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Abstract: 1) Background: The hedgehog (HH) signaling pathway is a key regulator of embryonic 

patterning, tissue regeneration, stem cell renewal, and cancer growth. The smoothened (SMO) 

protein regulates the HH signaling pathway and has demonstrated oncogenic activity. 2) Methods: 

To clarify the role of the HH signaling pathway in tumorigenesis, the expression profile of key HH 

signaling molecules, including SMO, PTCH1, GLI1, GLI2, and GLI3, were determined in thirty-three 

cancer cell lines. We performed a computational analysis of the upstream region of the SMO gene 

to identify the regulatory elements. 3) Results: Three potential CpG islands and several putative 

SMO promoter elements were identified. Luciferase reporter assays mapped key SMO promoter 

elements, and functional binding sites for SP1, AP1, CREB, and AP-2 transcription factors in the 

core SMO promoter region were confirmed. A hypermethylated SMO promoter was identified in 

several cancer cell lines suggesting an important role for epigenetic silencing of SMO expression in 

certain cancer cells. 4) Discussion: These results have important implications for our understanding 

of regulatory mechanisms controlling HH pathway activity and the molecular basis of SMO gene 

function. Moreover, this study may prove valuable for future research aimed at producing 

therapeutic downregulation of SMO expression in cancer cells. 
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1. Introduction 

The hedgehog (HH) pathway is one of the key signaling pathways regulating embryonic 

patterning, tissue regeneration, stem cell renewal, and cancer growth [1-4]. Canonical HH signaling 

is triggered by the binding of HH ligand to its receptor PTCH1, resulting in the release of PTCH1 

mediated repression of the seven-transmembrane protein smoothened (SMO). Activation of SMO 

ultimately triggers GLI dependent expression of downstream target genes through a complex 

network of post-translational processes and translocations [5]. In the absence of HH ligands, PTCH 

inhibits SMO, and GLI2, GLI3 are phosphorylated and undergo partial proteasome degradation, 

resulting in repressive forms of GLI2 and GLI3 (GLI2/3 R), that translocate into the nucleus where 

they inhibit the transcription of HH target genes [6,7]. HH pathway activation amplifies the signal 
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by increasing GLI1 levels, and in contrast, potentiates negative regulators such as PTCH1 and HH 

interacting protein (HHIP) [8,9]. The positive and negative feedback loops ensure that the activity 

of HH signaling is kept within an optimal range. Constitutive activation of the HH pathway has 

been observed in various types of malignancies caused either by mutations in the pathway, such as 

PTCH1 loss-of function or SMO activation in basal cell carcinoma, or through HH overexpression, 

as observed in small-cell lung cancer, glioma, endometrial carcinoma, digestive tract tumors, 

pancreas, and prostate [10-16].  

 The switch between active and inactive states of the HH pathway involves rapid translocation 

of SMO. The SMO protein is the key positive regulator of the HH pathway, and GLI family proteins 

play a critical role in the regulation of HH signaling pathway activity. Despite a strong link between 

SMO expression, HH pathway activity, and cancer development, the basis for SMO gene regulation 

has not been well characterized. Therefore, an investigation of the mechanisms controlling the 

expression of SMO and additional HH pathway genes may provide valuable insight into HH 

signaling alterations associated with cancer development. SMO also is the major target for 

pharmaceutical agents that modulate HH pathway activity [17-19], such as vismodegib [20] and 

sonidegib [21]. We previously studied SMO peptides, and found that specific lipopeptides can serve 

as effective inhibitors [22,23].  

 DNA methylation of HH pathway genes is a potential regulatory mechanism in the 

progression of cancers. Several epigenetic factors that act on the HH signaling pathways have been 

associated with cancer initiation and progression [10,24]. It was reported that distinct subgroups of 

cancers have an exceptionally high frequency of cancer specific CpG island hypermethylation 

[25,26]. Methylation has been studied as a clinical biomarker for the diagnosis and prognostic 

evaluation of various cancers, especially in breast cancer [27]. Recently, SMO methylation was used 

as a biomarker for the occurrence and development of breast cancer [28]. 

 In the current study, we have developed a qRT-PCR method to accurately determine the 

expression levels of SMO, PTCH1, GLI1, GLI2 and GLI3 in a panel of cancer cell lines. Different 

SMO expression patterns in the cancer cell lines led us to characterize SMO gene regulatory 

elements. The SMO 5’-flanking region and Exon 1 was analyzed in silico, revealing that the region 

surrounding the SMO transcriptional start site (TSS) has an extremely high GC content (70%+) that 

prevents its PCR amplification by traditional methods. We used a touchdown PCR method to 

amplify SMO promoter fragments and determined their promoter activity using a dual luciferase 

assay. EMSA analysis identified binding sites for the transcription factors, SP1, AP1, CREB, and AP-

2 , which likely play an important role in SMO transcriptional activity in cancer cells. In order to 

gain insight into the epigenetic regulation of SMO, bisulfite sequencing PCR (BSP) and methylation 

specific PCR (MSP) were carried out to determine methylation status of the potential SMO 

promoter region. The relationship between the methylation status and SMO mRNA expression was 

analyzed. 

2. Results 

2.1 Expression of HH signaling molecules in cancer cell lines 

In order to gain a greater understanding of the transcriptional regulation of the HH pathway 

components, a careful analysis of mRNA levels for key HH signaling genes was conducted. 

Quantification of mRNA expression levels using a real-time PCR method is increasingly used to 

determine the activity of HH signaling genes. However, most studies use a relative RT-PCR 

method, which is less precise, and does not provide meaningful comparisons of gene expression 

between different cell lines. Therefore, an accurate quantitation of HH pathway mRNA expression 

is necessary. In this study, we developed and validated a standard curve based on a Taqman qRT-

PCR method to measure key HH signaling genes, including SMO, PTCH1, GLI1, GLI2 and GLI3.  
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The results produced a broad linear dynamic range of detection of at least 6 logs, and a small 

quantitative variation produced by triplicate analysis. The slope of the curve was used to determine 

the reaction efficiency. Efficiency = [10(-1/slope)] – 1 [29]. The efficiency of standard curve for all 

genes in is greater than 92% and R2 is greater than 0.99. 

 The expression levels of HH signaling components were determined in 33 cancer cell lines 

using the quantitative Taqman RT-PCR method. Expression levels of the HH pathway genes, the 

HH signaling receptors PTCH and SMO, and the target transcription factors GLI2, and GLI3, varied 

significantly among the cancer cell lines (Figure 1). The SMO gene exhibited the highest level of 

mRNA expression and the greatest variation between cell lines (22.98±31.80, 95% CI 11.70~31.25), 

compared with PTCH1 (8.72±10.44, 95% CI 5.02~12.42), GLI2 (1.25±2.08, 95% CI 0.56~1.99) and GLI3 

(18.04±20.26, 95% CI 10.85~25.22), whereas GLI1 (0.17±0.25, 95% CI 0.08~0.26) that functions as an 

amplifier of HH signal, consistently showed low expression in all cancer cell lines. In addition, the 

absence of SMO expression was confirmed in seven cell lines, including 5 breast cancer cell lines 

and the stomach cancer AGS cell line, whereas the lack of SMO was accompanied by undetectable 

GLI3 in colon cancer HT29 cells (Table 1). 

 

Figure 1. (A) Distribution of mRNA levels of SMO, PTCH, GLI1, GLI2 and GLI3 in 33 cancer cell 

lines. Mean values ± SCE of each gene are indicated by horizontal bars. (B) Comparison of mRNA 

levels. The mRNA levels of the five genes were quantitated from the Taqman RT-PCR as described 

in Materials and Methods. Data are presented by cell line in decreasing order of SMO mRNA level. 

Table 1.  Expression level of hedgehog pathway genes in 33 tumor cell lines   

    Level of mRNA expression* 

Tissue Cell lines SMO PTCH GLI1 GLI2 GLI3 

Prostate PCA2B 19.46 46.74 0.03 0.003 26.22 

 VCaP 15.15 10.15 0 0.1 28.43 

 PC3 11.33 0.39 0.02 1.96 17.13 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2020                   doi:10.20944/preprints202005.0495.v1

Peer-reviewed version available at Cancers 2020, 12, 2219; doi:10.3390/cancers12082219

https://doi.org/10.20944/preprints202005.0495.v1
https://doi.org/10.3390/cancers12082219


 4 of 20 

 

 DU145 11.14 1.27 0.03 9.36 0.47 

 CAHPV10 4.59 5.31 0.08 0.43 58.71 

 NCIH660 4.18 6.61 0.01 ND 0.02 

 LNCaP 3.9 4.1 0.01 ND 12.09 

  22RV1 0.18 14.68 0.19 0.01 7.91 

Breast T47D 44.96 8.71 ND ND 9.99 

 BT549 36.26 4.64 0.54 ND 18.91 

 MB435 3.56 11.43 0.04 ND 10.56 

 SK-BR3 0.02 2.72 0 0 4.39 

 SUM52 ND 2.16 0.02 0 12.09 

 MCF10A ND 3.24 ND ND 29.75 

 MB231 ND 25.2 ND 0.71 60.85 

 SUN159 ND 2.68 0.74 ND 31.01 

 MCF7 ND 0.87 0.03 0.01 5.54 

Kidney SN-12C 114.33 5.11 0.1 4.47 21.85 

 TK-10 95.49 8.95 0.3 0.46 0.08 

 786-0 87.9 4.22 0.38 6.07 13.87 

  ACHN 2.54 32.37 0.47 1.09 85.73 

Glioblastoma U251 31.36 1.19 0.08 1.01 16.5 

 SF539 38.5 2.61 0.13 0.85 25.44 

 SNB75 27.07 7.33 0.32 0.83 20.28 

 SF268 61.21 10.97 0.07 4.7 11.96 

Ovary IGROV1 85.11 17 0.11 0.62 ND 

 OVCAR4 33.99 5.46 0.03 0.74 ND 

  SKOV3 5.65 3.85 0.92 1.32 15.48 

Others             

Stomach AGS ND 0.37 0.01 2.07 0.08 

Skin SK-MEL2 9.28 27.98 0.75 2.43 48.77 

Colon HT29 ND 5.09 0.08 0.93 ND 

Lung H322 11 1.64 0.06 0.19 0.75 

Myeloma RPMI8226 0.02 2.64 0.02 0.85 0.37 

Abbreviations:  ND, not detectable         

 

*Relative mRNA expression = (Target gene / 18s rRNA) x 

1,000,000  

 

 

Significant positive correlations were identified between SMO and GLI2 transcript levels 

(Pearson’s correlation=0.359, p=0.040), and between PTCH1 and GLI3 (Pearson’s correlation=0.532, 
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p=0.001). No correlation was found between the expression levels of SMO/PTCH or SMO/GLI1 

(Figure S1). 

2.2. Interspecies comparison of genomic SMO sequences 

 For a comparison of mammalian SMO genes, we analyzed 20,500 bp of SMO genome sequence 

including the upstream, 5'-UTR, exon 1 and part of intron 1 regions for human, mouse, and rhesus 

monkey. Multiple sequence alignment of the 20,500 bp of SMO was performed by the mVista web-

tool (Figure 2). The macaque sequence is highly homologous to the human sequence, as 87.5% of 

the 20-kb region showed at least 88% sequence identity over a 100 bp window. In contrast, the 

mouse sequence shares 71.2 % identity with human, with several conserved noncoding sequences 

(CNS) showing at least 70% identity over 100 bps. 

 The global genomic sequence comparison showed significant highly conserved regions among 

the three genes immediately upstream of the transcriptional start site (P = 3.9x10-25). Five 

additional CNS were identified, but all had a lower p value that was greater than 0.005. A 924 bp 

region consisting of the full length 5’-UTR and exon 1 regions, along with 293 bp of upstream and 

20 bp of intron 1 sequence is shown in Figure 2b. This region possesses 83% identity between the 

mouse and human SMO genes, and 95% between human and rhesus. 

 

Figure 2. (A) Alignment of the 5'-flanking region of three mammalian SMO genes. 20 kb of 

upstream sequence including exon-1 from the mouse, macaque and human SMO genes was aligned 

by the MLAGAN algorithm of the mVista program. The sequences of mouse and macaque are 

aligned to the human SMO sequence (x-axis); numbering is relative to the transcriptional start site. 

Conserved regions (> 70% homology over 100 bp window) are shaded. The box indicates conserved 

regions among the three sequences, as determined by RankVista (P ≤ 10-5), with the P-values given 

above. (B) The structure of 924 bp conserved sequence. The 5’-flanking region is defined as 

sequence upstream (from the 5' end) of the transcript start site and shown in green lower-case 

letters. Intron is shown in blue lower-case letters. The exon is shown in uppercase letters, with UTR 

as purple and coding sequence as black color, respectively. 
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2.3. In silico analysis of the SMO upstream regulatory region  

 Submission of a 1,611 bp sequence, including 1,000 bp 5’-upstream region and the full Exon 1 

of the human SMO gene, to the MatInspector software program (core similarity > 0.85; matrix 

similarity optimized) returned 336 potential TFBS, distributed over the entire sequence. 

Furthermore, we performed analysis with the PromoterInspector program and found a 1028 bp 

potential promoter region within this sequence, located from position -508 to +520 bp. By using the 

ModelInspector program, twenty-five models were identified, including SMAD-MIT, SMAD-AP1, 

YY1-SMAD, ETF-AP1, SP1-ETS. SP1F-NF1, IKRS-AP2, EGR-SP1, SP1-KLFS, GATA-SP1, CAAT-

CAAT, NFKB-SP1, SP1-CAAT. 

2.4. Functional analysis of the core SMO promoter  

 Sequence analysis revealed that the 5’-flanking region of the human SMO gene exhibits a high 

GC content, and lacks a consensus TATA element. Three potential CpG islands were identified 

surrounding the SMO gene TSS using the MethPrimer program (Figure 3a). We evaluated different 

experimental PCR conditions and programs for amplification of the SMO promoter sequence. The 

GC-rich sequences contained within the SMO gene promoter region were effectively amplified by a 

touchdown program in presence of 3% DMSO [30,31]. Comparison of the touchdown PCR results 

with PCR under standard condition (fixed annealing temperature, 35 cycles) program for five 

primer-pairs corresponding to upstream region of SMO was shown in Figure S2 and Table S1. 

 

Figure 3. (A) Structure of the SMO gene. A schematic representation of the exon-intron 

organization and UTR region. 12 exons are indicated by the numbered rectangles. Distribution of 
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CpG dinucleotides in a 1,611 bp fragment of the SMO gene harboring 1,000 bp 5′ upstream region 

and full exon 1 is shown. Each vertical line represents a single CpG site. Numbering is relative to 

the transcriptional start site at exon 1. Transcription orientations are indicated by arrows. (B) 

Functional localization of the SMO promoter. A schematic of the SMO gene structure is shown 

above. Twelve SMO exons are indicated by the numbered rectangles. A schematic diagram of the 

1,500 bp 5’-flanking region of SMO and serial truncation constructs of the SMO promoter and their 

corresponding luciferase activities in different cell types are shown. Serial deletions at the 5′ and the 

3′ ends of the promoter fragment of SMO are shown on the left. The promoter activities measured 

after transfection into PC3, BT549 and MCF7 cells are shown on the right. The relative size and 

position of fragments cloned into the pGL3 vector are indicated by the lines below the schematic, 

and the numbers in parentheses on either side of each fragment indicate the distance in nucleotides 

upstream from the SMO start codon of the 5’ and 3’ ends of each fragment. The luciferase activity of 

the pGL3 constructs is shown as fold-increase of corrected light units relative to an empty pGL3 

vector control. Values represent the mean, and error bars indicate the SEM of at least three 

independent experiments. 

The potential promoter region upstream of the SMO gene was analyzed using interspecies 

comparison with the Genomatix package. Multiple regulatory elements are located surrounding the 

TSS of SMO and may play a role in the regulation of SMO expression. In order to determine the 

minimal sequences required for promoter function and identify cis-acting elements controlling 

SMO promoter activity, a series of truncated luciferase constructs were generated by progressive 

deletion from the 5′ end of a 984 bp fragment (region from -959 to +25 relative to the TSS), to 

produce 5 constructs (Figure 3b and Table S1), based on our 5’ truncation analysis result (Figure S3). 

Plasmids containing SMO gene fragments were transiently transfected into three cancer cell lines 

(prostate cancer line PC3; breast cancer lines BT549 and MCF7), and the luciferase activities of these 

constructs were measured. 

The highest promoter activity was observed in MCF7 cells, and moderate activity was found in 

PC3 and BT549 cells. In MCF7 cells, increased promoter activity was detected upon removal of 459 

bp of 5’ sequence up to position -500 bp (relative to the transcription initiation site), indicating the 

presence of negative regulatory element(s) in the region from -959 bp to -500 bp in MCF7 cells. 

When truncated to -470 bp, the promoter activity returned to the full-length promoter activity, and 

deletion of additional sequence to either -400 or -293 further reduced promoter activity, suggesting 

the presence of positive regulatory element (s) in the region -500 bp to -293 bp. In PC3 and BT549 

cells, the 5’ truncations had little effect and maximal activity was observed with the PGL3-SMO-

400/+25 construct. The PGL3-SMO-500/+25 construct exhibited the highest promoter activity in 

MCF7 cells therefore, this reporter vector was used for subsequent 3’ deletion analysis (Figure 3b). 

 To further identify the 3’ boundary of the core promoter, three plasmids were generated 

sharing the same 5’ boundary at position -500, and variable 3’ ends from +50 to -15. In contrast to 

the results from the 5’ deletion analysis, luciferase activity with the 3’ deletions showed similar 

effects in all three cell lines. The promoter activities were comparable between the PGL3-SMO-

500/+25 and PGL3-SMO-500 /+15 in the three cell lines, while addition of 25 bp of 3’ sequence to +50 

resulted a decreased activity (Figure 3b), indicating an absence of downstream promoter element 

activity in the SMO promoter.  

 Taken together, these results demonstrated that the region between the -500 and +15 bp is 

important for transcriptional activity of the SMO promoter, and both negative and positive 

regulatory regions can affect the promoter activity of SMO gene depending on cell context. 

2.5. Identification of transcription factor binding sites in the SMO gene promoter  
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EMSA experiments were conducted to investigate the binding of nuclear proteins to the core 

proximal SMO promoter sequences in nuclear extracts of PC3, BT549 and MCF7 cells. (Figure 4). Six 

overlapping oligonucleotide probes covering the region between -500 and -357 bp (Fig. 4a) that 

significantly enhanced promoter activity in MCF7 cells were prepared to investigate their DNA-

protein binding activity. Double-stranded DNA probes spanning ~30 bp, covering the regions -500 

to -471 (SMO-500P); -472 to -444 (SMO-472P); -454 to -421 (SMO-454P); -422 to -398 (SMO-422P); -

400 to -373 (SMO-400P); and -383 to -357 (SMO-383P) were prepared. The SMO-472P, SMO-454P, 

SMO-422P and SMO-383P probes showed clear binding with nuclear proteins extracted from PC3, 

BT549 and MCF7 cells, while the SMO-500P and SMO-400P probes did not produce strong 

complexes with nuclear proteins from any of the cell lines tested (Figure 4b). The SMO-472P, SMO-

422P and SMO-383P showed strong binding with nuclear protein from MCF7, but strong binding in 

the SMO-454P region was observed with nuclear proteins from PC3 and BT549 (Figure 4b). 

 

Figure 4. EMSA analysis of the core region of SMO promoter. (A) Binding assay using 

overlapping probes in the SMO promoter. A schematic illustration of six probes used for EMSA is 

shown in the upper panel. (B) The 32P-labeled probes were incubated with nuclear extracts from 

PC3, BT549 and MCF7 cells, respectively. (C) Competition analysis using a 50-fold excess of 

unlabeled oligonucleotides (cold). The 32P-labeled SMO-472P and SMO-422P were incubated with 

nuclear extracts from PC3 cells in the presence of a 50-fold excess unlabeled consensus SP1, AP1, 

AP-2 , and CREB oligonucleotides, respectively. Similarly, the competition analysis of 32P-labeled 

SMO-454P and SMO-383P were performed with nuclear extracts from MCF7 cells. D. Supershift 

analysis using specific antibodies. Antibodies (2 g), including anti-SP1, anti-c-Fos, anti-c-Jun, anti-

AP-2 , anti-CREB and anti-ATF1, were preincubated with 10 g of nuclear extracts before the 
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addition of the 32P-labeled probes. The bands of SP1, AP1/CREB, and AP-2  binding are indicated 

by arrows. 

Specificity of binding was tested in competition experiments using excess 9nlabeled 

oligonucleotide carrying consensus sequences, and specific versus nonspecific antibodies. A 

competition assay was conducted with four probes, SMO-472P, SMO-454P, SMO-422P and SMO-

383P, to confirm DNA-protein complexes. The DNA-protein complexes formed by the SMO-472P 

and SMO-422P probes were reduced or disappeared completely in the presence of a 50-fold excess 

of the consensus SP1-binding oligonucleotide, but not in the presence of excess unlabeled consensus 

oligonucleotides for other TFs (Figure 4c). The major complex formed by the SMO-454P probe 

disappeared completely in the presence of a 50-fold excess of unlabeled consensus AP1 and was 

greatly reduced by CREB oligonucleotides, but not by the addition of excess unlabeled consensus 

SP1 and AP-2  oligonucleotides. The major band observed with the SMO-383P probe was reduced 

only in the presence of a 50-fold excess of unlabeled consensus AP-2  oligonucleotide (Figure 4c). 

A supershift assay with specific antibodies was performed using nuclear extracts from PC3 

and MCF7 cells to confirm the identity of the TFs generating the complexes observed in Figure 4c. 

As shown in Figure 4d, the DNA-protein complexes in the SMO-472P and SMO-422P regions were 

supershifted by anti-SP1 antibody. The complex in the SMO-383P region was supershifted by anti-

AP-2  antibody. The complex in the SMO-454P region was inhibited by anti-c-Jun, anti-ATF1 and 

anti-CREB antibodies. Therefore SP1, AP1 (c-Jun/ATF1) / CREB, and AP-2  all appear to play a role 

in SMO gene regulation. 

2.6. Hypermethylation of the SMO gene in non-expressing cancer cell lines 

We have identified three CpG islands in the 5’-flanking region of the SMO gene, and CpG 

island 1 is located in the proximal promoter region (Figure 3a). We therefore analyzed the 

methylation status of CpG island 1 of the SMO gene in 33 cancer cell lines using the MSP and BSP 

methods (Figure 5 and Table 2). The sequences and locations of the primer pairs used in BSP and 

MSP are shown in Table S1 and Figure 5a. The methylation frequency was determined using MSP 

real time PCR. The seven cell lines that did not express SMO (SUM52, MCF10A, MB231, SUN159, 

MCF7, AGS and HT29) were all hypermethylated in the amplification region (Table 1 and Figure 

5b). In contrast, less than 10% methylation was found in the other cell lines which expressed SMO 

(Table 2). To determine the methylation status in all three CpG islands, we performed BSP for AGS, 

MCF7, SKBR3 and PC3 cells. Ten clones of the amplified region of the putative SMO promoter for 

each cancer cell line were sequenced, and methylation status was established for three CpG islands 

in this region using bisulfite sequencing. The full methylation of all three CpG islands was 

confirmed in AGS and MCF7 cells, whereas, no methylation was found in the cell lines SKBR3 and 
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PC3 that express SMO (Figure 5c). 

 

Figure 5. Hypomethylation of the 5’-flanking region of the SMO gene. (A) Bases are numbered 

relative to the transcription start site at position + 1. CpG sites are shown in bold. The primers used 

for amplification and sequencing of bisulfate modified DNA were indicated by grey for forward 

and underline for reverse primer. The long arrows indicate the orientation. (B) Methylation-specific 

PCR analysis of the SMO upstream regulatory region in methylated/unmethylated controls and 

nine cancer cell lines. M indicates hypermethylated SMO; U indicates unmethylated SMO. (C) SMO 

promoter methylation analysis by MethPrimer. Three CpG-rich regions surrounding SMO TSS in a 

span of the 1,611 bases, and results of bisulfite DNA sequencing were shown. 

Table 2.  Epigenetic regulation of SMO mRNA expression in tumor cell lines 

Tissue Cell lines SMO mRNA Level* 

SMO Methylation 

Frequency (%) 

Prostate PCA2B 19.46 0.47 

 VCaP 15.15 1.65 

 PC3 11.33 0.61 

 DU145 11.14 1.99 

 CAHPV10 4.59 2.67 

 NCIH660 4.18 1.41 

 LNCaP 3.9 1.93 

 22RV1 0.18 4.9 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2020                   doi:10.20944/preprints202005.0495.v1

Peer-reviewed version available at Cancers 2020, 12, 2219; doi:10.3390/cancers12082219

https://doi.org/10.20944/preprints202005.0495.v1
https://doi.org/10.3390/cancers12082219


 11 of 20 

 

Breast T47D 44.96 4.05 

 BT549 36.26 1.47 

 MB435 3.56 1.41 

 SK-BR3 0.02 2.32 

 SUM52 ND 83.57 

 MCF10A ND 98.28 

 MB231 ND 91.52 

 SUN159 ND 99.6 

  MCF7 ND 99.66 

Kidney SN-12C 114.33 0.71 

 TK-10 95.49 3.7 

 786-0 87.9 0.33 

  ACHN 2.54 6.88 

Glioblastoma SF268 61.21 0.36 

 SF539 38.5 9.06 

 U251 31.36 0.31 

 SNB75 27.07 0.77 

Ovary IGROV1 85.11 2.37 

 OVCAR4 33.99 0.84 

  SKOV3 5.65 3.1 

Stomach AGS ND 99.36 

Skin SK-MEL2 9.28 3.39 

Colon HT29 ND 96.22 

Lung H322 11 1.98 

Myeloma RPMI8226 0.02 0.57 

Abbreviations:  ND, not detectable   

 *Relative mRNA expression = (Target gene / 18s rRNA) x 1,000,000 

 

To confirm the role of methylation in silencing SMO gene expression, the breast cancer cell line 

MCF7 that lacked SMO gene expression, and the prostate cancer cell line PC3 with moderate SMO 

expression, were treated with 5-aza-dC for 72 hr. Treatment with 5-aza-dC resulted in expression of 

SMO in MCF7 cells, however, treatment with 5-aza-dC decreased SMO expression in PC3 cells 

(Table 3). 

Table 3. Demethylation treatment restored SMO mRNA expression in MCF7 cell  
  Control   5-Aza treatment (1 µM) 

Cell line Methylation frequency (%) mRNA level   Methylation frequency (%) mRNA level 

MCF7 99.6 0   57.9 16.1 

PC3 0.6 113.3   1.5 86.5 
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3. Discussion 

The HH pathway drives oncogenesis in many cancers, and strategies targeting this pathway 

have been developed, most notably through inhibition of SMO which is a key step involved in the 

regulation of the seven-transmembrane oncoprotein. SMO is able to activate the glioma-associated 

oncogene (GLI) family of transcription factors, leading to hyperproliferation of epithelial cells [32].  

CpG islands represent a common epigenetic element that regulates transcription at many 

promoters through methylation-induced silencing. In this study, the most striking feature revealed 

by in silico analysis of the SMO promoter is the abundance of CpG dinucleotides and multiple SP1 

binding sites (7xSP1 sites) close to the TSS. SP1 has been widely described as a general transcription 

factor involved in the transcription of gene promoters that lack a TATA box. CpG-rich promoters 

bound by DNA sequence-specific transcription factors including SP1 have the highest expression 

level, and deletion of SP1 binding sites results in significantly decreased promoter activity [33,34].  

We have isolated and cloned DNA fragments containing the predicted SMO promoter region, 

and the strongest promoter activity was identified in the 5’-UTR region around -500/+25 that 

contains a high GC content, is CpG rich and lacks a canonical TATA box. Evaluation of the 

predicted SP1 consensus sites revealed that the SMO-472P (-472 to -444 bp) and SMO-422P (-422 to -

398 bp) regions are functional in binding to the SP1 transcriptional factor as shown in 

EMSA/supershift experiments. In addition, inducible TF factors binding to AP1 and AP2 sites were 

also identified in the promoter region and may play a role in modulating SMO expression.  

 The epigenetic regulation of SMO transcription was characterized in 33 cancer cell lines. We 

determined the mRNA expression of the major HH pathway genes, SMO, PTCH, GLI1, GLI2 and 

GLI3 and found the highest level of mRNA expression was observed in the SMO gene. DNA 

methylation is a major epigenetic regulatory mechanism of gene expression and is involved in the 

progression of cancer [35]. The absence of SMO expression in 7 cell lines derived from breast (5 of 

9), stomach (1 of 1), and colon (1 of 1) cancer tissues was correlated with a high level of gene 

methylation. The level of SMO mRNA was negatively correlated with the methylation status of the 

SMO promoter (Figure 6). In this study, SMO and GLI3 were undetectable in the HT29 colon cancer 

cell line. This result is consistent with a previous study that showed SMO methylation leads to 

silencing of GLI3 expression [36]. Moreover, full methylation was confirmed in all three CpG 

islands in the MCF7 breast cancer cell line, and stomach cancer cell line AGS, and SMO expression 

in MCF7 cells was restored after 1 µM 5-Aza treatment. The results indicate that DNA methylation 

of the SMO gene may play an important role in the development of cancer. Cell lines from breast 

cancer tissue showed the highest methylation frequency, 56% (5/9), whereas 8 prostate cancer cell 

lines had no detectable methylation in the SMO gene. Whether the degree of SMO methylation 
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correlates with the tissue specificity remains to be explored.

  

Figure 6. Correlation of mRNA level and methylation frequency of SMO gene in 33 cancer cell 

lines. (A) mRNA level of SMO in decreasing order. (B) Distribution of methylation frequency (%) in 

the cell lines by a quantitative MSP method. 

The full mechanistic details of HH signal transduction are still under investigation. Abnormal 

HH activation has been implicated in tumorigenesis in a wide variety of tumors, and SMO and GLI 

play a critical role in this pathway. GLI2 is suggested to function primarily as a transcriptional 

activator, and GLI3 as a repressor [4]. A significant positive correlation was identified between the 

expression of SMO and GLI2 in our study. This is consistent with previous reports that 

overexpression of either GLI1 or GLI2 leads to tumor development in transgenic mice, suggesting 

that GLI1 or GLI2 contribute to tumorigenesis by increasing SMO expression that is associated with 

the development of cancer [17,37]. PTCH1 has emerged as a tumor suppressor gene and 

developmental regulator. Although the role of GLI3 as a negative regulator of HH signaling is well 

established in the context of normal development, its role in cancer has largely been ignored [38-40]. 

In this study, we have demonstrated that GLI3expression is significantly positive correlated with 

PTCH1 levels (Pearson’s correlation=0.532, p=0.001). This result is indirectly supported by the study 

of Ohba et al. They reported that PTCH1 deficient (PTCH1 +/-) cells showed increase adult bone 

mass in patients with nevoid basal cell carcinoma syndrome through reduced GLI3 [41]. Moreover, 

different mutations in GLI3 [42] and PTCH1 haploinsufficiency are associated with distinct 

autosomal dominant syndromes [43]. These data suggest that the repressive effect of PTCH1 and 

GLI3 on HH signaling has a crucial role in cancer development. 

4. Materials and Methods  

4.1. Computational analysis of the SMO gene 

Identification and sequence analysis of evolutionary conserved regions (ECRs) of the SMO was 

performed with the ECR Browser, and the publicly available web-based tool mVista [44] using the 

MLAGAN algorithm. A search for potential TFBS in the upstream regulatory region of the SMO 
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gene was performed online at Genomatix using the MatInspector program 

(http://www.cbrc.jb/research/db/TFSEARCH.html).  

4.2. Cell lines and 5-Aza treatment 

All cancer cell lines were purchased from American Type Culture Collection (ATCC, Rockville, 

MD, USA) and grown according to the ATCC instructions. 5-Azacytidine (5-Aza, Sigma-Aldrich) 

was freshly prepared in PBS before use. A vehicle control consisting of culture medium alone was 

included in the analysis. MCF7 and PC3 cells were pre-cultured for 24 h, then treated with 1 M 5-

Aza for 72 h. Cells were collected by centrifugation, then genomic DNA and RNA were extracted 

and analyzed. 

4.3. Real Time quantitative RT-PCR 

Total cellular RNA was isolated and purified by RNeasy columns (QIAGEN Valencia, CA, 

USA) according to the manufacturer’s instructions with on-column and in-solution DNaseI 

digestion. RNA quality and quantity were determined using Agilent RNA 6000 Nano Chip (Agilent 

Technologies Inc., CA, USA). cDNA synthesis was carried out using Random Hexamer primer, 

Taqman Reverse Transcription Reagents kit (Applied Biosystems Foster City, CA, USA).Taqman 

real time RT-PCR primers and probes for target genes were designed by using the Primer Express 

software. SMO Fwd: 5’-GAGACTCGGACTCCCAG-3’; Rev: 5’-GTATACGGCACACAGCAG-3’ and 

probe: 5’(FAM)-TCGGGCCTCCGGAAT-(MGB)3’. PTCH1 Fwd: 5’-GCATAGGAGTGGAGTTCA-3’; 

5’-CCCTGCGGTTCTTGTC-3’ and probe 5'(FAM)-TTGGCCTTTCT-(MGB)3'. GLI1 Fwd: 5’-

GTCTCAAACTGCCCAGC-3’; Rev: 5’-CGTTCAAGAGAGACTGGG-3’ and Probe: 5’(FAM)-

TCCCACACCGGTACCA-(MGB)3'. PTCH2, (Assay ID=Hs01085642_ml), GLI2 (Assay 

ID=Hs00257977_ml) and GLI3 (Assay ID=Hs00609233_ml). Taqman real time RT-PCR was used to 

determine the expression profile, with a 18S rRNA plasmid as the standard reference gene using 

primers Fwd: 5’-CCGAAGCGTTTACTTTGAAAAAA-3’; Rev: 5’-

TTCCATTATTCCTAGCTGCGGTAT-3’ and probe 5'(VIC)-AGTGTTCAAAGCAGGCC-(MGB) 3' 

[45]. The PCR reactions were performed in 20µl final volume containing 5 ng of cDNA, 1 x Master 

Mix (TaqMan Universal PCR Master Mix, ABI, CA), 900nM of each primer and 200nM of each 

probe, respectively. The thermal cycling condition are 40 cycles of PCR amplification (UNG 

incubation: 50ºC, 2min; Ampli TaqGold activation: 95ºC, 10 min; denaturation: 95ºC, 15 s; 

annealing/extension: 60ºC, 1 min) (ABI PRISM 7900HT Sequence Detection System, CA). All assays 

were performed in triplicate, and each plate contained the same standard and positive quality 

control sample. For each unknown sample, the copy number of each gene is calculated using linear 

regression analysis from their respective standard curves (Figure S1). The relative mRNA 

expression level of target genes was normalized by the following formula: (copy number of target 

gene) / (copy number of 18S rRNA) x 10,000. The standard curves were generated using a dilution 

series of plasmids containing SMO, PTCH1, PTCH2, GLI1, GLI2 and GLI3 from full length of cDNA 

(ATCC, Rockville, MD). The copy number of plasmid cDNA was calculated by optimal density 

according to the exact molar mass derived from the sequences. Serial dilutions were made to obtain 

101 to 107 copies. The slope and intercept were calculated for each run using linear regression 

analysis of log copy number versus threshold cycle (Ct) value for both target genes and 18S rRNA 

standard curves [46]. 

4.4, Bisulfite modification and bisulfite sequencing PCR (BSP) 

DNA was extracted using the QIAamp DNA Mini Kit (Qiagen, Valencia, CA). Bisulfite 

modification of 1 g of genomic DNA was performed with the EpiTect Bisulfite Kit (Qiagen) as 

described by the manufacturer. Primers for BSP and identification of predicted CpG islands in SMO 

promoter region were carried out with the assistance of Methyl Primer Express Software v1.0 

(Applied Biosystems) and MethPrimer (http://www.urogene.org/methprimer/). The primer 
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sequences used for methylation analysis are summarized in Table S1. PCR reactions were 

performed in a volume of 25 µ l containing 10 ng of bisulfite-converted DNA and 20 pmol of each 

primer using Platinum®  PCR SuperMix (Invitrogen, Carlsbad, CA). Thermal cycling conditions 

were 95°C for 2 min, followed by 35 cycles of 95°C for 15 s, 56°C for 30 s, 72°C for 10 s, and final 

extension at 72°C for 5 min. For sequence analysis, the PCR products were subcloned into a pCR2.1 

vector using a TOPO TA Cloning kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s 

instructions. At least twelve clones were sequenced in an ABI 3730 DNA Sequencer (Applied 

Biosystems) for each cell line tested. Methylation analysis was performed using BiQ Analyzer 

software [47]. 

4.5. Methylation-specific PCR (MSP)  

The MSP products were 132 bp long. Unmethylated and methylated human DNA was used as 

a negative and a positive control, respectively (Qiagen). Water blanks and PCR mixtures without 

template were also used as experimental controls in each assay. The primers were listed in Table S1. 

The amplification cycles performed were 38 cycles. After PCR, products were separated on a 2% 

agarose gel, and stained with ethidium bromide. Bisulfite treatment and MS-PCR assays were 

performed in duplicate for all samples. Each experiment was performed at least three times. 

4.6. Real-time quantitative MSP  

The bisulfite–converted genomic DNA was amplified using fluorescence-based real-time MSP 

using FastStart SYBR Green Master Kit (Roche). Methylation of the SMO gene was examined using 

actin as the internal control for DNA quantification. The beta actin gene contains no CpG 

dinucleotides and is not affected by DNA methylation status or bisulfite treatment. The primers for 

quantitative MSP are same as the normal MSP shown in Table 1. Real-time PCR conditions were 

95 °C for 10 min followed by 40 cycles of 94 °C for 15 s, 59 °C for 60 s with data acquisition after 

each cycle. At the end, properties of real-time PCR conditions and amplification products were 

checked by melting curve analysis. PCRs were done in two replicates of each sample with the 

7900HT Fast Real-Time PCR System (Applied Biosystems). 

4.7. Touchdown PCR of the SMO promoter region 

PCR was carried out in a volume of 50 µ l containing 100 ng of genomic DNA, 20 pmol of each 

primer and 3% Dimethyl Sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO, USA) using Platinum®  

PCR SuperMix Kit (Invitrogen, Carlsbad, CA, USA). A modified touchdown PCR was performed 

with the following cycling conditions: the templates were denatured at 94°C for 3 min, and then 20 

cycles composed of 20 s at 95°C, 30 s annealing with a stepwise reduction of annealing temperature 

from 68°C to 58°C decreasing by 0.5°C every cycle, and an elongation step of 4 min at 72°C. Twenty 

additional cycles were then performed at 94°C 20 s, 58°C for 40 s, and 72°C for 40 s. The standard 

PCR program was 35 cycles at 94°C 20 s, 58°C for 40 s, and 72°C for 40 s. All PCR products were 

analyzed by electrophoresis on a 1.0% agarose gel stained with ethidium bromide. 

4.8. Generation of luciferase reporter plasmids 

A series of truncated SMO promoter constructs, including 5 deletions from the 5’ side and 3 

deletions on the 3’ side, were created by PCR using the primers shown in Table S1. PCR products 

were cloned into the TOPO-TA vector, and inserts were excised with SacI and XhoI and cloned into 

pGL3 (Promega, Madison, WI, USA) to generate constructs in the forward orientation. All 

subclones were verified by sequencing. Sequence analysis was performed with the Molecular 

Evolutionary Genetics Analysis (MEGA) software version 7. 

4.9. Cell transfection and luciferase assays  
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Two breast cancer cell lines, MCF7 and BT549, and prostate cancer cell line PC3, were used for 

the analysis of promoter constructs. The cells were plated at 1x105 cells per well in a 24-well plate 

the day before transfection and incubated overnight at 37°C in 5% CO2. For each well, 5 µ l of 

HilyMax transfection reagent (Dojindo, Rockville, MD, USA) was diluted in 30 µ l of growth 

medium without serum and incubated at room temperature for 5 min. The DNA mixture 

containing 2 g of the specific reporter construct plus 2 ng of Renilla luciferase pRL-SV40 control 

DNA was then added to each well, and incubated at room temperature for 20 min. Luciferase 

activity was assayed at 48 hr using the Dual-Luciferase Reporter Assay System (Promega, Madison, 

WI, USA) according to the manufacturer’s instructions. Measurement of the firefly luciferase 

activity of the SMO promoter constructs was normalized relative to the activity of the Renilla 

luciferase produced by the pRLSV40 control vector and each construct was tested in triplicate in at 

least three independent experiments. 

4.10. Electrophoretic mobility shift assays (EMSA)  

Nuclear extracts were prepared from PC3, BT549 and MCF7 cells using the CellLytic 

NuCLEAR extraction kit (Sigma-Aldrich, St. Louis, MO). Six double-stranded DNA oligonucleotide 

probes corresponding to -500 to -357 bp of SMO promoter were synthesized (Figure 5a, upper 

panel). Labeling, DNA-protein binding reactions and antibody supershift experiments were 

performed as previous described [46,48]. For supershift experiments, antibody was added after 

addition of labeled DNA-probe, and the binding reaction was incubated for additional 20 min at 

room temperature. For competition analyses, a 50-fold excess of consensus unlabeled-competitor 

oligonucleotides, SP1, AP1, Ap-2 , and CREB (Santa Cruz Biotechnology, Santa Cruz, CA), were 

included in the binding reaction.  

4.11. Statistical analysis 

The correlation of mRNA expression levels of SMO, PTCH1, GLI1, GLI2 and GLI3 were 

assessed by Pearson’s correlation coefficient using GraphPad Prism 7 software. All p values 

reported were two-tailed, with significance defined as p < 0.05. 

5. Conclusions 

In conclusion, our data provide strong experimental and computational evidence for genetic 

and epigenetic regulatory mechanisms of the SMO gene. The SMO promoter has been characterized 

and its major regulatory elements, including multiple CpG islands and SP1 binding sites, were 

identified. A correlation between SMO/GLI2 and PTCH1/GLI3 expression was observed. Moreover, 

SMO expression is correlated with the degree of CpG island methylation. Our results reveal a 

central role for epigenetic regulation of SMO gene transcription that may be exploited for the 

development of new therapeutic strategies to treat hedgehog-driven tumors. 

Supplementary Materials:  

Figure S1. Pearson’s correlation analysis of gene expression levels of SMO, PTCH, GLI1, GLI2 and GLI3 in cancer 

cells. Pearson's correlation coefficients were performed to estimate the correlations of mRNA expression levels 

using the JMP program. 

Figure S2. Comparison of PCR conditions to amplify SMO promoter sequence in BT549 DNA. The figure showed 

PCR products from the five different primer sets used in the 5’-deletion assay to amplify 984bp, 525bp, 500bp, 

425bp and 318bp fragments of the SMO promoter (M&M section), respectively. Equal amounts (15 μl) were 

loaded on a 1.0% agarose gel. Left panel showed PCR results from the touchdown PCR, and right panel showed 

PCR results from the standard PCR program. Lane M, molecular weight marker (1kb plus DNA ladder). 

Figure S3. Identification of SMO promoters by 5’ truncation analysis. A schematic representation of the SMO 

bidirectional element is shown with the potential transcription factor binding sites. Serial deletions at the 5′ end 
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of the promoter fragment of SMO are shown. The luciferase activity of pGL3 constructs containing fragments 

cloned in either the reverse (left panel) or forward (right panel) orientation is shown as fold-increase of corrected 

light units relative to an empty pGL3 vector control [48]. Values represent the mean±SEM of at least three 

independent experiments. 

Table S1. Sequences of primers used in this study. 
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