. Map of % of DNT from NAT-S model (VN) of NAT-5-MM sample
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Figure S8. Map of % of DNT from NAT-S model (VN) of NAT2-S sample.
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Figure S9. Map of % of DNT from NAT-S model (VN) of NAT2-S sample
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Figure S10. QCL Average spectra for different size of soil
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Figure S11. QCL spectra showing a standard deviation for various sizes of soil samples.
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Figure S12. QCL average spectrum for various sizes of soil.



Table S13. Basic description of matching learning methods for classification [60]

ML METHODS

DESCRIPTION

K-neighbors
classifier(KNC)

Scikit-learn implements a K-neighbors classifier, a neighbors-based
classification, where k is an integer value specified by the user. This is a
type of instance-based learning or non-generalizing learning: it does not
attempt to construct a general internal model, but simply stores instances
of the training data. Classification is computed from a simple majority
vote of the nearest neighbors of each point: a query point is assigned the
data class, which has the most representatives within the nearest
neighbors of the point.

SvC

Support vector machines for classification (SVC) is an algorithm capable
of performing multi-class classification on a dataset. They are a set of
supervised learning methods used for classification. These are based on
the library (libsvm). In SVC, the fit time scales at least quadratically with
the number of samples and may be impractical beyond tens of thousands
of samples.

Decision Tree Classifier
(DTC)

Decision Tree Classifier is a non-parametric supervised learning method
is an algorithm capable of performing multi-class classification on a
dataset. The goal is to create a model that predicts the value of a target
variable by learning simple decision rules inferred from the data features.
For instance, classical decision trees learn from data to approximate a
sine curve with a set of if-then-else decision rules. The deeper the tree,
the more complex the decision rules, and the fitter the model.

Random Forest Classifier
(RFC)

Random forests classifier is an ensemble learning method for
classification that operates by constructing a multitude of decision trees
at training time and outputting the class that is the mode of the classes of
the individual trees. Random decision forests correct for decision trees’
habit of overfitting to their training set. A random forest is a meta
estimator that fits several decision tree classifiers on various sub-samples
of the dataset and uses averaging to improve the predictive accuracy and
control over-fitting.

AdaBoost
(ABCQ)

Classifier

An AdaBoost[61] classifier is a meta-estimator that begins by fitting a
classifier on the original dataset and then fits additional copies of the
classifier on the same dataset but where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers focus
more on severe cases. This class implements the algorithm known as
AdaBoost-SAMME][61].

Gaussian Naive Bayes
(GNB)

Gaussian Naive Bayes (GaussianNB), implements the Gaussian Naive
Bayes algorithm for classification. The likelihood of the features is
assumed to be Gaussian. Can perform online updates to model
parameters via partial_fit. For details on the algorithm used to update




feature means and variance online, see Stanford CS tech report STAN-
CS-79-773 by Chan, Golub, and LeVeque

Linear Discriminant
Analysis (LDA)

Linear Discriminant Analysis, it is a classifier with a linear decision
boundary, generated by fitting class conditional densities to the data and
using Bayes’ rule. The model fits a Gaussian density to each class,
assuming that all classes share the same covariance matrix. The fitted
model can also be used to reduce the dimensionality of the input by
projecting it to the most discriminative directions.

Quadratic Discriminant
Analysis (QDA)

Quadratic Discriminant Analysis, it is a classifier with a quadratic
decision boundary, generated by fitting class conditional densities to the
data and using Bayes’ rule. The model fits a Gaussian density to each
class.




