- 1 Non-coronavirus genome sequences identified from metagenomic
- 2 analysis of clinical samples from COVID-19 infected patients: An
- **3 evidence for Co-infection**

4	
5	
6	Mohamed A. Abouelkhair ^{a #}
7	
8	^a Department of Biomedical and Diagnostic Sciences, University of Tennessee College
9	of Veterinary Medicine, Knoxville, Tennessee, USA
10	
11	
12	
13	
14 15 16	# Corresponding Author:
17	Mohamed A. Abouelkhair
18	2407 River Dr, Knoxville, TN 37996, USA
19	Email address: mabouelk@vols.utk.edu
20 21	
22	
23	

Abstract

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

In December 2019, pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection emerged in Wuhan City, Hubei Province, China. Early in 2020, the World Health Organization (WHO) announced a new name for the 2019-nCoV-caused epidemic disease: coronavirus disease 2019 (COVID-19) and declared COVID-19 to be the sixth international public health emergency. Cellular coinfection is a critical determinant of both viral fitness and infection outcome and plays a crucial role in shaping the host immune response to infections. In this study, sixty-eight public next-generation sequencing libraries from SARS-CoV-2 infected patients were retrieved from the NCBI Sequence Read Archive database using SRA-Toolkit. Using an alignment-free method based on K-mer mapping and extension, SARS-CoV-2 was identified in all except three patients. Influenza A H7N9 (3/68), Human immunodeficiency virus 1 (1/68), rhabdovirus isolate (3/68), Human metapneumovirus (1/68), coronaviruses NL63 (1/68), Parvovirus (1/68), Simian virus 40 (1/68), and hepatitis virus (1/68) genome seguences were detected in SARS-CoV-2 infected patients.

Keywords: COVID-19, Viral Co-infection, SARS-CoV-2, Influenza A virus, Human

Immunodeficiency virus

Introduction

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

In December 2019, the first cases of coronavirus disease 2019 (COVID-19) were possibly due to a zoonotic transmission in China, tied to a large seafood market which also traded in live wild animals (1). The causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is capable of human-to-human transmission and rapidly spread to other regions of China, and then to other countries (2). It is now a global pandemic and is a considerable concern for public health. So far, more than 5,637,367 confirmed cases were diagnosed in nearly 213 countries and territories around the world and two international conveyances, causing globally over 349,000 deaths (3). Coronaviruses in humans and animals are known to cause disease. Of these, four (human coronaviruses 229E, NL63, OC43, and HKU1) typically only infect the upper respiratory tract and cause relatively minor symptoms (4). However, there are three coronaviruses (severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2) that can replicate in the lower respiratory tract and cause pneumonia which can be fatal. With 79% genome seguence similarity, SARS-CoV is the closest relative to SARS-CoV-2 among human coronaviruses (5). However, of all known coronavirus sequences, SARS-CoV-2 is most similar to bat coronavirus RaTG13, with a similarity of 98 percent (6), and coronavirus sequences in pangolin (a scaly anteater) also have high similarity (7). SARS-CoV-2 pathophysiology closely parallels that of SARS-CoV infection, with active inflammatory responses strongly implicated in the resulting airway damage (8). Hence

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

the extent of the disease in patients is attributed not only to the viral infection but also to the host 's response (1). Underlying co-infections in primary infectious disease are an important variable that needs to be considered but is often undetected. A better understanding of the prevalence of co-infection is urgently required, partly because co-infecting pathogens can interact with each other either directly or indirectly via the host 's resources or immune system (9, 10). These interactions within co-infected hosts can alter the transmission, clinical progression and control of multiple infectious diseases as compared to single pathogen species infection (9, 11, 12). Recent studies appear to indicate that the adverse effects of co-infection are more common than no-effects or positive impact on human health (13). The underdiagnosis of co-infections is attributed, among other factors, to a lack of clinical suspicion, similar symptoms and or the fact that in the absence of a priori knowledge, conventional methods have little capacity to detect co-infections. Exploring new diagnostic approaches is, therefore, essential to advance understanding of coinfection contribution to disease manifestations and treatment responses (14). Remarkable developments in next-generation sequencing have recently made metagenomics, an unbiased shotgun method of analysis, a widely used tool in just about every field of biology, including diagnosis of infectious diseases (15, 16). Metagenomics is powerful because it is capable of diagnosing unsuspected microbial agents (17). It directly analyzes samples in their entirety, eliminating the need for prior knowledge to obtain comprehensive information. In this capacity, metagenomics exceeds traditional diagnostic limitations.

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

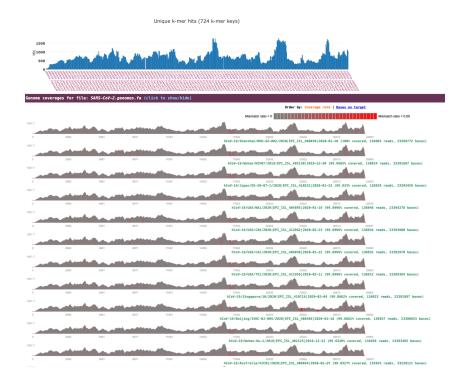
115

With the viral genomes in hand, we can now explore the possibility of using metagenomic and metatranscriptomic next-generation sequencing (mNGS) directly as a screening method of other viruses in a sample. In theory, a simple and straightforward approach would be to first map sequencing reads from the sample to the viral genome. Such an alignment-based method is vulnerable to problems stemming from both false positives and false negatives. Some viruses have genomes very similar to SARS-CoV-2, which can lead to false-positive results (18). On the other hand, in some cases, the virus-specific reads obtained may not be abundant enough for unambiguous detection, which can lead to false-negative results. Such results can occur when the viral RNA is highly degraded, or when the sequencing library has been incompletely target enriched by multiple-PCR (19) or hybrid capture (20). Fastv is an ultra-fast tool for detecting the microbial sequences in sequence data. It can identify target microorganisms using unique k-mers. It has a 100% sensitivity and 100% specificity for detecting SARS and other coronaviruses from sequencing data and can distinguish SARS from MERS. In this study, identification experiments were conducted on public next-generation sequencing libraries from SARS-CoV-2 infected patients using fasty, along with the precomputed unique k-mer resources (18). The findings of the present study have confirmed the actual existence of genome sequences of other viruses in SARS-CoV-2 infected patients.

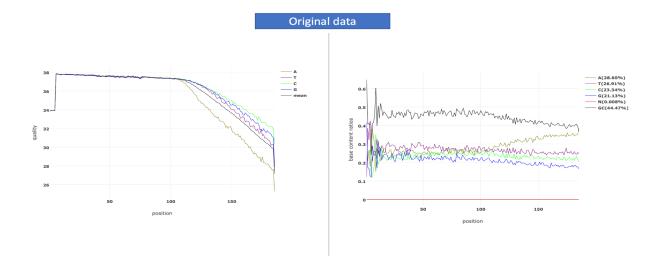
Material and Methods

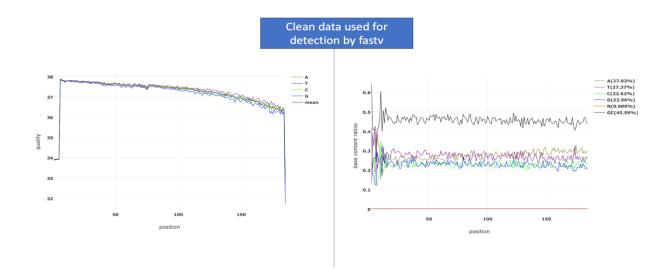
SRA Database Mining

Next-generation sequencing technologies have enabled large-scale genomic surveillance of SARS-CoV-2 as thousands of isolates are being sequenced around the world and deposited in public data repositories. SRA files were fetched with the NCBI SRA toolkit using fastq-dump from the following bioprojects (PRJNA631042 (44 samples), PRJNA608742 (12 samples), PRJNA632678 (1 sample), PRJNA605983 (9 samples), PRJNA633241 (1 sample) and PRJNA603194 (1 sample)) (Table.1).

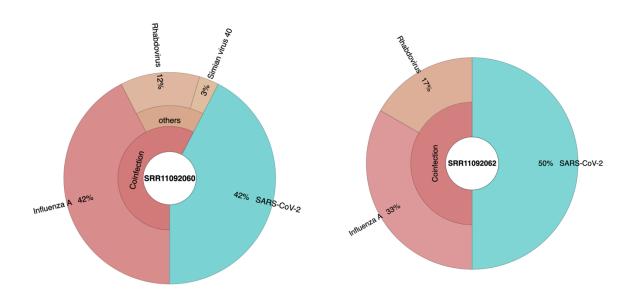

Read Pre-processing, Analysis Using Fastv

Fastv, along with the pre-computed unique k-mer resources, was used as previously described (18). Briefly, Fastv performed data quality control (QC) and quality filtering on FASTQ input files. Then, Fastv collect sequences that contain any unique k-mer and output results to downstream tools. To pay particular attention to SARS-CoV-2 while scanning for all viruses, we used SARS-CoV-2 Genomes/k-mer files from fastv data directory (https://github.com/OpenGene/fastv/tree/master/data), and k-mer collection file for viral genomes was downloaded from (http://opengene.org/viral.kc.fasta.gz). The k-mer scanning results of different inputs were visualized in a figure on a single HTML page by fastv. The Krona tool (https://github.com/marbl/Krona/wiki) was used to visualize the co-infecting viruses in clinical samples (21).


Results


SARS-CoV-2 Identification

We conducted identification experiments on samples sequenced from COVID-19 infected patients (Table.1). SARS-CoV-2 was detected in all tested samples with three out of 68 clinical samples were considered negative for SARS-CoV-2 by fastv. These three samples belong to one bio-project, PRJNA631042, where the research group used different sequencing technologies on the same sample to find the cost-effective and highly scalable method for SARS-CoV-2 sequencing. Because sequence technologies vary in reading depth and coverage thresholds, fastv was unable to detect SARS-CoV-2 in sequenced samples with lower coverage metrics. The output for targeted k-mer hits and the result for genome coverage were visualized by fastv. Statistics on genome coverage indicate that SARS-CoV-2 fits the Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1 strain (NC_045512.2) most closely (Figure.1).


Figure.1, a: SARS-CoV-2 detection using fastv. Eleven SARS-CoV-2 strains are included in the genome list ordered by genome coverage rate, with the k-mer coverage varying from 100% to 99.83%. Mismatches were highlighted in red.

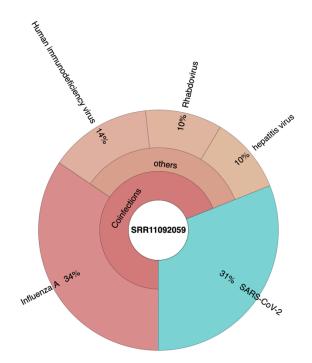


Figure.1, b: FASTQ file after adapter trimming, quality pruning and base correction for accurate k-mer analysis.

Viral Metagenomic Analysis identified non-coronavirus genome sequences in **COVID-19** infected patients Influenza type A (A/Shanghai/02/2013(H7N9) (3/68), Human immunodeficiency virus 1 (1/68), rhabdovirus isolate Sf (3/68), Simian virus 40 (1/68), and hepatitis virus (1/68) were detected in SARS-CoV-2 infected patients in China (Figure.2). Human metapneumovirus (accession No: NC 039199.1) and Human Coronavirus NL63, complete genome (accession No: NC 005831.2) were detected in SRR11772648 (Bioproject: PRJNA631042) with low confidence while SARS-CoV-2 could not be detected by fastv. Parvovirus NIH-CQV genes coding for putative replication-associated protein (rep), and putative capsid protein (cap) were detected in SRR10971381 (Bioproject: PRJNA603194) with low confidence, however, SARS-CoV-2 was detected in the same sample with a 100% coverage.

185

186

187

Figure.2: Viruses identified from metagenomic analysis of samples collected from

COVID-19 patients were visualized using krona tool.

Discussion

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

The value of identifying underlying co-infection(s) is gaining greater appreciation (9, 22), but it remains challenging to get such information. The source of clinical samples and the sequencing technology can be inferior in co-infection detection (23). Using the viral metagenomics analysis, we were able to identify various viruses, including SARS-CoV-2 virus. Previous studies reported co-infection of SARS-CoV-2 with influenza type A (24-29). In this study, we detected influenza A virus in three COVID-19 infected patients in China which suggests that COVID-19 might be underdiagnosed, especially during the influenza season, since typical clinical symptoms of COVID-19, including fever, cough, and dyspnea, resemble those of influenza (28, 30). Understanding the nature and consequences of co-infection is essential for accurate estimates of infectious disease burden. More holistic data on infectious diseases, in particular, will indeed help to quantify the magnitude of co-infection effects on human health. Improved knowledge of the factors influencing an individual's risk of co-infection. circumstances in which co-infecting pathogens interact, and the mechanisms behind these pathogen-pathogen interactions, especially from experimental studies, will also help design and evaluate programs for the management of infectious diseases. Up to now, most disease control programs typically adopt a vertical intervention approach that addresses every pathogen infection in isolation. If co-infecting pathogens typically interact to worsen human health, control strategies may need to be more integrated, and specialist therapies developed for clinical cases of co-infection.

- 211 Future studies are urgently needed not only to genetically characterize these viruses
- 212 and conduct screening studies for different viruses in larger sample sets but also to
- research the function of these viruses alone and during co-infection situations with the
- 214 aims of elucidating how these viruses interact with the host immune system to confirm
- their role in the pathogenesis of diseases and secondary infections.

Reference

218219

216

- 220 1. M. Z. Tay, C. M. Poh, L. Renia, P. A. MacAry, L. F. P. Ng, The trinity of COVID-19:
- immunity, inflammation and intervention. *Nat Rev Immunol*, (2020).
- 222 2. World Health Organization, WHO Director-General's statement on IHR Emergency Committee on Novel Coronavirus (2019-nCoV). (2020).
- 3. Worldometer, Covid-19 coronavirus pandemic. (2020, May 26).
- 225 4. A. R. Fehr, S. Perlman, in *Coronaviruses*. (Springer, 2015), pp. 1-23.
- C. S. G. o. t. I. C. o. T. o. Viruses, The species Severe acute respiratory syndrome-related
 coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. *Nature Microbiology* 5,
 536 (2020).
- 229 6. P. Zhou *et al.*, A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* **579**, 270-273 (2020).
- 7. K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, R. F. Garry, The proximal origin of SARS-CoV-2. *Nat Med* **26**, 450-452 (2020).
- 233 8. C. K. Wong *et al.*, Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. *Clin Exp Immunol* **136**, 95-103 (2004).
- 9. E. C. Griffiths, A. B. Pedersen, A. Fenton, O. L. Petchey, The nature and consequences of coinfection in humans. *Journal of Infection* **63**, 200-206 (2011).
- 237 10. F. E. Cox, Concomitant infections, parasites and immune responses. *Parasitology* **122 Suppl**, S23-38 (2001).
- 239 11. P. L. Chiodini, Chemotherapy for patients with multiple parasitic infections. *Parasitology* 240 **122**, S83-S89 (2001).
- 241 12. G. Palacios *et al.*, Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. *PLoS One* **4**, e8540 (2009).
- 243 13. R. Pullan, S. Brooker, The health impact of polyparasitism in humans: are we under-244 estimating the burden of parasitic diseases? *Parasitology* **135**, 783-794 (2008).
- 245 14. D. N. Birdsell *et al.*, Coinfections identified from metagenomic analysis of cervical lymph nodes from tularemia patients. *BMC Infect Dis* **18**, 319-319 (2018).

- 247 15. M. Lecuit, M. Eloit, The diagnosis of infectious diseases by whole genome next generation sequencing: a new era is opening. *Front Cell Infect Microbiol* **4**, 25 (2014).
- 249 16. M. Kuroda *et al.*, Detection of a possible bioterrorism agent, Francisella sp., in a clinical specimen by use of next-generation direct DNA sequencing. *J Clin Microbiol* **50**, 1810-251 1812 (2012).
- 252 17. M. R. Wilson *et al.*, Actionable diagnosis of neuroleptospirosis by next-generation sequencing. *New England Journal of Medicine* **370**, 2408-2417 (2014).
- 254 18. S. Chen, C. He, Y. Li, Z. Li, C. E. Melançon, A Computational Toolset for Rapid
 255 Identification of SARS-CoV-2, other Viruses, and Microorganisms from Sequencing Data.
 256 bioRxiv, 2020.2005.2012.092163 (2020).
- 257 19. D. S. Lundberg, S. Yourstone, P. Mieczkowski, C. D. Jones, J. L. Dangl, Practical innovations for high-throughput amplicon sequencing. *Nat Methods* **10**, 999-1002 (2013).
- 20. E. J. Duncavage *et al.*, Hybrid capture and next-generation sequencing identify viral integration sites from formalin-fixed, paraffin-embedded tissue. *J Mol Diagn* **13**, 325-333 (2011).
- 263 21. B. D. Ondov, N. H. Bergman, A. M. Phillippy, Interactive metagenomic visualization in a Web browser. *BMC Bioinformatics* **12**, 385 (2011).
- 265 22. X. X. Li, X. N. Zhou, Co-infection of tuberculosis and parasitic diseases in humans: a systematic review. *Parasit Vectors* **6**, 79 (2013).
- 23. D. N. Birdsell *et al.*, Coinfections identified from metagenomic analysis of cervical lymph nodes from tularemia patients. *BMC Infect Dis* **18**, 319 (2018).
- 269 24. E. Cuadrado-Payan *et al.*, SARS-CoV-2 and influenza virus co-infection. *Lancet* **395**, e84 (2020).
- 271 25. G. Wehl, M. Laible, M. Rauchenzauner, Co-infection of SARS CoV-2 and influenza A in a Pediatric Patient in Germany. *Klin Padiatr*, (2020).
- 273 26. S. Azekawa, H. Namkoong, K. Mitamura, Y. Kawaoka, F. Saito, Co-infection with SARS-274 CoV-2 and influenza A virus. *IDCases* **20**, e00775 (2020).
- 27. M. D. Nowak, E. M. Sordillo, M. R. Gitman, A. E. Paniz Mondolfi, Co-infection in SARS 276 CoV-2 infected Patients: Where Are Influenza Virus and Rhinovirus/Enterovirus? *J Med Virol*, (2020).
- 278 28. X. Wu *et al.*, Co-infection with SARS-CoV-2 and Influenza A Virus in Patient with Pneumonia, China. *Emerg Infect Dis* **26**, 1324-1326 (2020).
- 29. D. Kim, J. Quinn, B. Pinsky, N. H. Shah, I. Brown, Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. *JAMA* **323**, 2085-2086 (2020).
- 282 30. N. Chen *et al.*, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* **395**, 507-513 (2020).

Table.1: SRA sequences used in this study with the detection result for SARS-CoV-2 K-mer

No.	Run	<u>BioSample</u>	source	<u>Platform</u>	BioProject	Center Name	Detection result for SARS- CoV-2 k- mer
1	SRR11181954	SAMN14207961	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
2	SRR11181955	SAMN14207960	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
3	SRR11181956	SAMN14207959	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
4	SRR11181957	SAMN14207958	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
5	SRR11181958	SAMN14207957	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
6	SRR11181959	SAMN14207956	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
7	SRR11537949	SAMN14594848	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
8	SRR11537950	SAMN14594847	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive

9	SRR11537951	SAMN14594846	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
10	SRR11537952	SAMN14594845	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
11	SRR11537953	SAMN14594844	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
12	SRR11537954	SAMN14594843	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
13	SRR11245351	SAMN14306710	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
14	SRR11245352	SAMN14306709	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
15	SRR11245353	SAMN14306708	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
16	SRR11245354	SAMN14306707	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
17	SRR11245355	SAMN14306706	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
18	SRR11245356	SAMN14306705	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
19	SRR11772640	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive

20	SRR11772641	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
21	SRR11772642	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
22	SRR11772643	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
23	SRR11772644	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
24	SRR11772654	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
25	SRR11772656	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
26	SRR11772657	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
27	SRR11772658	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
28	SRR11772660	SAMN14891490	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
29	SRR11772661	SAMN14891490	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
30	SRR11772662	SAMN14891490	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	negative

31	SRR11772663	SAMN14891489	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	negative
32	SRR11772664	SAMN14891489	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	negative
33	SRR11772665	SAMN14891489	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
34	SRR11772666	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
35	SRR11772667	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
36	SRR11772668	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
37	SRR11772669	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
38	SRR11772670	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
39	SRR11772671	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
40	SRR11772672	SAMN14891487	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
41	SRR11772673	SAMN14891487	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive

42	SRR11772674	SAMN14891487	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
43	SRR11772675	SAMN14891486	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
44	SRR11772676	SAMN14891486	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
45	SRR11772677	SAMN14891486	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
46	SRR11772678	SAMN14891486	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
47	SRR11772679	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
48	SRR11772680	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
49	SRR11772681	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
50	SRR11772682	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
51	SRR11772683	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
52	SRR11772684	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive

53	SRR11772685	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
54	SRR11772686	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
55	SRR11772687	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
56	SRR11772688	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
57	SRR11789035	SAMN14917563	clinical biospecimens	OXFORD_NANOPORE	PRJNA632678	Colombia	Positive
58	SRR11092056	SAMN14082199	BALF	Illumina MiSeq	PRJNA605983	China	Positive
59	SRR11092057	SAMN14082197	BALF	Illumina MiSeq	PRJNA605983	China	Positive
60	SRR11092058	SAMN14082196	BALF	Illumina MiSeq	PRJNA605983	China	Positive
61	SRR11092059	SAMN14082200	BALF	Illumina HiSeq 3000	PRJNA605983	China	Positive
62	SRR11092060	SAMN14082199	BALF	Illumina HiSeq 3000	PRJNA605983	China	Positive
63	SRR11092061	SAMN14082198	BALF	Illumina HiSeq 3000	PRJNA605983	China	Positive
64	SRR11092062	SAMN14082197	BALF	Illumina HiSeq 1000	PRJNA605983	China	Positive
65	SRR11092063	SAMN14082196	BALF	Illumina HiSeq 3000	PRJNA605983	China	Positive
66	SRR11092064	SAMN14082200	BALF	Illumina MiSeq	PRJNA605983	China	Positive

67	SRR11801823	SAMN14938301	nasopharynx	Illumina ISeq 100	PRJNA633241	Bangladesh	Positive
68	SRR10971381	SAMN13922059	BALF	Illumina MiniSeq	PRJNA603194	China: Wuhan	Positive