

1 **Non-coronavirus genome sequences identified from metagenomic**
2 **analysis of clinical samples from COVID-19 infected patients: An**
3 **evidence for Co-infection**

4

5

6 Mohamed A. Abouelkhair ^a#

7

8 ^aDepartment of Biomedical and Diagnostic Sciences, University of Tennessee College
9 of Veterinary Medicine, Knoxville, Tennessee, USA

10

11

12

13

14 # Corresponding Author:
15

16 Mohamed A. Abouelkhair

17 2407 River Dr, Knoxville, TN 37996, USA

18 Email address: mabouelk@vols.utk.edu

19

20

21

22

23

24

25 **Abstract**

26 In December 2019, pneumonia caused by severe acute respiratory syndrome
27 coronavirus 2 (SARS-CoV-2) infection emerged in Wuhan City, Hubei Province, China.
28 Early in 2020, the World Health Organization (WHO) announced a new name for the
29 2019-nCoV-caused epidemic disease: coronavirus disease 2019 (COVID-19) and
30 declared COVID-19 to be the sixth international public health emergency. Cellular co-
31 infection is a critical determinant of both viral fitness and infection outcome and plays a
32 crucial role in shaping the host immune response to infections. In this study, sixty-eight
33 public next-generation sequencing libraries from SARS-CoV-2 infected patients were
34 retrieved from the NCBI Sequence Read Archive database using SRA-Toolkit. Using an
35 alignment-free method based on K-mer mapping and extension, SARS-CoV-2 was
36 identified in all except three patients. Influenza A H7N9 (3/68), Human
37 immunodeficiency virus 1 (1/68), Spodoptera frugiperda rhabdovirus isolate (3/68),
38 Human metapneumovirus (1/68), coronaviruses NL63 (1/68), Sri Lankan cassava
39 mosaic virus (1/68), Indian cassava mosaic virus (1/68), Parvovirus (1/68), Simian virus
40 40 (1/68), Woodchuck hepatitis virus (1/68), Saccharomyces 20S RNA narnavirus
41 (2/68), and *Autographa californica* nucleopolyhedrovirus (2/68) genome sequences
42 were detected in SARS-CoV-2 infected patients.

43

44 **Keywords:** COVID-19, Viral Co-infection, SARS-CoV-2, Influenza A virus, Human
45 Immunodeficiency virus

46

47

48 **Introduction**

49 In December 2019, the first cases of coronavirus disease 2019 (COVID-19) were
50 possibly due to a zoonotic transmission in China, tied to a large seafood market which
51 also traded in live wild animals (1). The causative virus, severe acute respiratory
52 syndrome coronavirus 2 (SARS-CoV-2), is capable of human-to-human transmission
53 and rapidly spread to other regions of China, and then to other countries (2). It is now a
54 global pandemic and is a considerable concern for public health. So far, more than
55 5,637,367 confirmed cases were diagnosed in nearly 213 countries and territories
56 around the world and two international conveyances, causing globally over 349,000
57 deaths (3).

58 Coronaviruses in humans and animals are known to cause disease. Of these, four
59 (human coronaviruses 229E, NL63, OC43, and HKU1) typically only infect the upper
60 respiratory tract and cause relatively minor symptoms (4). However, there are three
61 coronaviruses (severe acute respiratory syndrome coronavirus (SARS-CoV), Middle
62 East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2) that can
63 replicate in the lower respiratory tract and cause pneumonia which can be fatal. With
64 79% genome sequence similarity, SARS-CoV is the closest relative to SARS-CoV-2
65 among human coronaviruses (5). However, of all known coronavirus sequences, SARS-
66 CoV-2 is most similar to bat coronavirus RaTG13, with a similarity of 98 percent (6), and
67 coronavirus sequences in pangolin (a scaly anteater) also have high similarity (7).
68 SARS-CoV-2 pathophysiology closely parallels that of SARS-CoV infection, with active
69 inflammatory responses strongly implicated in the resulting airway damage (8). Hence

70 the extent of the disease in patients is attributed not only to the viral infection but also to
71 the host 's response (1).

72 Underlying co-infections in primary infectious disease are an important variable that
73 needs to be considered but is often undetected. A better understanding of the
74 prevalence of co-infection is urgently required, partly because co-infecting pathogens
75 can interact with each other either directly or indirectly via the host 's resources or
76 immune system (9, 10). These interactions within co-infected hosts can alter the
77 transmission, clinical progression and control of multiple infectious diseases as
78 compared to single pathogen species infection (9, 11, 12). Recent studies appear to
79 indicate that the adverse effects of co-infection are more common than no-effects or
80 positive impact on human health (13).

81 The underdiagnosis of co-infections is attributed, among other factors, to a lack of
82 clinical suspicion, similar symptoms and or the fact that in the absence of a priori
83 knowledge, conventional methods have little capacity to detect co-infections. Exploring
84 new diagnostic approaches is, therefore, essential to advance understanding of co-
85 infection contribution to disease manifestations and treatment responses (14).

86 Remarkable developments in next-generation sequencing have recently made
87 metagenomics, an unbiased shotgun method of analysis, a widely used tool in just
88 about every field of biology, including diagnosis of infectious diseases (15, 16).

89 Metagenomics is powerful because it is capable of diagnosing unsuspected microbial
90 agents (17). It directly analyzes samples in their entirety, eliminating the need for prior
91 knowledge to obtain comprehensive information. In this capacity, metagenomics
92 exceeds traditional diagnostic limitations.

93 With the viral genomes in hand, we can now explore the possibility of using
94 metagenomic and metatranscriptomic next-generation sequencing (mNGS) directly as a
95 screening method of other viruses in a sample.

96 In theory, a simple and straightforward approach would be to first map sequencing
97 reads from the sample to the viral genome. Such an alignment-based method is
98 vulnerable to problems stemming from both false positives and false negatives. Some
99 viruses have genomes very similar to SARS-CoV-2, which can lead to false-positive
100 results (18). On the other hand, in some cases, the virus-specific reads obtained may
101 not be abundant enough for unambiguous detection, which can lead to false-negative
102 results. Such results can occur when the viral RNA is highly degraded, or when the
103 sequencing library has been incompletely target enriched by multiple-PCR (19) or
104 hybrid capture (20).

105 Fastv is an ultra-fast tool for detecting the microbial sequences in sequence data. It can
106 identify target microorganisms using unique k-mers. It has a 100% sensitivity and 100%
107 specificity for detecting SARS and other coronaviruses from sequencing data and can
108 distinguish SARS from MERS.

109 In this study, identification experiments were conducted on public next-generation
110 sequencing libraries from SARS-CoV-2 infected patients using fastv, along with the pre-
111 computed unique k-mer resources (18). The findings of the present study have
112 confirmed the actual existence of genome sequences of other viruses in SARS-CoV-2
113 infected patients.

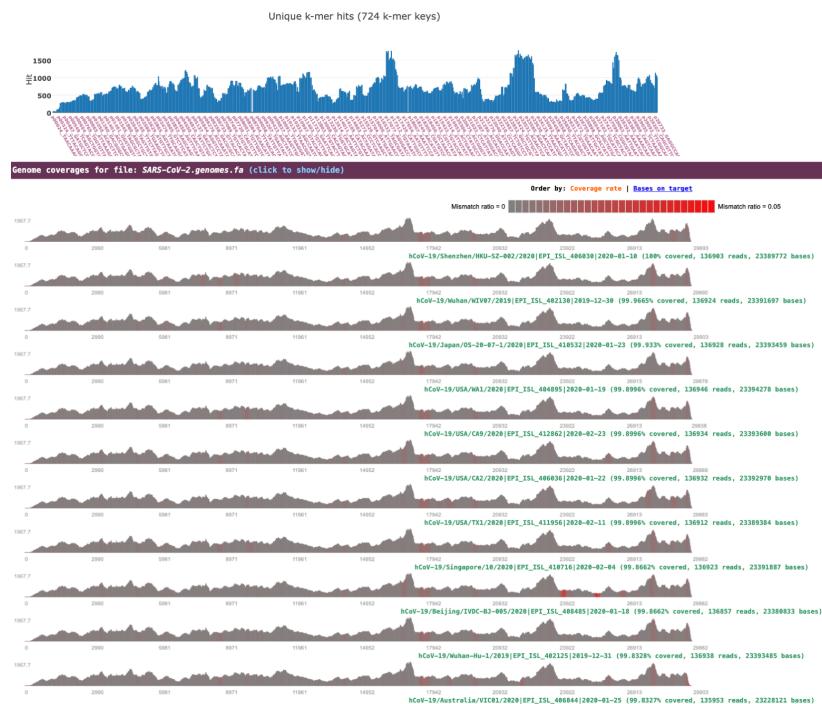
114

115

116 Material and Methods**117 SRA Database Mining**

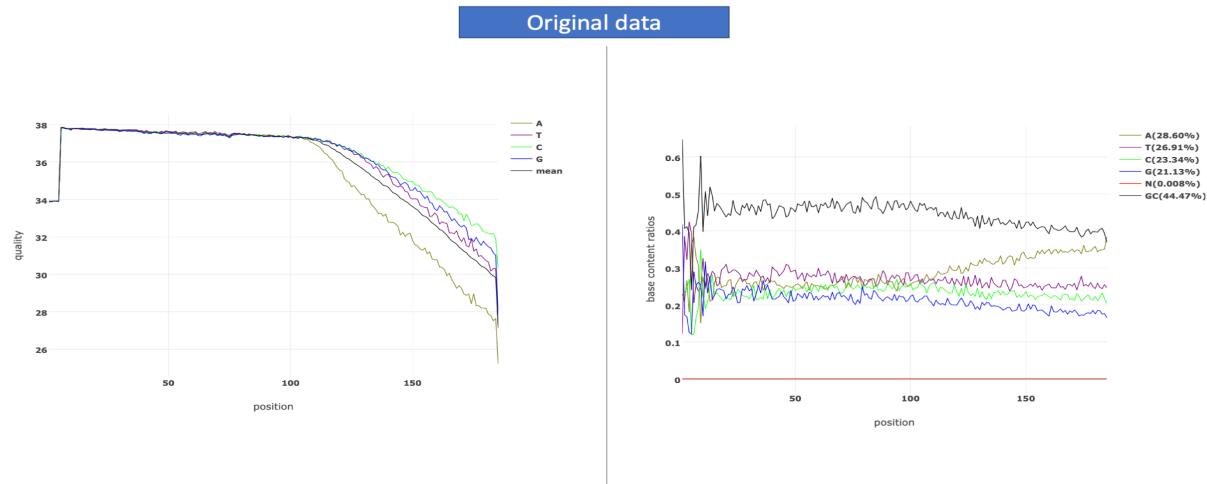
118 Next-generation sequencing technologies have enabled large-scale genomic
119 surveillance of SARS-CoV-2 as thousands of isolates are being sequenced around the
120 world and deposited in public data repositories. SRA files were fetched with the NCBI
121 SRA toolkit using fastq-dump from the following bioprojects (PRJNA631042 (44
122 samples), PRJNA608742 (12 samples), PRJNA632678 (1 sample), PRJNA605983 (9
123 samples), PRJNA633241 (1 sample) and PRJNA603194 (1 sample)) (**Table.1**).

124

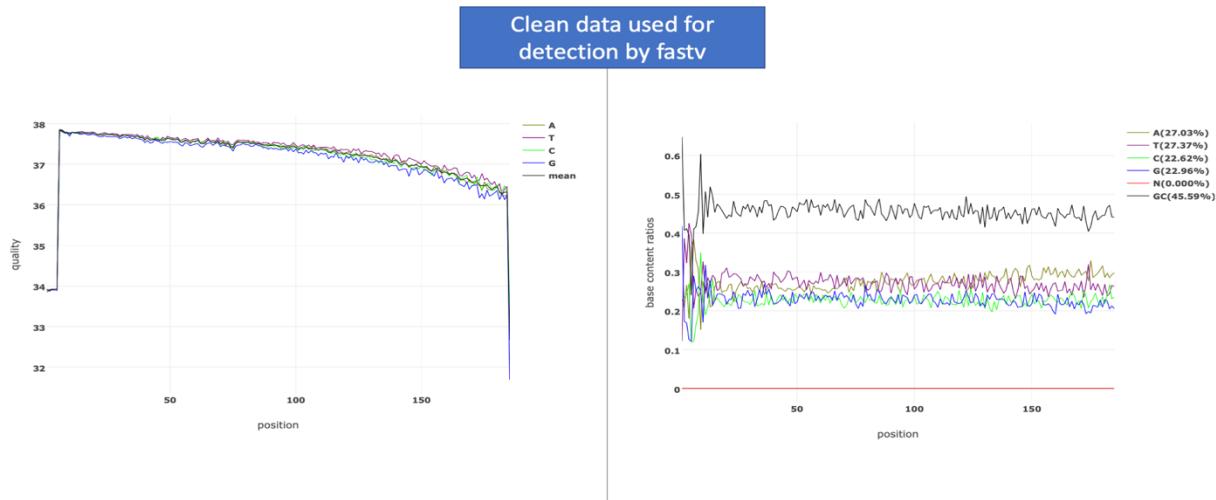

125 Read Pre-processing, Analysis Using Fastv

126 Fastv, along with the pre-computed unique k-mer resources, was used as previously
127 described (18). Briefly, Fastv performed data quality control (QC) and quality filtering on
128 FASTQ input files. Then, Fastv collect sequences that contain any unique k-mer and
129 output results to downstream tools. To pay particular attention to SARS-CoV-2 while
130 scanning for all viruses, we used SARS-CoV-2 Genomes/k-mer files from fastv data
131 directory (<https://github.com/OpenGene/fastv/tree/master/data>), and k-mer collection file
132 for viral genomes was downloaded from (<http://opengene.org/viral.kc.fasta.gz>). The k-
133 mer scanning results of different inputs were visualized in a figure on a single HTML
134 page by fastv. The Krona tool (<https://github.com/marbl/Krona/wiki>) was used to
135 visualize the co-infecting viruses in clinical samples (21).

136


137 Results**138 SARS-CoV-2 Identification**

139 We conducted identification experiments on samples sequenced from COVID-19
 140 infected patients (**Table.1**). SARS-CoV-2 was detected in all tested samples with three
 141 out of 68 clinical samples were considered negative for SARS-CoV-2 by fastv. These
 142 three samples belong to one bio-project, PRJNA631042, where the research group
 143 used different sequencing technologies on the same sample to find the cost-effective
 144 and highly scalable method for SARS-CoV-2 sequencing. Because sequence
 145 technologies vary in reading depth and coverage thresholds, fastv was unable to detect
 146 SARS-CoV-2 in sequenced samples with lower coverage metrics. The output for
 147 targeted k-mer hits and the result for genome coverage were visualized by fastv.
 148 Statistics on genome coverage indicate that SARS-CoV-2 fits the Wuhan seafood
 149 market pneumonia virus isolate Wuhan-Hu-1 strain (NC_045512.2) most closely
 150 (**Figure.1**).



151

152 **Figure.1, a:** SARS-CoV-2 detection using fastv. Eleven SARS-CoV-2 strains are
 153 included in the genome list ordered by genome coverage rate, with the k-mer coverage
 154 varying from 100% to 99.83%. Mismatches were highlighted in red.
 155

156

157
 158 **Figure.1, b:** FASTQ file after adapter trimming, quality pruning and base correction for
 159 accurate k-mer analysis.
 160

161 **Viral Metagenomic Analysis identified non-coronavirus genome sequences in**
162 **COVID-19 infected patients**

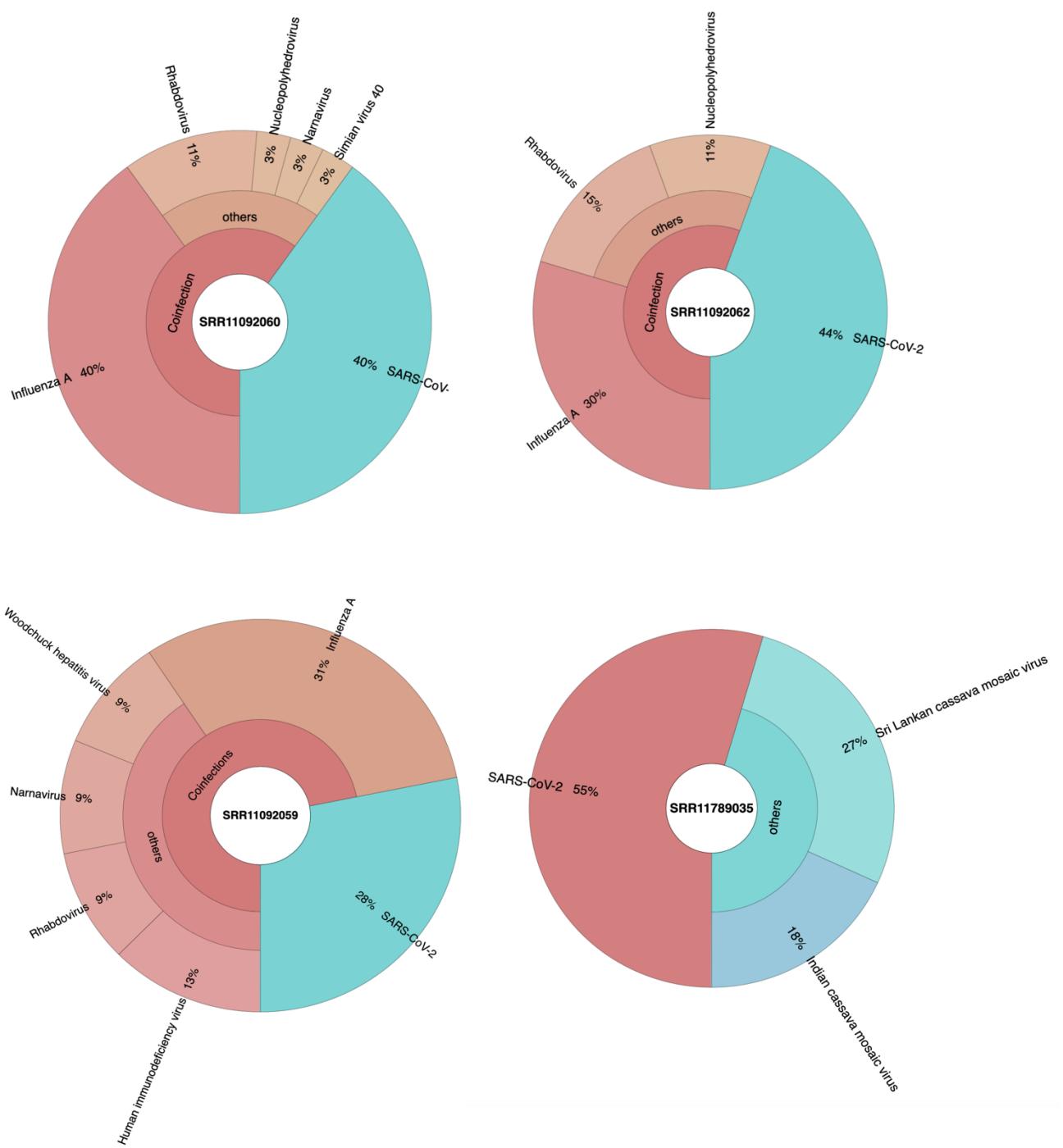
163 Influenza type A (A/Shanghai/02/2013(H7N9) (3/68), Human immunodeficiency virus 1
164 (1/68), Spodoptera frugiperda rhabdovirus isolate Sf (3/68), Simian virus 40 (1/68),
165 Woodchuck hepatitis virus (1/68), Saccharomyces 20S RNA narnavirus (2/68), and
166 Autographa californica nucleopolyhedrovirus (2/68) were detected in SARS-CoV-2
167 infected patients in China (**Figure.2**).

168 Sri Lankan cassava mosaic virus (1/68), Indian cassava mosaic virus (1/68) were
169 detected in one patient with symptoms to COVID-19 in Colombia.

170 Human metapneumovirus (accession No: NC_039199.1) and Human Coronavirus
171 NL63, complete genome (accession No: NC_005831.2) were detected in
172 SRR11772648 (Bioproject: PRJNA631042) with low confidence while SARS-CoV-2
173 could not be detected by fastv.

174

175 Parvovirus NIH-CQV genes coding for putative replication-associated protein (rep), and
176 putative capsid protein (cap) were detected in SRR10971381 (Bioproject:
177 PRJNA603194) with low confidence, however, SARS-CoV-2 was detected in the same
178 sample with a 100% coverage.


179

180

181

182

183

184 **Figure.2:** Viruses identified from metagenomic analysis of samples collected from
 185 COVID-19 patients were visualized using krona tool.

186

187 Discussion

188 The value of identifying underlying co-infection(s) is gaining greater appreciation (9, 22),
189 but it remains challenging to get such information. The source of clinical samples and
190 the sequencing technology can be inferior in co-infection detection (23). Using the viral
191 metagenomics analysis, we were able to identify various viruses, including SARS-CoV-
192 2 virus.

193 Previous studies reported co-infection of SARS-CoV-2 with influenza type A (24-29). In
194 this study, we detected influenza A virus in three COVID-19 infected patients in China
195 which suggests that COVID-19 might be underdiagnosed, especially during the
196 influenza season, since typical clinical symptoms of COVID-19, including fever, cough,
197 and dyspnea, resemble those of influenza (28, 30).

198 Understanding the nature and consequences of co-infection is essential for accurate
199 estimates of infectious disease burden. More holistic data on infectious diseases, in
200 particular, will indeed help to quantify the magnitude of co-infection effects on human
201 health. Improved knowledge of the factors influencing an individual's risk of co-infection,
202 circumstances in which co-infecting pathogens interact, and the mechanisms behind
203 these pathogen-pathogen interactions, especially from experimental studies, will also
204 help design and evaluate programs for the management of infectious diseases. Up to
205 now, most disease control programs typically adopt a vertical intervention approach that
206 addresses every pathogen infection in isolation. If co-infecting pathogens typically
207 interact to worsen human health, control strategies may need to be more integrated,
208 and specialist therapies developed for clinical cases of co-infection.

209 Future studies are urgently needed not only to genetically characterize these viruses
210 and conduct screening studies for different viruses in larger sample sets but also to
211 research the function of these viruses alone and during co-infection situations with the
212 aims of elucidating how these viruses interact with the host immune system to confirm
213 their role in the pathogenesis of diseases and secondary infections.

214

215 **Reference**

216

217

- 218 1. M. Z. Tay, C. M. Poh, L. Renia, P. A. MacAry, L. F. P. Ng, The trinity of COVID-19:
219 immunity, inflammation and intervention. *Nat Rev Immunol*, (2020).
- 220 2. World Health Organization, WHO Director-General's statement on IHR Emergency
221 Committee on Novel Coronavirus (2019-nCoV). (2020).
- 222 3. Worldometer, Covid-19 coronavirus pandemic. (2020, May 26).
- 223 4. A. R. Fehr, S. Perlman, in *Coronaviruses*. (Springer, 2015), pp. 1-23.
- 224 5. C. S. G. o. t. I. C. o. T. o. Viruses, The species Severe acute respiratory syndrome-related
225 coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. *Nature Microbiology* **5**,
226 536 (2020).
- 227 6. P. Zhou *et al.*, A pneumonia outbreak associated with a new coronavirus of probable bat
228 origin. *Nature* **579**, 270-273 (2020).
- 229 7. K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, R. F. Garry, The proximal origin of
230 SARS-CoV-2. *Nat Med* **26**, 450-452 (2020).
- 231 8. C. K. Wong *et al.*, Plasma inflammatory cytokines and chemokines in severe acute
232 respiratory syndrome. *Clin Exp Immunol* **136**, 95-103 (2004).
- 233 9. E. C. Griffiths, A. B. Pedersen, A. Fenton, O. L. Petchey, The nature and consequences of
234 coinfection in humans. *Journal of Infection* **63**, 200-206 (2011).
- 235 10. F. E. Cox, Concomitant infections, parasites and immune responses. *Parasitology* **122**
236 **Suppl**, S23-38 (2001).
- 237 11. P. L. Chiodini, Chemotherapy for patients with multiple parasitic infections. *Parasitology*
238 **122**, S83-S89 (2001).
- 239 12. G. Palacios *et al.*, Streptococcus pneumoniae coinfection is correlated with the severity
240 of H1N1 pandemic influenza. *PLoS One* **4**, e8540 (2009).
- 241 13. R. Pullan, S. Brooker, The health impact of polyparasitism in humans: are we under-
242 estimating the burden of parasitic diseases? *Parasitology* **135**, 783-794 (2008).
- 243 14. D. N. Birdsall *et al.*, Coinfections identified from metagenomic analysis of cervical lymph
244 nodes from tularemia patients. *BMC Infect Dis* **18**, 319-319 (2018).

245 15. M. Lecuit, M. Eloit, The diagnosis of infectious diseases by whole genome next
246 generation sequencing: a new era is opening. *Front Cell Infect Microbiol* **4**, 25 (2014).
247 16. M. Kuroda *et al.*, Detection of a possible bioterrorism agent, *Francisella* sp., in a clinical
248 specimen by use of next-generation direct DNA sequencing. *J Clin Microbiol* **50**, 1810-
249 1812 (2012).
250 17. M. R. Wilson *et al.*, Actionable diagnosis of neuroleptospirosis by next-generation
251 sequencing. *New England Journal of Medicine* **370**, 2408-2417 (2014).
252 18. S. Chen, C. He, Y. Li, Z. Li, C. E. Melançon, A Computational Toolset for Rapid
253 Identification of SARS-CoV-2, other Viruses, and Microorganisms from Sequencing Data.
254 *bioRxiv*, 2020.2005.2012.092163 (2020).
255 19. D. S. Lundberg, S. Yourstone, P. Mieczkowski, C. D. Jones, J. L. Dangl, Practical
256 innovations for high-throughput amplicon sequencing. *Nat Methods* **10**, 999-1002
257 (2013).
258 20. E. J. Duncavage *et al.*, Hybrid capture and next-generation sequencing identify viral
259 integration sites from formalin-fixed, paraffin-embedded tissue. *J Mol Diagn* **13**, 325-
260 333 (2011).
261 21. B. D. Ondov, N. H. Bergman, A. M. Phillippy, Interactive metagenomic visualization in a
262 Web browser. *BMC Bioinformatics* **12**, 385 (2011).
263 22. X. X. Li, X. N. Zhou, Co-infection of tuberculosis and parasitic diseases in humans: a
264 systematic review. *Parasit Vectors* **6**, 79 (2013).
265 23. D. N. Birdsall *et al.*, Coinfections identified from metagenomic analysis of cervical lymph
266 nodes from tularemia patients. *BMC Infect Dis* **18**, 319 (2018).
267 24. E. Cuadrado-Payan *et al.*, SARS-CoV-2 and influenza virus co-infection. *Lancet* **395**, e84
268 (2020).
269 25. G. Wehl, M. Laible, M. Rauchenzauner, Co-infection of SARS CoV-2 and influenza A in a
270 Pediatric Patient in Germany. *Klin Padiatr*, (2020).
271 26. S. Azekawa, H. Namkoong, K. Mitamura, Y. Kawaoka, F. Saito, Co-infection with SARS-
272 CoV-2 and influenza A virus. *IDCases* **20**, e00775 (2020).
273 27. M. D. Nowak, E. M. Sordillo, M. R. Gitman, A. E. Paniz Mondolfi, Co-infection in SARS-
274 CoV-2 infected Patients: Where Are Influenza Virus and Rhinovirus/Enterovirus? *J Med
275 Virol*, (2020).
276 28. X. Wu *et al.*, Co-infection with SARS-CoV-2 and Influenza A Virus in Patient with
277 Pneumonia, China. *Emerg Infect Dis* **26**, 1324-1326 (2020).
278 29. D. Kim, J. Quinn, B. Pinsky, N. H. Shah, I. Brown, Rates of Co-infection Between SARS-
279 CoV-2 and Other Respiratory Pathogens. *JAMA* **323**, 2085-2086 (2020).
280 30. N. Chen *et al.*, Epidemiological and clinical characteristics of 99 cases of 2019 novel
281 coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* **395**, 507-513
282 (2020).
283
284
285
286

287 Table.1: SRA sequences used in this study with the detection result for SARS-CoV-2 K-mer

<u>No.</u>	<u>Run</u>	<u>BioSample</u>	<u>source</u>	<u>Platform</u>	<u>BioProject</u>	<u>Center Name</u>	<u>Detection result for SARS-CoV-2 k-mer</u>
1	SRR11181954	SAMN14207961	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
2	SRR11181955	SAMN14207960	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
3	SRR11181956	SAMN14207959	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
4	SRR11181957	SAMN14207958	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
5	SRR11181958	SAMN14207957	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
6	SRR11181959	SAMN14207956	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
7	SRR11537949	SAMN14594848	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
8	SRR11537950	SAMN14594847	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive

9	SRR11537951	SAMN14594846	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
10	SRR11537952	SAMN14594845	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
11	SRR11537953	SAMN14594844	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
12	SRR11537954	SAMN14594843	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
13	SRR11245351	SAMN14306710	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
14	SRR11245352	SAMN14306709	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
15	SRR11245353	SAMN14306708	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
16	SRR11245354	SAMN14306707	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
17	SRR11245355	SAMN14306706	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
18	SRR11245356	SAMN14306705	BALF	BGISEQ	PRJNA608742	Shenzhen 3rd People's Hospital	Positive
19	SRR11772640	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive

20	SRR11772641	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
21	SRR11772642	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
22	SRR11772643	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
23	SRR11772644	SAMN14891483	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
24	SRR11772654	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
25	SRR11772656	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
26	SRR11772657	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
27	SRR11772658	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
28	SRR11772660	SAMN14891490	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
29	SRR11772661	SAMN14891490	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
30	SRR11772662	SAMN14891490	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	negative

31	SRR11772663	SAMN14891489	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	negative
32	SRR11772664	SAMN14891489	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	negative
33	SRR11772665	SAMN14891489	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
34	SRR11772666	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
35	SRR11772667	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
36	SRR11772668	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
37	SRR11772669	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
38	SRR11772670	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
39	SRR11772671	SAMN14891488	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
40	SRR11772672	SAMN14891487	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
41	SRR11772673	SAMN14891487	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive

42	SRR11772674	SAMN14891487	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
43	SRR11772675	SAMN14891486	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
44	SRR11772676	SAMN14891486	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
45	SRR11772677	SAMN14891486	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
46	SRR11772678	SAMN14891486	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
47	SRR11772679	SAMN14891482	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
48	SRR11772680	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
49	SRR11772681	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
50	SRR11772682	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
51	SRR11772683	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
52	SRR11772684	SAMN14891485	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive

53	SRR11772685	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
54	SRR11772686	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
55	SRR11772687	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
56	SRR11772688	SAMN14891484	clinical biospecimens	Illumina MiSeq	PRJNA631042	UNIVERSITY OF MINNESOTA	Positive
57	SRR11789035	SAMN14917563	clinical biospecimens	OXFORD_NANOPORE	PRJNA632678	Colombia	Positive
58	SRR11092056	SAMN14082199	BALF	Illumina MiSeq	PRJNA605983	China	Positive
59	SRR11092057	SAMN14082197	BALF	Illumina MiSeq	PRJNA605983	China	Positive
60	SRR11092058	SAMN14082196	BALF	Illumina MiSeq	PRJNA605983	China	Positive
61	SRR11092059	SAMN14082200	BALF	Illumina HiSeq 3000	PRJNA605983	China	Positive
62	SRR11092060	SAMN14082199	BALF	Illumina HiSeq 3000	PRJNA605983	China	Positive
63	SRR11092061	SAMN14082198	BALF	Illumina HiSeq 3000	PRJNA605983	China	Positive
64	SRR11092062	SAMN14082197	BALF	Illumina HiSeq 1000	PRJNA605983	China	Positive
65	SRR11092063	SAMN14082196	BALF	Illumina HiSeq 3000	PRJNA605983	China	Positive
66	SRR11092064	SAMN14082200	BALF	Illumina MiSeq	PRJNA605983	China	Positive

67	SRR11801823	SAMN14938301	nasopharynx	Illumina ISeq 100	PRJNA633241	Bangladesh	Positive
68	SRR10971381	SAMN13922059	BALF	Illumina MiniSeq	PRJNA603194	China: Wuhan	Positive

288

289

290

291

292

293

294

295

296

297

298