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ABSTRACT Previously, a conductivity invariance phenomena (CIP) has been discovered — at a certain lift-off, the inductance change of the sensor due to a
test sample is immune to conductivity variations, i.e. the inductance — lift-off curve passes through a common point at a certain lift-off, termed as conductivity
invariance lift-off. However, this conductivity invariance lift-off is fixed for a particular sensor setup, which is not convenient for various sample conditions.
In this paper, we propose using two parameters in the coil design — the horizontal and vertical distances between the transmitter and the receiver to control the
conductivity invariance lift-off. The relationship between these two parameters and the conductivity invariance lift-off is investigated by simulation and
experiments and it has been found that there is an approximate linear relationship between these two parameters and the conductivity invariance lift-off. This
is useful for applications where the measurements have restrictions on lift-off, e.g. uneven coating thickness which limits the range of the lift-off of probe
during the measurements. Therefore, based on this relationship, it can be easier to adjust the configuration of the probe for a better inspection of the test

samples.

INDEX TERMS Conductivity Invariance Phenomenon, Conductivity invariance lift-off, Sensor design,
Eddy current testing, Electrical conductivity, Non-destructive testing

I. INTRODUCTION

In recent decades, non-destructive testing (NDT) has been
widely used. Eddy current testing (ECT), as one of the most
universal NDT techniques, has extensive applications for
thickness measurement, the inspection of material integrity
(e.g. crack detection) and the evaluation of material
properties (e.g. electrical conductivity and magnetic
permeability) [1]-[28]. However, the testing is significantly
influenced by the material properties, lift-off and sensor
structure, etc. As a result, various researches have been
carried out to tackle this issue in pursuit of a better inspection
of the test sample [29]-[37].

A precise estimation of the electrical conductivity and the
magnetic permeability of the test sample is essential in many
applications. Halleux et al. developed an equivalent
simplified physical model for the electrical conductivity
measurement and it can be applied in a wide range of
metallic samples [38]. Moreover, a robust method by using
frequency-dependent eddy current measurements was
presented by Moulder et al. to determine the electrical

conductivity of the uniform conductive layers [39].
Conductivity profiling from inductance spectroscopic
measurements [40] and the conductivity measuring
instrument for semi-conductors [41] also have been
explored.

In terms of permeability measurements, it is still challenging
to determine the permeability of the material due to the
influence of the environment condition and the material
conductivity on the response signal. A novel method that can
measure the conductivity and permeability of the metal
samples simultaneously was proposed by Ma et al [42]. The
conductivity can be obtained by the impedance change of the
signal while the permeability can be measured by utilising
the imaginary part of the signal. The results were proved to
be accurate but the frequency range is limited for estimating
the permeability. Yu et al. proposed the CIP and developed
a device to determine the permeability by decoupling the
influence of the conductivity and permeability [43]-[44]. In
addition, a novel algorithm to compensate the zero-crossing
frequency point caused by the lift-off effect was proposed by
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Lu et al. and the error caused by the lift-off can be reduced
to 7.5% [45]-[46]. Moreover, for the thick coating, the lift-
off effect in PEC can be reduced by using the reference
signals and normalization process [47] and it is found that
the sensitivity of the sensor coil would be boosted with
higher lift-off under a certain range of the coil gap [48].

In our previous work, measurement of permeability for
ferrite metallic plates based on CIP was introduced and
proved to work well [49]. Further, in this paper, we proposed
using two parameters in the coil design — the horizontal and
vertical distances between the transmitter and the receiver to
control the conductivity invariance lift-off in order to make
it more flexible in ECT where the measurements have
restrictions on lift-off, e.g. uneven coating thickness and
varying coating thickness which limit the range of the lift-off
of probe during the measurements.

Il. SENSOR PARAMETERS FOR CONTROLLING CIP
LIFT-OFF

In order to investigate the conductivity invariance
phenomenon, the arrangement of the excitation coil and the
receiving coil should be non-axial to the test samples (showed
in Fig. 1), otherwise, there is no conductivity invariance lift-
off point from measurements.

For a particular non-axial sensor setup, the lift-off point of CIP
is fixed. In this paper, we introduce two parameters, that is, the
horizontal distance (w) and vertical distance (g) between the
transmitter and the receiver to control the CIP lift-off. Two
sensor setups are used for the investigation of how these two
parameters affect the CIP lift-off, named as, Sensor A and
Sensor B. Fig. 1 (a) depicts the configuration where the
transmitter and receiver are placed in the same vertical level,
while Fig. 1 (b) presents the case where the receiver is
vertically lifted by a distance of g. By adjusting the value of
these two parameters, the value of the lift-off of CIP would
change accordingly. Hence, it is more beneficial for the
permeability measurement that has a limited range of lift-off.
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FIGURE 1. Sensor Geometry (a) Sensor A, transmitter and receiver are
assembled in the same plane (b) Sensor B, receiver is vertically lifted with
respect to the transmitter.

I1l. ANALYTICAL SOLUTION ON CIP LIFT-OFF

The complex inductance of an air-cored cylindrical coil
caused by the metallic plate has been proposed by Dodd and
Deeds for decades to offer strong interpretations of the
electromagnetic phenomenon. Based on the formula of Dodd
and Deeds analytical solution, the vector potentials from the
excitation coil caused by the sample plate can be expressed
as,

_ UoINy ® 1 _
ACr,2) = (r2e—T1e)(l2e—l1e) fo a3 I(r2e,110))1(ar) [2
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Where: u, denotes the permeability of the free space, o and
u denote the electrical conductivity and permeability of the
sample plate, a denotes the spatial frequency variable, I
denotes the excitation current flows in the coil, N, denotes
the number of turns of the excitation coil, r;, and r,, denote
the inner radius and the outer radius of the excitation coil, 1,
and 1,, denote the bottom height and top height of the
excitation coil, J,(x) denotes the first order of the first kind
of Bessel function and 1(x,,x,) denotes the production of ,
J1(x) from x; to x,.

Furthermore, the voltage induced by a single loop of the
receiving coil (Fig. 2) can be expressed as an integration of
the vector potential over the cross-section of the coil.

V =jw [A(r,z)ds = jw [ A(r, 2)r,cospdb (3)
_ -1 rpsine

@ =0+tan (—W_rpwse) 4

r = ./(1psinf)? + (w — 1,c056)? + g2 (5)

Where: ¢ denotes the angle between the vector potential A
and ds, r denotes the distance between the origin 0 and ds,
g denotes the height difference between the excitation coil
and receiving coil.
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FIGURE 2. Top view of sensor coils

The voltage received in the receiving coil can be derived by
combining (1)-(5). Two situations of sensor arrangement are
considered, as shown in Fig. 1 (a) and (b). Hence the voltage
induced can be expressed as (6) for Fig. 1(a) and (7) for Fig.
1(b).
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Where: N, denotes the number of turns of the sensing coil,
11, and 5, denote the inner radius and the outer radius of the
sensing coil, [, and [,,, denote the bottom height and top
height of the sensing coil.

With further manipulations from (6) and (7), the complex
mutual inductance between the excitation coil and the
receiving coil can be derived as (8) for Fig. 1(a) and (9) for
Fig. 1(b).
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Here, all the analytical solutions were calculated via the
platform ThinkCenter M910s, with 16GB RAM and Intel
Core i7-6700 processor.

IV. EXPERIMENTAL SETUP ON CIP LIFT-OFF

Due to the restriction in access such as coating thickness on
the test sample, there exists a minimum lift-off during
inspection. To address this issue, both simulation by
analytical calculation and the experimental measurements
have been carried out to verify the relationship between the
horizontal and vertical distances of the sensor coils and the
conductivity invariance lift-off point.

During the experimental measurements, the sensor shown in
Fig. 3 was used to detect the feature of this phenomenon. The
horizontal distance between two sensor coils was set to 3 mm,
4 mm and 5 mm respectively. The test samples have a length
of 80 mm, a width of 80 mm and a thickness of 5 mm. Three
types of materials were tested under the excitation
frequency of 60 kHz, copper, aluminium and brass
respectively. The conductivities of these materials are 57
MS/m, 35 MS/m, 16 MS/m at 20 degrees and the relative
permeability is 1 for conductive materials. The experimental
setup is showed in Fig. 3 and the sensor parameters are listed
in Table 1.
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FIGURE 3. Experimental Setup (a) schematic setup (b) actual setup

TABLE |
SENSOR PARAMETERS
Inner and outer radii of the excitation
coil (rie  12¢)
Inner and outer radii of the receiving
coil (ryp / 12p)

0.75 mm/0.95 mm

0.75 mm/1.10 mm

Height of the excitation coil (l5.- l1.) 3mm
Height of the receiving coil (1,5~ L) 3mm
Turns of excitation coil and receiving 120/160
coil (N; / N,)

Plate thickness (c) 5mm
The horizontal distance between two 3-5mm
coils (w)

The vertical distance between two coils -1 -1 mm
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d0i:10.20944/preprints202005.0491.v1


https://doi.org/10.20944/preprints202005.0491.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020

From the schematic setup shown in Fig. 3(a), the injection
current flows into the transmitter and can induces the voltage
on the receiver, then the impedance between the transmitter
and the receiver can be obtained via the impedance analyser.
It is because there is a phase difference between the induced
voltage and the excitation current, the tested impedance
should be complex. Therefore, the complex inductance can
be presented by dividing the mutual impedance by the
excitation frequency in the experimental measurements, as
shown in (10)-(13). Further, the inductance of one of the
metal plates was set as a reference for the inductance of all
the samples, the conductivity invariance lift-off can be found
by the inductance changes with respect to the reference
inductance. It is worth noting that the real part of the
inductance change is mainly due to the change of the
magnetic flux affected by the metallic plate, meanwhile, the
loss mainly due to the eddy current effect reflects on the
change of the imaginary part of the inductance.

Z=R+jol (10)
AZ

AL =22 (11)

Re(AL) = Re(W) (12)

Im(AL) = Im(W) (13)

Where: Zggmpe denotes the impedance caused by the
metallic sample plate and Z,;,- denotes the impedance in the
air.

V. RESULTS

A. VALIDATION OF CIP LIFT-OFF

Through experimental results and simulation results shown
in Fig. 4, there exists the conductivity invariance lift-off for
the non-magnetic conductive / ferromagnetic materials. The
maximum error between the experiments and simulations for
varying lift-off is 7.46% for Fig. 4 (a). However, at the
conductivity invariance lift-off point, the error of the
inductance variation can be neglected since it is controlled
within a relatively small range of 0.1%. Therefore, it is an
ideal sensor position for material inspection under different
configurations of the sensor. For permeability measurements
with the material in which the conductivities are known,
assume all the materials with the same permeability, the
conductivity invariance lift-off can be obtained from the
simulation, as shown in Fig. 4(b). Compared with the results
from Fig. 4(a), the conductivity invariance lift-off decreases
as the relative permeability increases. Thus, from the
experimental measurements under this conductivity
invariance lift-off, the permeability can be predicted from the
offset of the curves.
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FIGURE 4. CIP validation (a) Results of conductive materials (n. = 1) (b)
Analytical solution of ferromagnetic materials under (p, = 300)

B. CIP LIFT-OFF EVALUATION

To investigate the relationship  between the
horizontal/vertical distance of the transmitter and the
receiver and the CIP, analytical simulation and experiments
have been carried out. A linear relationship has been found
between the horizontal/vertical distance of the transmitter
and the receiver and the CIP, as shown in the following Fig. 5
and 6.

B.1. Horizontal distance

In this section, sensor A (showed in Fig. 1(a)) was used to
investigate how the relationship between the horizontal
distance and the conductivity invariance lift-off changes.
Table Il illustrates the error between the simulated results
and the measured results. The error between them can be
achieved within 1.5%. More horizontal distances (in steps of
0.25 mm) have been considered by utilizing the analytical
solution and the results are shown in Fig. 5. The dashed line

d0i:10.20944/preprints202005.0491.v1
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shows the trend of the change of conductivity invariance lift-
off. As the horizontal distance increase, the lift-off increases
to observe the predominant magnetic flux passing through
the receiver regardless of the sample conductivities. It can be
noticed that there is an approximated linear relationship
between the horizontal distance of sensor coils and the
conductivity invariance lift-off.

TABLEII
SIMULATED AND MEASURED CONDUCTIVITY INVARIANCE LIFT-OFF POINTS UNDER
DIFFERENT HORIZONTAL DISTANCE

between simulation and measurements and the error is
within 3%. It can be seen from Fig. 6 that there is a decreasing
trend as the receiver move from the bottom up with respect
to the transmitter. Thus, there is a trade-off for researchers
to select the configurations for the sensor through these
relations to match their measurement conditions.

TABLE 11l
SIMULATED AND MEASURED CONDUCTIVITY INVARIANCE LIFT-OFF POINTS
UNDER DIFFERENT VERTICAL DISTANCE

d0i:10.20944/preprints202005.0491.v

Horizontal Simulated Measured Error
distance conductivity conductivity (%)
between two invariance lift-  invariance lift-
sensor coils off (m) off (m)
(w)
3 mm 1.51e-3 1.53e-3 1.32
4 mm 2.56e-3 2.57e-3 0.39
5mm 3.67e-3 3.70e-3 0.82
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FIGURE 5. The analytical and measured results of the conductivity

invariance lift-off under different horizontal distances between the
sensor coils from sensor A

B.2. Vertical distance

As shown in Fig. 1(b), sensor B was used to investigate how
the conductivity invariance lift-off changes with the vertical
distance. For experimental measurements, the vertical
distance between the excitation coil and the sensing coil was
set to -0.5 mm (the receiver is 0.5 mm lower than the
transmitter), 0 mm, and 0.5 mm (the receiver is 0.5 mm
higher than the transmitter) respectively while the horizontal
distance was kept to 3 mm. The analytical solution was used
to simulate more possible vertical distance to evaluate the
relations (the vertical distance changes from -1 mm to 1 mm
in steps of 0.25 mm). The results are presented in Fig. 6. The
trends of the results are matched with the trend lines (dashed
lines). Table Il depicts the conductivity invariance lift-off

Vertical Simulated Measured Error
distance conductivity conductivity (%)
between two invariance lift-  invariance lift-
sensor coils (g) off (m) off (m)
-0.5mm 1.69e-3 1.66e-3 -1.78
0mm 1.49e-3 1.53e-3 2.68
0.5 mm 1.25e-3 1.23e-3 -1.60
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FIGURE 6. The analytical results of the conductivity invariance lift-off
point under different vertical distances and fixed horizontal distance w
of 3mm

VI. DISCUSSIONS
A. EFFECT OF SAMPLE THICKNESS

The thickness of the samples has an influence on the
conductivity invariance lift-off. In the numerical simulation,
sensor A was used, and the sample thicknesses are 0.05 mm,
1 mm, 5 mm and 15 mm respectively. All the samples were
simulated under the excitation frequency of 60 kHz.
Conductivity invariance lift-off for different sample
thicknesses goes along with the dashed lines showed in Fig.
8. It is found that there is no conductivity invariance lift-off
as the sample thickness was 0.05 mm (Fig. 7) while the
conductivity invariance lift-off does not increase any more
as the sample thickness reaches a certain amount (Fig. 8).
The reason that there is no conductivity invariance lift-off is
that the skin depth is larger than the thickness of the samples
so that most of the magnetic flux penetrates through the
samples, which could influence the vector potential to be
integrated on the cross-section of the sensing coil (i.e. the


https://doi.org/10.20944/preprints202005.0491.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020

induced voltage) as the sensor moving vertically. As the
sample thickness increases to a certain range, the skin depth
is smaller than the sample thickness, all the magnetic flux
would be reflected by the test samples and the induced
voltage on the sensor coil. Therefore, the conductivity
invariance lift-off stays at a similar value. It can be seen in
Fig. 8 that the conductivity invariance lift-off decreases as
the sample becomes thicker while for the arbitrary thickness
of the test samples, there is a linear trend between the
conductivity invariance lift-off and the horizontal distance of
the sensor coils.
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FIGURE 7. Analytical solution of the sample thickness 0.05 mm under
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B. EFFECT OF DIFFERENT FREQUENCIES

Fig. 9 demonstrates the simulation results of the conductivity
invariance lift-off under two excitation frequencies: 50 kHz
and 500 kHz. During the simulation, the thickness of the test
samples is set to be 1 mm and sensor A was used. As shown
in Fig. 9, with a fixed sensor setup, a higher excitation
frequency will lead to an increase of the conductivity
invariance lift-off, which is due to the skin depth effect. For
different frequencies, the lift-off increase linearly with the
increase of the width, as shown by the dashed line (trend
line). Additionally, it can be noticed that, as the horizontal
distance between two coils gradually increases, the changes
of the lift-off from the results under the frequency of 500 kHz
is slightly larger than that under 50 kHz.
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FIGURE 9. Analytical solutions of conductivity invariance lift-off under
different horizontal distances between the sensor coils and excitation
frequencies

d0i:10.20944/preprints202005.0491.v1


https://doi.org/10.20944/preprints202005.0491.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020

VIl. CONCLUSIONS

In this paper, the impact of changing horizontal and vertical
distance between the transmitter coil and the receiver coil on
the conductivity invariance lift-off was investigated. It is
found that there is a good linear relationship between them
for materials of different electrical conductivities. Both the
analytical and measured results have verified this
relationship.

Based on this feature, the conductivity invariance lift-off
can be adjusted for cases where there is restriction of access to
the test sample. Moreover, the effect of the sample thickness
and the excitation frequency on the relations are all discussed,
and it proves that linear relation is always valid for these
factors.
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