Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 d0i:10.20944/preprints202005.0495.v1

Article

Genetic and Epigenetic Regulation of the
Smoothened Gene (SMO) in Cancer Cells

Hong Lou 't, Hongchuan Li 2+, Andrew Huehn %4, Nadya Tarasova 3, Bahara Saleh 3, Stephen
Anderson 23* and Michael Dean 5*

1 Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, Leidos Biomedical
Research, Inc., National Laboratory for Cancer Research, Gaithersburg, MD 20892, USA;
louho@mail.nih.gov

2 Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA;
lihongchu@mail.nih.gov

3 Laboratory of Cancer Inmunometabolism, Center for Cancer Research, National Cancer Institute,
Frederick, MD 21702, USA; tarasovn@mail.nih.gov; baharasaleh93@gmail.com; andersonst@mail.nih.gov

4 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA;
andrew . huehn@yale.edu

5 Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer
Institute, Gaithersburg, MD 20892, USA; deanm@mail.nih.gov

tThese authors equally contributed to this paper.

* Authors to whom correspondence should be addressed.

Correspondence: deanm@mail.nih.gov (M.D.); andersonst@mail.nih.gov (S.A.); Tel.: +1-240-760-6484 (M.D.);
+1-301-846-1330 (S.A.); Fax: +1-xxx-xxx-xxxx (M.D.); +1- 301-846-1673 (S.A.)

Abstract: 1) Background: The hedgehog (HH) signaling pathway is a key regulator of embryonic
patterning, tissue regeneration, stem cell renewal, and cancer growth. The smoothened (SMO)
protein regulates the HH signaling pathway and has demonstrated oncogenic activity. 2) Methods:
To clarify the role of the HH signaling pathway in tumorigenesis, the expression profile of key HH
signaling molecules, including SMO, PTCH1, GLI1, GLI2, and GLI3, were determined in thirty-three
cancer cell lines. We performed a computational analysis of the upstream region of the SMO gene
to identify the regulatory elements. 3) Results: Three potential CpG islands and several putative
SMO promoter elements were identified. Luciferase reporter assays mapped key SMO promoter
elements, and functional binding sites for SP1, AP1, CREB, and AP-2a transcription factors in the
core SMO promoter region were confirmed. A hypermethylated SMO promoter was identified in
several cancer cell lines suggesting an important role for epigenetic silencing of SMO expression in
certain cancer cells. 4) Discussion: These results have important implications for our understanding
of regulatory mechanisms controlling HH pathway activity and the molecular basis of SMO gene
function. Moreover, this study may prove valuable for future research aimed at producing
therapeutic downregulation of SMO expression in cancer cells.
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1. Introduction

The hedgehog (HH) pathway is one of the key signaling pathways regulating embryonic
patterning, tissue regeneration, stem cell renewal, and cancer growth [1-4]. Canonical HH signaling
is triggered by the binding of HH ligand to its receptor PTCH1, resulting in the release of PTCH1
mediated repression of the seven-transmembrane protein smoothened (SMO). Activation of SMO
ultimately triggers GLI dependent expression of downstream target genes through a complex
network of post-translational processes and translocations [5]. In the absence of HH ligands, PTCH
inhibits SMO, and GLI2, GLI3 are phosphorylated and undergo partial proteasome degradation,
resulting in repressive forms of GLI2 and GLI3 (GLI2/3 R), that translocate into the nucleus where
they inhibit the transcription of HH target genes [6,7]. HH pathway activation amplifies the signal
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by increasing GLI1 levels, and in contrast, potentiates negative regulators such as PTCH1 and HH
interacting protein (HHIP) [8,9]. The positive and negative feedback loops ensure that the activity
of HH signaling is kept within an optimal range. Constitutive activation of the HH pathway has
been observed in various types of malignancies caused either by mutations in the pathway, such as
PTCH1 loss-of function or SMO activation in basal cell carcinoma, or through HH overexpression,
as observed in small-cell lung cancer, glioma, endometrial carcinoma, digestive tract tumors,
pancreas, and prostate [10-16].

The switch between active and inactive states of the HH pathway involves rapid translocation
of SMO. The SMO protein is the key positive regulator of the HH pathway, and GLI family proteins
play a critical role in the regulation of HH signaling pathway activity. Despite a strong link between
SMO expression, HH pathway activity, and cancer development, the basis for SMO gene regulation
has not been well characterized. Therefore, an investigation of the mechanisms controlling the
expression of SMO and additional HH pathway genes may provide valuable insight into HH
signaling alterations associated with cancer development. SMO also is the major target for
pharmaceutical agents that modulate HH pathway activity [17-19], such as vismodegib [20] and
sonidegib [21]. We previously studied SMO peptides, and found that specific lipopeptides can serve
as effective inhibitors [22,23].

DNA methylation of HH pathway genes is a potential regulatory mechanism in the
progression of cancers. Several epigenetic factors that act on the HH signaling pathways have been
associated with cancer initiation and progression [10,24]. It was reported that distinct subgroups of
cancers have an exceptionally high frequency of cancer specific CpG island hypermethylation
[25,26]. Methylation has been studied as a clinical biomarker for the diagnosis and prognostic
evaluation of various cancers, especially in breast cancer [27]. Recently, SMO methylation was used
as a biomarker for the occurrence and development of breast cancer [28].

In the current study, we have developed a qRT-PCR method to accurately determine the
expression levels of SMO, PTCH1, GLI1, GLI2 and GLI3 in a panel of cancer cell lines. Different
SMO expression patterns in the cancer cell lines led us to characterize SMO gene regulatory
elements. The SMO 5'-flanking region and Exon 1 was analyzed in silico, revealing that the region
surrounding the SMO transcriptional start site (TSS) has an extremely high GC content (70%+) that
prevents its PCR amplification by traditional methods. We used a touchdown PCR method to
amplify SMO promoter fragments and determined their promoter activity using a dual luciferase
assay. EMSA analysis identified binding sites for the transcription factors, SP1, AP1, CREB, and AP-
2 , which likely play an important role in SMO transcriptional activity in cancer cells. In order to
gain insight into the epigenetic regulation of SMO, bisulfite sequencing PCR (BSP) and methylation
specific PCR (MSP) were carried out to determine methylation status of the potential SMO
promoter region. The relationship between the methylation status and SMO mRNA expression was
analyzed.

2. Results
2.1 Expression of HH signaling molecules in cancer cell lines

In order to gain a greater understanding of the transcriptional regulation of the HH pathway
components, a careful analysis of mRNA levels for key HH signaling genes was conducted.
Quantification of mRNA expression levels using a real-time PCR method is increasingly used to
determine the activity of HH signaling genes. However, most studies use a relative RT-PCR
method, which is less precise, and does not provide meaningful comparisons of gene expression
between different cell lines. Therefore, an accurate quantitation of HH pathway mRNA expression
is necessary. In this study, we developed and validated a standard curve based on a Tagman qRT-
PCR method to measure key HH signaling genes, including SMO, PTCH1, GLI1, GLI2 and GLI3.
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The results produced a broad linear dynamic range of detection of at least 6 logs, and a small
quantitative variation produced by triplicate analysis. The slope of the curve was used to determine
the reaction efficiency. Efficiency = [10(-1/slope)] — 1 [29]. The efficiency of standard curve for all
genes in is greater than 92% and R2 is greater than 0.99.

The expression levels of HH signaling components were determined in 33 cancer cell lines
using the quantitative Tagman RT-PCR method. Expression levels of the HH pathway genes, the
HH signaling receptors PTCH and SMO, and the target transcription factors GLI2, and GLI3, varied
significantly among the cancer cell lines (Figure 1). The SMO gene exhibited the highest level of
mRNA expression and the greatest variation between cell lines (22.98+31.80, 95% CI 11.70~31.25),
compared with PTCHI1 (8.72+10.44, 95% CI 5.02~12.42), GLI2 (1.25+2.08, 95% CI 0.56~1.99) and GLI3
(18.04+20.26, 95% CI 10.85~25.22), whereas GLI1 (0.17+0.25, 95% CI 0.08~0.26) that functions as an
amplifier of HH signal, consistently showed low expression in all cancer cell lines. In addition, the
absence of SMO expression was confirmed in seven cell lines, including 5 breast cancer cell lines
and the stomach cancer AGS cell line, whereas the lack of SMO was accompanied by undetectable
GLI3 in colon cancer HT29 cells (Table 1).
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Figure 1. (A) Distribution of mRNA levels of SMO, PTCH, GLI1, GLI2 and GLI3 in 33 cancer cell
lines. Mean values + SCE of each gene are indicated by horizontal bars. (B) Comparison of mRNA
levels. The mRNA levels of the five genes were quantitated from the Tagman RT-PCR as described
in Materials and Methods. Data are presented by cell line in decreasing order of SMO mRNA level.

Table 1. Expression level of hedgehog pathway genes in 33 tumor cell lines

Level of mRNA expression*

Tissue Cell lines SMO PTCH GLI1 GLI2 GLI3
Prostate PCA2B 19.46 46.74 0.03 0.003 26.22
VCaP 15.15 10.15 0 0.1 28.43

PC3 11.33 0.39 0.02 1.96 17.13
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DU145 11.14 1.27 0.03 9.36 0.47
CAHPV10 4.59 5.31 0.08 0.43 58.71
NCIH660 4.18 6.61 0.01 ND 0.02
LNCaP 3.9 4.1 0.01 ND 12.09
22RV1 0.18 14.68 0.19 0.01 791
Breast T47D 44.96 8.71 ND ND 9.99
BT549 36.26 4.64 0.54 ND 18.91
MB435 3.56 11.43 0.04 ND 10.56
SK-BR3 0.02 2.72 0 0 4.39
SUM52 ND 2.16 0.02 0 12.09
MCF10A ND 3.24 ND ND 29.75
MB231 ND 25.2 ND 0.71 60.85
SUN159 ND 2.68 0.74 ND 31.01
MCF7 ND 0.87 0.03 0.01 5.54
Kidney SN-12C 114.33 5.11 0.1 4.47 21.85
TK-10 95.49 8.95 0.3 0.46 0.08
786-0 87.9 422 0.38 6.07 13.87
ACHN 2.54 32.37 0.47 1.09 85.73
Glioblastoma U251 31.36 1.19 0.08 1.01 16.5
SF539 38.5 2.61 0.13 0.85 25.44
SNB75 27.07 7.33 0.32 0.83 20.28
SF268 61.21 10.97 0.07 4.7 11.96
Ovary IGROV1 85.11 17 0.11 0.62 ND
OVCAR4 33.99 5.46 0.03 0.74 ND
SKOV3 5.65 3.85 0.92 1.32 15.48
Others
Stomach AGS ND 0.37 0.01 2.07 0.08
Skin SK-MEL2 9.28 27.98 0.75 243 48.77
Colon HT29 ND 5.09 0.08 0.93 ND
Lung H322 11 1.64 0.06 0.19 0.75
Myeloma RPMI8226 0.02 2.64 0.02 0.85 0.37

Abbreviations: ND, not detectable
*Relative mRNA expression = (Target gene / 18s rRNA) x
1,000,000

Significant positive correlations were identified between SMO and GLI2 transcript levels
(Pearson’s correlation=0.359, p=0.040), and between PTCH1 and GLI3 (Pearson’s correlation=0.532,
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p=0.001). No correlation was found between the expression levels of SMO/PTCH or SMO/GLI1
(Figure S1).

2.2. Interspecies comparison of genomic SMO sequences

For a comparison of mammalian SMO genes, we analyzed 20,500 bp of SMO genome sequence
including the upstream, 5-UTR, exon 1 and part of intron 1 regions for human, mouse, and rhesus
monkey. Multiple sequence alignment of the 20,500 bp of SMO was performed by the mVista web-
tool (Figure 2). The macaque sequence is highly homologous to the human sequence, as 87.5% of
the 20-kb region showed at least 88% sequence identity over a 100 bp window. In contrast, the
mouse sequence shares 71.2 % identity with human, with several conserved noncoding sequences
(CNS) showing at least 70% identity over 100 bps.

The global genomic sequence comparison showed significant highly conserved regions among
the three genes immediately upstream of the transcriptional start site (P = 3.9x10-25). Five
additional CNS were identified, but all had a lower p value that was greater than 0.005. A 924 bp
region consisting of the full length 5-UTR and exon 1 regions, along with 293 bp of upstream and
20 bp of intron 1 sequence is shown in Figure 2b. This region possesses 83% identity between the
mouse and human SMO genes, and 95% between human and rhesus.
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Figure 2. (A) Alignment of the 5'-flanking region of three mammalian SMO genes. 20 kb of
upstream sequence including exon-1 from the mouse, macaque and human SMO genes was aligned
by the MLAGAN algorithm of the mVista program. The sequences of mouse and macaque are
aligned to the human SMO sequence (x-axis); numbering is relative to the transcriptional start site.
Conserved regions (> 70% homology over 100 bp window) are shaded. The box indicates conserved
regions among the three sequences, as determined by RankVista (P < 10-5), with the P-values given
above. (B) The structure of 924 bp conserved sequence. The 5'-flanking region is defined as
sequence upstream (from the 5' end) of the transcript start site and shown in green lower-case
letters. Intron is shown in blue lower-case letters. The exon is shown in uppercase letters, with UTR
as purple and coding sequence as black color, respectively.
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2.3. In silico analysis of the SMO upstream regulatory region

Submission of a 1,611 bp sequence, including 1,000 bp 5 -upstream region and the full Exon 1
of the human SMO gene, to the MatInspector software program (core similarity > 0.85; matrix
similarity optimized) returned 336 potential TFBS, distributed over the entire sequence.
Furthermore, we performed analysis with the PromoterInspector program and found a 1028 bp
potential promoter region within this sequence, located from position -508 to +520 bp. By using the
Modellnspector program, twenty-five models were identified, including SMAD-MIT, SMAD-AP1,

YY1-SMAD, ETF-AP1, SP1-ETS. SP1F-NF1, IKRS-AP2, EGR-SP1, SP1-KLFS, GATA-SP1, CAAT-
CAAT, NFKB-SP1, SP1-CAAT.

2.4. Functional analysis of the core SMO promoter

Sequence analysis revealed that the 5’-flanking region of the human SMO gene exhibits a high
GC content, and lacks a consensus TATA element. Three potential CpG islands were identified
surrounding the SMO gene TSS using the MethPrimer program (Figure 3a). We evaluated different
experimental PCR conditions and programs for amplification of the SMO promoter sequence. The
GC-rich sequences contained within the SMO gene promoter region were effectively amplified by a
touchdown program in presence of 3% DMSO [30,31]. Comparison of the touchdown PCR results
with PCR under standard condition (fixed annealing temperature, 35 cycles) program for five
primer-pairs corresponding to upstream region of SMO was shown in Figure 52 and Table S1.
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Figure 3. (A) Structure of the SMO gene. A schematic representation of the exon-intron
organization and UTR region. 12 exons are indicated by the numbered rectangles. Distribution of
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CpG dinucleotides in a 1,611 bp fragment of the SMO gene harboring 1,000 bp 5" upstream region
and full exon 1 is shown. Each vertical line represents a single CpG site. Numbering is relative to
the transcriptional start site at exon 1. Transcription orientations are indicated by arrows. (B)
Functional localization of the SMO promoter. A schematic of the SMO gene structure is shown
above. Twelve SMO exons are indicated by the numbered rectangles. A schematic diagram of the
1,500 bp 5’-flanking region of SMO and serial truncation constructs of the SMO promoter and their
corresponding luciferase activities in different cell types are shown. Serial deletions at the 5" and the
3" ends of the promoter fragment of SMO are shown on the left. The promoter activities measured
after transfection into PC3, BT549 and MCEF7 cells are shown on the right. The relative size and
position of fragments cloned into the pGL3 vector are indicated by the lines below the schematic,
and the numbers in parentheses on either side of each fragment indicate the distance in nucleotides
upstream from the SMO start codon of the 5" and 3’ ends of each fragment. The luciferase activity of
the pGL3 constructs is shown as fold-increase of corrected light units relative to an empty pGL3
vector control. Values represent the mean, and error bars indicate the SEM of at least three
independent experiments.

The potential promoter region upstream of the SMO gene was analyzed using interspecies
comparison with the Genomatix package. Multiple regulatory elements are located surrounding the
TSS of SMO and may play a role in the regulation of SMO expression. In order to determine the
minimal sequences required for promoter function and identify cis-acting elements controlling
SMO promoter activity, a series of truncated luciferase constructs were generated by progressive
deletion from the 5’ end of a 984 bp fragment (region from -959 to +25 relative to the TSS), to
produce 5 constructs (Figure 3b and Table S1), based on our 5" truncation analysis result (Figure S3).
Plasmids containing SMO gene fragments were transiently transfected into three cancer cell lines
(prostate cancer line PC3; breast cancer lines BT549 and MCF7), and the luciferase activities of these
constructs were measured.

The highest promoter activity was observed in MCF7 cells, and moderate activity was found in
PC3 and BT549 cells. In MCF7 cells, increased promoter activity was detected upon removal of 459
bp of 5" sequence up to position -500 bp (relative to the transcription initiation site), indicating the
presence of negative regulatory element(s) in the region from -959 bp to -500 bp in MCF7 cells.
When truncated to -470 bp, the promoter activity returned to the full-length promoter activity, and
deletion of additional sequence to either -400 or -293 further reduced promoter activity, suggesting
the presence of positive regulatory element (s) in the region -500 bp to -293 bp. In PC3 and BT549
cells, the 5" truncations had little effect and maximal activity was observed with the PGL3-SMO-
400/+25 construct. The PGL3-SMO-500/+25 construct exhibited the highest promoter activity in
MCE?7 cells therefore, this reporter vector was used for subsequent 3’ deletion analysis (Figure 3b).

To further identify the 3" boundary of the core promoter, three plasmids were generated
sharing the same 5 boundary at position -500, and variable 3" ends from +50 to -15. In contrast to
the results from the 5" deletion analysis, luciferase activity with the 3’ deletions showed similar
effects in all three cell lines. The promoter activities were comparable between the PGL3-SMO-
500/+25 and PGL3-SMO-500 /+15 in the three cell lines, while addition of 25 bp of 3’ sequence to +50
resulted a decreased activity (Figure 3b), indicating an absence of downstream promoter element
activity in the SMO promoter.

Taken together, these results demonstrated that the region between the -500 and +15 bp is
important for transcriptional activity of the SMO promoter, and both negative and positive
regulatory regions can affect the promoter activity of SMO gene depending on cell context.

2.5. Identification of transcription factor binding sites in the SMO gene promoter
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EMSA experiments were conducted to investigate the binding of nuclear proteins to the core
proximal SMO promoter sequences in nuclear extracts of PC3, BT549 and MCF7 cells. (Figure 4). Six
overlapping oligonucleotide probes covering the region between -500 and -357 bp (Fig. 4a) that
significantly enhanced promoter activity in MCF7 cells were prepared to investigate their DNA-
protein binding activity. Double-stranded DNA probes spanning ~30 bp, covering the regions -500
to -471 (SMO-500P); -472 to -444 (SMO-472P); -454 to -421 (SMO-454P); -422 to -398 (SMO-422P); -
400 to -373 (SMO-400P); and -383 to -357 (SMO-383P) were prepared. The SMO-472P, SMO-454P,
SMO-422P and SMO-383P probes showed clear binding with nuclear proteins extracted from PC3,
BT549 and MCEF7 cells, while the SMO-500P and SMO-400P probes did not produce strong
complexes with nuclear proteins from any of the cell lines tested (Figure 4b). The SMO-472P, SMO-
422P and SMO-383P showed strong binding with nuclear protein from MCF7, but strong binding in
the SMO-454P region was observed with nuclear proteins from PC3 and BT549 (Figure 4b).
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Figure 4. EMSA analysis of the core region of SMO promoter. (A) Binding assay using
overlapping probes in the SMO promoter. A schematic illustration of six probes used for EMSA is
shown in the upper panel. (B) The 32P-labeled probes were incubated with nuclear extracts from
PC3, BT549 and MCF?7 cells, respectively. (C) Competition analysis using a 50-fold excess of
unlabeled oligonucleotides (cold). The 32P-labeled SMO-472P and SMO-422P were incubated with
nuclear extracts from PC3 cells in the presence of a 50-fold excess unlabeled consensus SP1, AP1,
AP-2 , and CREB oligonucleotides, respectively. Similarly, the competition analysis of 32P-labeled
SMO-454P and SMO-383P were performed with nuclear extracts from MCF7 cells. D. Supershift
analysis using specific antibodies. Antibodies (2 g), including anti-SP1, anti-c-Fos, anti-c-Jun, anti-
AP-2 , anti-CREB and anti-ATF1, were preincubated with 10 g of nuclear extracts before the
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addition of the 32P-labeled probes. The bands of SP1, AP1/CREB, and AP-2 binding are indicated
by arrows.

Specificity of binding was tested in competition experiments using excess 9nlabeled
oligonucleotide carrying consensus sequences, and specific versus nonspecific antibodies. A
competition assay was conducted with four probes, SMO-472P, SMO-454P, SMO-422P and SMO-
383P, to confirm DNA-protein complexes. The DNA-protein complexes formed by the SMO-472P
and SMO-422P probes were reduced or disappeared completely in the presence of a 50-fold excess
of the consensus SP1-binding oligonucleotide, but not in the presence of excess unlabeled consensus
oligonucleotides for other TFs (Figure 4c). The major complex formed by the SMO-454P probe
disappeared completely in the presence of a 50-fold excess of unlabeled consensus AP1 and was
greatly reduced by CREB oligonucleotides, but not by the addition of excess unlabeled consensus
SP1 and AP-2 oligonucleotides. The major band observed with the SMO-383P probe was reduced
only in the presence of a 50-fold excess of unlabeled consensus AP-2 oligonucleotide (Figure 4c).

A supershift assay with specific antibodies was performed using nuclear extracts from PC3
and MCEF?7 cells to confirm the identity of the TFs generating the complexes observed in Figure 4c.
As shown in Figure 4d, the DNA-protein complexes in the SMO-472P and SMO-422P regions were
supershifted by anti-SP1 antibody. The complex in the SMO-383P region was supershifted by anti-
AP-2 antibody. The complex in the SMO-454P region was inhibited by anti-c-Jun, anti-ATF1 and
anti-CREB antibodies. Therefore SP1, AP1 (c-Jun/ATF1) / CREB, and AP-2 all appear to play a role
in SMO gene regulation.

2.6. Hypermethylation of the SMO gene in non-expressing cancer cell lines

We have identified three CpG islands in the 5'-flanking region of the SMO gene, and CpG
island 1 is located in the proximal promoter region (Figure 3a). We therefore analyzed the
methylation status of CpG island 1 of the SMO gene in 33 cancer cell lines using the MSP and BSP
methods (Figure 5 and Table 2). The sequences and locations of the primer pairs used in BSP and
MSP are shown in Table S1 and Figure 5a. The methylation frequency was determined using MSP
real time PCR. The seven cell lines that did not express SMO (SUM52, MCF10A, MB231, SUN159,
MCF7, AGS and HT29) were all hypermethylated in the amplification region (Table 1 and Figure
5b). In contrast, less than 10% methylation was found in the other cell lines which expressed SMO
(Table 2). To determine the methylation status in all three CpG islands, we performed BSP for AGS,
MCEF7, SKBR3 and PC3 cells. Ten clones of the amplified region of the putative SMO promoter for
each cancer cell line were sequenced, and methylation status was established for three CpG islands
in this region using bisulfite sequencing. The full methylation of all three CpG islands was
confirmed in AGS and MCEF7 cells, whereas, no methylation was found in the cell lines SKBR3 and
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PC3 that express SMO (Figure 5c).
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Figure 5. Hypomethylation of the 5’-flanking region of the SMO gene. (A) Bases are numbered
relative to the transcription start site at position + 1. CpG sites are shown in bold. The primers used
for amplification and sequencing of bisulfate modified DNA were indicated by grey for forward
and underline for reverse primer. The long arrows indicate the orientation. (B) Methylation-specific
PCR analysis of the SMO upstream regulatory region in methylated/unmethylated controls and
nine cancer cell lines. M indicates hypermethylated SMO; U indicates unmethylated SMO. (C) SMO
promoter methylation analysis by MethPrimer. Three CpG-rich regions surrounding SMO TSS in a
span of the 1,611 bases, and results of bisulfite DNA sequencing were shown.

Table 2. Epigenetic regulation of SMO mRNA expression in tumor cell lines

SMO Methylation
Tissue Cell lines SMO mRNA Level* Frequency (%)

Prostate PCA2B 19.46 0.47
VCaP 15.15 1.65
PC3 11.33 0.61
DU145 11.14 1.99
CAHPV10 4.59 2.67
NCIH660 4.18 1.41
LNCaP 3.9 1.93
22RV1 0.18 4.9
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Breast T47D 44.96 4.05
BT549 36.26 1.47

MB435 3.56 1.41

SK-BR3 0.02 2.32
SUMb52 ND 83.57
MCF10A ND 98.28
MB231 ND 91.52

SUN159 ND 99.6
MCEF7 ND 99.66

Kidney SN-12C 114.33 0.71

TK-10 95.49 3.7

786-0 87.9 0.33

ACHN 2.54 6.88

Glioblastoma SF268 61.21 0.36
SF539 38.5 9.06

U251 31.36 0.31

SNB75 27.07 0.77

Ovary IGROV1 85.11 2.37
OVCAR4 33.99 0.84

SKOV3 5.65 3.1
Stomach AGS ND 99.36
Skin SK-MEL2 9.28 3.39
Colon HT29 ND 96.22
Lung H322 11 1.98
Myeloma RPMI8226 0.02 0.57

Abbreviations: ND, not detectable

*Relative mRNA expression = (Target gene / 18s rRNA) x 1,000,000

11 of 20

To confirm the role of methylation in silencing SMO gene expression, the breast cancer cell line
MCEF7 that lacked SMO gene expression, and the prostate cancer cell line PC3 with moderate SMO
expression, were treated with 5-aza-dC for 72 hr. Treatment with 5-aza-dC resulted in expression of
SMO in MCF?7 cells, however, treatment with 5-aza-dC decreased SMO expression in PC3 cells

(Table 3).

Table 3. Demethylation treatment restored SMO mRNA expression in MCF7 cell

Control 5-Aza treatment (1 pM)
Cellline  Methylation frequency (%) mRNA level Methylation frequency (%) mRNA level
MCF7 99.6 0 57.9
PC3 0.6 113.3 1.5
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3. Discussion

The HH pathway drives oncogenesis in many cancers, and strategies targeting this pathway
have been developed, most notably through inhibition of SMO which is a key step involved in the
regulation of the seven-transmembrane oncoprotein. SMO is able to activate the glioma-associated
oncogene (GLI) family of transcription factors, leading to hyperproliferation of epithelial cells [32].

CpG islands represent a common epigenetic element that regulates transcription at many
promoters through methylation-induced silencing. In this study, the most striking feature revealed
by in silico analysis of the SMO promoter is the abundance of CpG dinucleotides and multiple SP1
binding sites (7xSP1 sites) close to the TSS. SP1 has been widely described as a general transcription
factor involved in the transcription of gene promoters that lack a TATA box. CpG-rich promoters
bound by DNA sequence-specific transcription factors including SP1 have the highest expression
level, and deletion of SP1 binding sites results in significantly decreased promoter activity [33,34].

We have isolated and cloned DNA fragments containing the predicted SMO promoter region,
and the strongest promoter activity was identified in the 5-UTR region around -500/+25 that
contains a high GC content, is CpG rich and lacks a canonical TATA box. Evaluation of the
predicted SP1 consensus sites revealed that the SMO-472P (-472 to -444 bp) and SMO-422P (-422 to -
398 bp) regions are functional in binding to the SP1 transcriptional factor as shown in
EMSA /supershift experiments. In addition, inducible TF factors binding to AP1 and AP2 sites were
also identified in the promoter region and may play a role in modulating SMO expression.

The epigenetic regulation of SMO transcription was characterized in 33 cancer cell lines. We
determined the mRNA expression of the major HH pathway genes, SMO, PTCH, GLI1, GLI2 and
GLI3 and found the highest level of mRNA expression was observed in the SMO gene. DNA
methylation is a major epigenetic regulatory mechanism of gene expression and is involved in the
progression of cancer [35]. The absence of SMO expression in 7 cell lines derived from breast (5 of
9), stomach (1 of 1), and colon (1 of 1) cancer tissues was correlated with a high level of gene
methylation. The level of SMO mRNA was negatively correlated with the methylation status of the
SMO promoter (Figure 6). In this study, SMO and GLI3 were undetectable in the HT29 colon cancer
cell line. This result is consistent with a previous study that showed SMO methylation leads to
silencing of GLI3 expression [36]. Moreover, full methylation was confirmed in all three CpG
islands in the MCF7 breast cancer cell line, and stomach cancer cell line AGS, and SMO expression
in MCF7 cells was restored after 1 uM 5-Aza treatment. The results indicate that DNA methylation
of the SMO gene may play an important role in the development of cancer. Cell lines from breast
cancer tissue showed the highest methylation frequency, 56% (5/9), whereas 8 prostate cancer cell
lines had no detectable methylation in the SMO gene. Whether the degree of SMO methylation
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correlates with the tissue specificity remains to be explored.

SMO mRNA SMO methylation (%)

Cell line
Cell line
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Figure 6. Correlation of mRNA level and methylation frequency of SMO gene in 33 cancer cell
lines. (A) mRNA level of SMO in decreasing order. (B) Distribution of methylation frequency (%) in
the cell lines by a quantitative MSP method.

The full mechanistic details of HH signal transduction are still under investigation. Abnormal
HH activation has been implicated in tumorigenesis in a wide variety of tumors, and SMO and GLI
play a critical role in this pathway. GLI2 is suggested to function primarily as a transcriptional
activator, and GLI3 as a repressor [4]. A significant positive correlation was identified between the
expression of SMO and GLI2 in our study. This is consistent with previous reports that
overexpression of either GLI1 or GLI2 leads to tumor development in transgenic mice, suggesting
that GLI1 or GLI2 contribute to tumorigenesis by increasing SMO expression that is associated with
the development of cancer [17,37]. PTCHI1 has emerged as a tumor suppressor gene and
developmental regulator. Although the role of GLI3 as a negative regulator of HH signaling is well
established in the context of normal development, its role in cancer has largely been ignored [38-40].
In this study, we have demonstrated that GLI3expression is significantly positive correlated with
PTCHL1 levels (Pearson’s correlation=0.532, p=0.001). This result is indirectly supported by the study
of Ohba et al. They reported that PTCH1 deficient (PTCH1 +/-) cells showed increase adult bone
mass in patients with nevoid basal cell carcinoma syndrome through reduced GLI3 [41]. Moreover,
different mutations in GLI3 [42] and PTCH1 haploinsufficiency are associated with distinct
autosomal dominant syndromes [43]. These data suggest that the repressive effect of PTCH1 and
GLI3 on HH signaling has a crucial role in cancer development.

4. Materials and Methods
4.1. Computational analysis of the SMO gene

Identification and sequence analysis of evolutionary conserved regions (ECRs) of the SMO was
performed with the ECR Browser, and the publicly available web-based tool mVista [44] using the
MLAGAN algorithm. A search for potential TFBS in the upstream regulatory region of the SMO
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gene was performed online at Genomatix using the MatInspector program
(http://www.cbrc.jb/research/db/TFSEARCH.html).

4.2. Cell lines and 5-Aza treatment

All cancer cell lines were purchased from American Type Culture Collection (ATCC, Rockville,
MD, USA) and grown according to the ATCC instructions. 5-Azacytidine (5-Aza, Sigma-Aldrich)
was freshly prepared in PBS before use. A vehicle control consisting of culture medium alone was
included in the analysis. MCF7 and PC3 cells were pre-cultured for 24 h, then treated with1 M 5-
Aza for 72 h. Cells were collected by centrifugation, then genomic DNA and RNA were extracted
and analyzed.

4.3. Real Time quantitative RT-PCR

Total cellular RNA was isolated and purified by RNeasy columns (QIAGEN Valencia, CA,
USA) according to the manufacturer’s instructions with on-column and in-solution DNasel
digestion. RNA quality and quantity were determined using Agilent RNA 6000 Nano Chip (Agilent
Technologies Inc., CA, USA). cDNA synthesis was carried out using Random Hexamer primer,
Tagman Reverse Transcription Reagents kit (Applied Biosystems Foster City, CA, USA).Tagman
real time RT-PCR primers and probes for target genes were designed by using the Primer Express
software. SMO Fwd: 5-GAGACTCGGACTCCCAG-3’; Rev: 5’-GTATACGGCACACAGCAG-3’ and
probe: 5 (FAM)-TCGGGCCTCCGGAAT-(MGB)3'. PTCH1 Fwd: 5'-GCATAGGAGTGGAGTTCA-3’;
5-CCCTGCGGTTCTTGTC-3" and probe 5'(FAM)-TTGGCCTTTCT-(MGB)3'. GLI1 Fwd: 5'-
GTCTCAAACTGCCCAGC-3’; Rev: 5-CGTTCAAGAGAGACTGGG-3’ and Probe: 5 (FAM)-
TCCCACACCGGTACCA-(MGB)3'. PTCH2, (Assay ID=Hs01085642_ml), GLI2 (Assay
ID=Hs00257977_ml) and GLI3 (Assay ID=Hs00609233_ml). Tagman real time RT-PCR was used to
determine the expression profile, with a 185 rRNA plasmid as the standard reference gene using
primers Fwd: 5-CCGAAGCGTTTACTTTGAAAAAA-3’; Rev: 5'-
TTCCATTATTCCTAGCTGCGGTAT-3" and probe 5'(VIC)-AGTGTTCAAAGCAGGCC-(MGB) 3'
[45]. The PCR reactions were performed in 20yl final volume containing 5 ng of cDNA, 1 x Master
Mix (TagMan Universal PCR Master Mix, ABI, CA), 900nM of each primer and 200nM of each
probe, respectively. The thermal cycling condition are 40 cycles of PCR amplification (UNG
incubation: 50°C, 2min; Ampli TaqGold activation: 95°C, 10 min; denaturation: 95°C, 15 s;
annealing/extension: 60°C, 1 min) (ABI PRISM 7900HT Sequence Detection System, CA). All assays
were performed in triplicate, and each plate contained the same standard and positive quality
control sample. For each unknown sample, the copy number of each gene is calculated using linear
regression analysis from their respective standard curves (Figure S1). The relative mRNA
expression level of target genes was normalized by the following formula: (copy number of target
gene) / (copy number of 185 rRNA) x 10,000. The standard curves were generated using a dilution
series of plasmids containing SMO, PTCH1, PTCH2, GLI1, GLI2 and GLI3 from full length of cDNA
(ATCC, Rockville, MD). The copy number of plasmid cDNA was calculated by optimal density
according to the exact molar mass derived from the sequences. Serial dilutions were made to obtain
101 to 107 copies. The slope and intercept were calculated for each run using linear regression
analysis of log copy number versus threshold cycle (Ct) value for both target genes and 185 rRNA
standard curves [46].

4.4, Bisulfite modification and bisulfite sequencing PCR (BSP)

DNA was extracted using the QIAamp DNA Mini Kit (Qiagen, Valencia, CA). Bisulfite
modification of 1 g of genomic DNA was performed with the EpiTect Bisulfite Kit (Qiagen) as
described by the manufacturer. Primers for BSP and identification of predicted CpG islands in SMO
promoter region were carried out with the assistance of Methyl Primer Express Software v1.0
(Applied Biosystems) and MethPrimer (http://www.urogene.org/methprimer/). The primer
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sequences used for methylation analysis are summarized in Table S1. PCR reactions were
performed in a volume of 25 ul containing 10 ng of bisulfite-converted DNA and 20 pmol of each
primer using Platinum® PCR SuperMix (Invitrogen, Carlsbad, CA). Thermal cycling conditions
were 95°C for 2 min, followed by 35 cycles of 95°C for 15 s, 56°C for 30 s, 72°C for 10 s, and final
extension at 72°C for 5 min. For sequence analysis, the PCR products were subcloned into a pCR2.1
vector using a TOPO TA Cloning kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s
instructions. At least twelve clones were sequenced in an ABI 3730 DNA Sequencer (Applied
Biosystems) for each cell line tested. Methylation analysis was performed using BiQ Analyzer
software [47].

4.5. Methylation-specific PCR (MSP)

The MSP products were 132 bp long. Unmethylated and methylated human DNA was used as
a negative and a positive control, respectively (Qiagen). Water blanks and PCR mixtures without
template were also used as experimental controls in each assay. The primers were listed in Table S1.
The amplification cycles performed were 38 cycles. After PCR, products were separated on a 2%
agarose gel, and stained with ethidium bromide. Bisulfite treatment and MS-PCR assays were
performed in duplicate for all samples. Each experiment was performed at least three times.

4.6. Real-time quantitative MSP

The bisulfite—-converted genomic DNA was amplified using fluorescence-based real-time MSP
using FastStart SYBR Green Master Kit (Roche). Methylation of the SMO gene was examined using
actin as the internal control for DNA quantification. The beta actin gene contains no CpG
dinucleotides and is not affected by DNA methylation status or bisulfite treatment. The primers for
quantitative MSP are same as the normal MSP shown in Table 1. Real-time PCR conditions were
95 °C for 10 min followed by 40 cycles of 94 °C for 15 s, 59 °C for 60 s with data acquisition after
each cycle. At the end, properties of real-time PCR conditions and amplification products were
checked by melting curve analysis. PCRs were done in two replicates of each sample with the
7900HT Fast Real-Time PCR System (Applied Biosystems).

4.7. Touchdown PCR of the SMO promoter region

PCR was carried out in a volume of 50 pl containing 100 ng of genomic DNA, 20 pmol of each
primer and 3% Dimethyl Sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO, USA) using Platinum®
PCR SuperMix Kit (Invitrogen, Carlsbad, CA, USA). A modified touchdown PCR was performed
with the following cycling conditions: the templates were denatured at 94°C for 3 min, and then 20
cycles composed of 20 s at 95°C, 30 s annealing with a stepwise reduction of annealing temperature
from 68°C to 58°C decreasing by 0.5°C every cycle, and an elongation step of 4 min at 72°C. Twenty
additional cycles were then performed at 94°C 20 s, 58°C for 40 s, and 72°C for 40 s. The standard
PCR program was 35 cycles at 94°C 20 s, 58°C for 40 s, and 72°C for 40 s. All PCR products were
analyzed by electrophoresis on a 1.0% agarose gel stained with ethidium bromide.

4.8. Generation of luciferase reporter plasmids

A series of truncated SMO promoter constructs, including 5 deletions from the 5 side and 3
deletions on the 3’ side, were created by PCR using the primers shown in Table S1. PCR products
were cloned into the TOPO-TA vector, and inserts were excised with Sacl and Xhol and cloned into
pGL3 (Promega, Madison, WI, USA) to generate constructs in the forward orientation. All
subclones were verified by sequencing. Sequence analysis was performed with the Molecular
Evolutionary Genetics Analysis (MEGA) software version 7.

4.9. Cell transfection and luciferase assays
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Two breast cancer cell lines, MCF7 and BT549, and prostate cancer cell line PC3, were used for
the analysis of promoter constructs. The cells were plated at 1x105 cells per well in a 24-well plate
the day before transfection and incubated overnight at 37°C in 5% CO2. For each well, 5 ul of
HilyMax transfection reagent (Dojindo, Rockville, MD, USA) was diluted in 30 pl of growth
medium without serum and incubated at room temperature for 5 min. The DNA mixture
containing 2 g of the specific reporter construct plus 2 ng of Renilla luciferase pRL-5V40 control
DNA was then added to each well, and incubated at room temperature for 20 min. Luciferase
activity was assayed at 48 hr using the Dual-Luciferase Reporter Assay System (Promega, Madison,
WI, USA) according to the manufacturer’s instructions. Measurement of the firefly luciferase
activity of the SMO promoter constructs was normalized relative to the activity of the Renilla
luciferase produced by the pRLSV40 control vector and each construct was tested in triplicate in at
least three independent experiments.

4.10. Electrophoretic mobility shift assays (EMSA)

Nuclear extracts were prepared from PC3, BT549 and MCF?7 cells using the CellLytic
NuCLEAR extraction kit (Sigma-Aldrich, St. Louis, MO). Six double-stranded DNA oligonucleotide
probes corresponding to -500 to -357 bp of SMO promoter were synthesized (Figure 5a, upper
panel). Labeling, DNA-protein binding reactions and antibody supershift experiments were
performed as previous described [46,48]. For supershift experiments, antibody was added after
addition of labeled DNA-probe, and the binding reaction was incubated for additional 20 min at
room temperature. For competition analyses, a 50-fold excess of consensus unlabeled-competitor
oligonucleotides, SP1, AP1, Ap-2 , and CREB (Santa Cruz Biotechnology, Santa Cruz, CA), were
included in the binding reaction.

4.11. Statistical analysis

The correlation of mRNA expression levels of SMO, PTCH1, GLI1, GLI2 and GLI3 were
assessed by Pearson’s correlation coefficient using GraphPad Prism 7 software. All p values
reported were two-tailed, with significance defined as p < 0.05.

5. Conclusions

In conclusion, our data provide strong experimental and computational evidence for genetic
and epigenetic regulatory mechanisms of the SMO gene. The SMO promoter has been characterized
and its major regulatory elements, including multiple CpG islands and SP1 binding sites, were
identified. A correlation between SMO/GLI2 and PTCH1/GLI3 expression was observed. Moreover,
SMO expression is correlated with the degree of CpG island methylation. Our results reveal a
central role for epigenetic regulation of SMO gene transcription that may be exploited for the
development of new therapeutic strategies to treat hedgehog-driven tumors.

Supplementary Materials:

Figure S1. Pearson’s correlation analysis of gene expression levels of SMO, PTCH, GLI1, GLI2 and GLI3 in cancer
cells. Pearson's correlation coefficients were performed to estimate the correlations of mRNA expression levels
using the JMP program.

Figure 52. Comparison of PCR conditions to amplify SMO promoter sequence in BT549 DNA. The figure showed
PCR products from the five different primer sets used in the 5'-deletion assay to amplify 984bp, 525bp, 500bp,
425bp and 318bp fragments of the SMO promoter (M&M section), respectively. Equal amounts (15 pl) were
loaded on a 1.0% agarose gel. Left panel showed PCR results from the touchdown PCR, and right panel showed
PCR results from the standard PCR program. Lane M, molecular weight marker (1kb plus DNA ladder).

Figure S3. Identification of SMO promoters by 5’ truncation analysis. A schematic representation of the SMO
bidirectional element is shown with the potential transcription factor binding sites. Serial deletions at the 5’ end


https://doi.org/10.20944/preprints202005.0495.v1
https://doi.org/10.3390/cancers12082219

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 d0i:10.20944/preprints202005.0495.v1

17 of 20

of the promoter fragment of SMO are shown. The luciferase activity of pGL3 constructs containing fragments
cloned in either the reverse (left panel) or forward (right panel) orientation is shown as fold-increase of corrected
light units relative to an empty pGL3 vector control [48]. Values represent the mean+SEM of at least three
independent experiments.

Table S1. Sequences of primers used in this study.
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