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Abstract: In the 21st century, three highly pathogenic betacoronaviruses have emerged, with an 

alarming rate of human morbidity and case fatality. Genomic information has been widely used to 

understand the pathogenesis, animal origin and mode of transmission of betacoronaviruses in the 

aftermath of the 2002-03 severe acute respiratory syndrome (SARS) and 2012 Middle East 

respiratory syndrome (MERS) outbreaks. Furthermore, genome sequencing and bioinformatic 

analysis have had an unprecedented relevance in the battle against the 2019-20 coronavirus disease 

2019 (COVID-19) pandemic, the newest and most devastating outbreak caused by a coronavirus in 

the history of mankind, allowing the follow up of disease spread and transmission dynamics in near 

real time. Here, we review how genomic information has been used to tackle outbreaks caused by 

emerging, highly pathogenic, betacoronavirus strains, emphasizing on SARS-CoV, MERS-CoV and 

SARS-CoV-2. 
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1. Introduction

Coronaviruses (CoV) are important pathogens of vertebrates with the ability to cause 

respiratory, enteric and systemic diseases in humans and animals. They are enveloped, single-

stranded, positive-sense RNA viruses belonging to subfamily Orthocoronavirinae of family 

Coronaviridae, order Nidovirales. The subfamily is further divided into four genera, namely, 

Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. The majority of clinically 

relevant coronaviruses belong to the Alphacoronavirus and Betacoronavirus genera [1]. Genus 

Alphacoronavirus comprises species infecting a diverse group of mammals, including two (229E and 

NL63) of the seven known species of human coronaviruses. In the case of genus Betacoronavirus, the 

International Committee on Taxonomy of Viruses (ICTV) currently divides it into five subgenera, 

Embecovirus, Sarbecovirus, Merbecovirus, Nobecovirus and Hibecovirus, established based on 

phylogenetic analysis of conserved protein domains (see Basic phylogenetic relationships). The first 

four of these subgenera were formerly known as lineages or subgroups A, B, C and D, respectively.  

Subgenus Embecovirus includes two human coronaviruses (HKU1 and OC43), as well as several 

animal coronaviruses of veterinary relevance such as bovine, canine, equine, porcine and murine 

coronaviruses. Sarbecovirus comprises the severe acute respiratory syndrome (SARS)-related 

coronaviruses such as SARS-CoV and SARS-CoV-2 (2019-nCoV), respectively responsible for the 
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2002-03 SARS outbreak and the 2019-20 coronavirus disease 2019 (COVID-19) pandemic. Several 

SARS-related bat coronaviruses, mainly isolated from Chinese horseshoe bats (Rhinolophus spp.), also 

belong to this subgenus. Subgenus Merbecovirus comprises the Middle East respiratory syndrome 

(MERS)-related coronaviruses, including the MERS-CoV responsible for the 2012 MERS outbreak, as 

well as two additional species of bat coronaviruses isolated from Tylonycteris and Pipistrellus bats. 

Subgenera Nobecovirus and Hibecovirus comprise only bat coronaviruses, mainly isolated from 

Rousettus and Hipposideros bats, respectively. 

Since the 2002-03 SARS outbreak, genomic information has become ever-increasingly significant 

to address outbreaks caused by pathogenic coronaviruses. Before the 2019-20 COVID-19 pandemic, 

there were ~1,200 complete genomes of betacoronaviruses deposited in the GenBank database. The 

number of available genomes has increased dramatically during the pandemic, with ~4,000 genomes 

available as of May 2019. A variety of information including phylogenetic relationships, mode of 

transmission, evolutionary rates and the role of mutations in infection and disease severity can be 

deduced from comparing multiple genomes. In this review, we focus on the genomic features of 

family Coronaviridae with special emphasis on the Betacoronavirus genus. We also review how 

genomic information can be useful to tackle epidemics caused by these viruses, including the ongoing 

COVID-19 pandemic and future ones, potentially caused by emerging strains. 

2. Genome structure and protein-coding genes  

Betacoronaviruses, like all other members of the Coronaviridae family, have relatively large RNA 

genomes of around 30 kb in size (Table 1). The genomes have short untranslated regions (UTR) at both 

ends, with a 5’ methylated cap and a 3’ polyadenylated tail. Typically, genomes contain 9-12 open 

reading frames (ORF) (Figure 1), six of which are conserved and follow the same order, namely, those 

encoding the replicase/transcriptase polyproteins and the spike (S), envelope (E), membrane (M) and 

nucleocapsid (N) structural proteins. Replicase/transcriptase is organized in two overlapping ORFs, 

called ORF1a (11-13 kb) and ORF1b (7-8 kb), that occupy nearly two thirds of the genome. These ORFs 

are translated into two polyproteins that later cleave themselves to form several nonstructural proteins 

(Nsps), most of them involved in genome replication and translation [2]. The remaining 3’ portion of 

the genome encodes the structural proteins and the so-called accessory proteins, whose number and 

functions vary among different coronaviruses.   

As in most viruses, coronavirus genomes are compact and roughly encode for the few proteins 

that the virus needs for its replication cycle (Figure 2). Transcription of the protein-coding genes 

involves the production of subgenomic mRNAs that include a common leader sequence in their 5’ end. 

This common leader is in turn encoded near the 5’ end of the genome and its fusion with subgenomic 

mRNAs is mediated by a conserved transcription regulatory sequence (TRS) preceding most genes [2]. 

The role of viral proteins in the replication cycle and their conserved domains (Figure 3) are briefly 

reviewed in the sections below. We have also provided the InterPro accession numbers for these 

domains, if available. 

2.1. Spike (S) protein 

Spike (S) is a glycoprotein that recognizes the host cell receptor and allows the virus to attach to 

the surface of host cells. Its name refers to the spike-like structures located in the outer surface of the 

viral envelope, which are trimers of the S protein. After receptor recognition and attachment, the virus 

enters the host cell through endocytosis or by direct fusion of its envelope with the host cell plasma 

membrane. SARS-CoV and SARS-CoV-2 use angiotensin-converting enzyme 2 (ACE2) as their receptor 

[3,4], whereas MERS-CoV uses dipeptidyl peptidase 4 (DPP4) [5] and murine coronaviruses use the 

murine carcinoembryonic antigen-related adhesion molecule 1 (mCEACAM1a) [6,7]. Viruses from the 

Embecovirus subgenus can use certain types of sialic acids as receptors [8], due to an additional 

hemagglutinin esterase gene uniquely present in this subgenus (discussed below). 
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Table 1. Genomic features of representative betacoronaviruses. 

Virus1 
GenBank 

Accession 

Size 

(bp) 
GC% 

ORFs / 

Accessory 

proteins2 

Embecovirus 

Bovine CoV NC_003045 31,028 37.12 12 / 5 

China Rattus CoV HKU24 NC_026011 31,249 40.07 11 / 4 

Dromedary CoV HKU23 KF906249 31,052 36.95 9 / 2 

Human CoV HKU1 NC_006577 29,926 32.06 9 / 2 

Human CoV OC43 NC_006213 30,741 36.79 9 / 2 

Mouse hepatitis virus (MHV) NC_001846 31,526 42.03 11 / 4 

Porcine hemagglutinating encephalomyelitis virus (PHEV) DQ011855 30,480 37.25 12 / 5 

Rat CoV Parker NC_012936 31,250 41.26 10 / 3 

Sarbecovirus 

Bat SARS-like CoV RaTG13 MN996532 29,855 38.04 11 / 5 

Bat SARS-like CoV HKU3 DQ022305 29,728 41.12 12 / 6 

Bat SARS-like CoV SL-CoVZC45 MG772933 29,802 38.90 12 / 6 

Bat SARS-like CoV SL-CoVZXC21 MG772934 29,732 38.82 12 / 6 

Bat SARS-like CoV WIV1 KF367457 30,309 40.77 13 / 7 

SARS-CoV (Human)  NC_004718 29,751 40.76 14 / 8 

SARS-CoV (Civet) AY686863 29,499 40.85 13 / 7 

SARS-CoV-2 (Human)  NC_045512 29,903 37.97 12 / 6 

SARS-CoV-2 (Tiger) MT365033 29,897 37.97 11 / 5 

Pangolin CoV MT040333 29,805 38.52 10 / 4 

Merbecovirus 

Hedgehog CoV HKU31 MK907286 29,951 37.69 10 / 4 

MERS-CoV (Human)  NC_019843 30,119 41.24 11 / 5 

MERS-CoV (Dromedary camel) KF917527 29,851 41.19 10 / 4 

Neoromicia bat CoV MF593268 30,009 40.21 10 / 4 

Pipistrellus bat CoV HKU5 NC_009020 30,482 43.19 10 / 4 

Tylonycteris bat CoV HKU4 NC_009019 30,286 37.82 10 / 4 

Nobecovirus 

Rousettus bat CoV GCCDC1 NC_030886 30,161 45.30 11 / 5 

Rousettus bat CoV HKU9 NC_009021 29,114 41.05 9 / 3 

Hibecovirus 

Bat Hp-BetaCoV Zhejiang2013 NC_025217 31,491 41.28 10 / 4 

1 Detailed information about the corresponding isolates is provided in supplementary table S1. 2 Number of open 

reading frames (ORFs) annotated in the corresponding GenBank entry. This number can vary among different 

versions of genome annotation for the same isolate. 

Due to its binding specificity, the S protein determines tissue tropism and host species range of 

different coronaviruses. Binding specificity of the S protein is determined by its receptor-binding 

domain (RBD) (IPR018548), sometimes called C-domain, responsible for recognizing and binding to the 

host cell receptor. The sequence of the S protein is commonly divided into two sections, termed S1 and 

S2, corresponding to the two subunits in which the protein is cleaved by host proteases after receptor 

recognition, although this cleavage does not occur in all coronaviruses [9]. The RBD is located in the S1 

subunit and contains a shorter receptor-binding motif (RBM) that directly interacts with the receptor. 

Consistent with the fact that SARS-CoV and MERS-CoV have different host cell receptors, their RBDs 

are structurally similar, but the corresponding RBMs differ in sequence [10]. The RBMs of SARS-CoV 

and SARS-CoV-2 are composed of ~70 amino acids [11,12], whereas the MERS-CoV RBM is composed 

of ~83 amino acids [13,14]. The S1 subunit also contains an additional N-terminal domain (NTD) 

(IPR032500) that has been shown to mediate binding to mCEACAM1a in murine coronaviruses [15].  
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Fig. 1. Organization of betacoronavirus genomes. Name abbreviations are provided in Table 1. 

The S2 subunit is considered to act as a class I viral fusion protein, promoting virus entry to the 

host cell through membrane fusion [16]. This subunit contains a fusion peptide (FP) that is believed to 

penetrate the host cell membrane, initiating the membrane fusion process [17]. S2 contains two 

additional α-helical heptad repeat domains, called HR1 and HR2 (IPR027400), which interact with each 

other to form a coiled coil conformation, facilitating membrane fusion by bringing together the viral 

envelope and the host cell membrane [18]. The S2 subunit also contains a transmembrane (TM) domain 

that anchors the S protein to the viral envelope, as well as a short cysteine-rich endodomain, also known 

as CP (cytoplasmic) domain, oriented towards the interior of the viral particle. 

2.2. Replicase/transcriptase and nonstructural proteins 

Upon host cell entry, the virus is uncoated and the host ribosome then translates the first two 

overlapping ORFs, ORF1a and ORF1b, to generate the replicase/transcriptase polyproteins pp1a and 

pp1ab. The pp1a polyprotein is synthesized by translation of ORF1a, whereas the longer pp1ab 

polyprotein is synthesized from both ORFs, due to a ribosomal frameshifting event allowing their 

continuous translation [2]. These polyproteins self-cleave to produce up to 16 nonstructural proteins 

(Nsps) (see Snijder, Decroly and Ziebuhr [19] for a comprehensive review). Nsp1 to Nsp11 are encoded 

by ORF1a and are therefore present in both pp1a and pp1ab, whereas Nsp12 to Nsp16 are encoded by 

ORF1b and are only present in pp1ab.  

1 4000 8000 12000 16000 20000 24000 28000     (bp)

Hibecovirus

Bat Hp-CoV Zhejiang2013

Murine CoV MHV

Bovine CoV

Human CoV OC43

Human CoV HKU1

China Rattus CoV HKU24

SARS-CoV

Bat SARS-like CoV WIV1

Pipistrellus Bat CoV HKU5

Tylonycteris Bat CoV HKU4

MERS-CoV

Rousettus Bat CoV HKU9

Rousettus Bat CoV GCCDC1

SARS-CoV-2

Embecovirus

Sarbecovirus

Merbecovirus

Nobecovirus

HEORF1a ORF1b S E M N Accessory proteins

Rat CoV Parker

Dromedary CoV HKU23 

Porcine CoV PHEV 

Bat SARS-like CoV RaTG13

Bat SARS-like CoV HKU3

Pangolin CoV

Bat SARS-like CoV SL-CoVZC45

Bat SARS-like CoV SL-CoVZXC21

Hedgehog CoV HKU31

Neoromicia Bat CoV

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 May 2020                   doi:10.20944/preprints202005.0448.v1

Peer-reviewed version available at International Journal of Molecular Sciences 2020; doi:10.3390/ijms21124546

https://doi.org/10.20944/preprints202005.0448.v1
https://doi.org/10.3390/ijms21124546


5 of 31 

Fig. 2. Replication cycle of a typical coronavirus. Upon recognition of the host cell receptor, the viral 

particle enters the host cell and is uncoated, releasing its positive-sense genomic RNA. Host 

ribosomes translate polyproteins pp1a and pp1ab, which self-cleave to produce the nonstructural 

proteins (Nsps). Several Nsps assemble into the replicase-transcriptase complex (RTC) that generates 

the mRNAs for structural and accessory proteins through transcription, as well as positive-sense 

genomic RNAs through replication. Viral core particles are assembled within smooth vesicles derived 

from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). The viral progeny is 

ultimately released via exocytosis. 

At least two Nsps are responsible for the proteolytic activity, namely, Nsp3 (papain-like protease 

or PLpro) and Nsp5 (3C-like protease or 3CLpro). The Nsp3 proteins from genus Alphacoronavirus and 

subgenus Embecovirus have two PLpro functional domains (IPR022733), respectively termed PL1pro and 

PL2pro. All other coronaviruses have only one domain, collinear with PL2pro. Nsp3 from SARS-related 

coronaviruses has several functional domains in addition to PL2pro, including an acidic (Ac) C-terminal 
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domain, an ADP-ribose-1’’-phosphatase (ADRP) domain, a SARS-specific unique domain (SUD) 

(IPR024375), a nucleic acid-binding (NAB) domain (IPR032592) and a TM segment [20]. At least two of 

these domains seem to have affinity for single-stranded RNA [21,22].  

Several Nsps (Nsp7 to Nsp16) form the active multimeric replicase/transcriptase complex (RTC). 

The main component of this complex is Nsp12, the RNA-dependent RNA polymerase (RdRp) that 

directly mediates the de novo primer-independent RNA synthesis during replication of the virus, as well 

as transcription of ORFs to produce the mRNAs for structural and accessory proteins. During 

replication, RdRp synthesizes a negative-sense genomic RNA by using the positive-sense genome as a 

template. During transcription, RdRp synthesizes negative-sense subgenomic RNAs that are 

subsequently transcribed into the corresponding positive-sense mRNAs. These mRNAs are then 

translated by the host ribosome into the structural and accessory proteins. To accomplish these 

functions in transcription and replication, Nsp12 has at least two well-conserved functional domains, 

namely, the RdRp catalytic domain (IPR007094) and a relatively large N-terminal domain (NTD) 

(IPR009469). This NTD is unique to the Nidovirales order and contains a nucleotidyltransferase 

subdomain called NiRAN (nidovirus RdRp-associated nucleotidyltransferase) [23]. 

Fig. 3. Main functional domains in protein-coding genes. (A) Location of Nsps along the sequence 

of ORF1a and ORF1b. (B) Functional domains of Nsp3, Nsp5, Nsp12, Nsp13, Nsp14, Nsp15 and 

Nsp16. (C) Functional domains of structural proteins. All proteins are from SARS-CoV, except for the 

Nsp3 and HE proteins of murine hepatitis virus (MHV), which are included for comparative 

purposes. Proteins are drawn to scale, except for E and M, which are drawn two (2×) and three (3×) 

times larger, respectively. Specific domain name abbreviations are explained in the main text. TM: 

transmembrane domain, SP: signal peptide, FP: fusion peptide, RBD: receptor-binding domain, CP: 

cytoplasmic domain, NTD: N-terminal domain, CTD: C-terminal domain. 
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The other Nsps forming the RTC assist RdRp during replication and transcription [24]. Nsp7 and 

Nsp8 are thought to help with the processivity of RdRp and together form the main polymerase 

holoenzyme [25]. Nsp13 is a highly conserved helicase subunit that is required for efficient replication 

of the viral genome [19]. In addition to the HEL1 helicase core domain (IPR027351), Nsp13 also has an 

N-terminal cysteine-rich zinc-binding domain (ZBD) (IPR027352) that appears to modulate the helicase 

activity [26]. Three additional nonstructural proteins, Nsp14, Nsp15 and Nsp16, have functional 

domains likely to be involved in RNA processing pathways. Nsp14 is a bifunctional protein that has a 

N7-methyltransferase domain and an ExoN domain with 3’-5’ exonuclease activity. This exonuclease 

activity provides a proofreading function that is lacking in RdRp and enhances the fidelity of replication 

[27].  

2.3. Envelope (E) and Membrane (M) proteins  

Envelope (E) and membrane (M) are conserved, envelope-associated, integral membrane proteins. 

Proteins S, E and M are translocated into the endoplasmic reticulum (ER) of the host cell during 

translation. Unlike the S protein, however, E and M do not appear to have a recognizable N-terminal 

signal peptide [9]. Upon entry into the ER, the three proteins are integrated into the ER membrane and 

follow the secretory pathway towards the ER-Golgi intermediate compartment (ERGIC). There, E and 

M engage in several molecular interactions to facilitate assembly and release of new viral particles [28–

30].   

The E protein has a single TM domain and a relatively short N-terminal CP endodomain, whereas 

M has three TM domains and a much larger C-terminal CP endodomain. It has been suggested that 

both CP endodomains play a significant role in the critical functions of these proteins in assembly and 

release of new viral particles [28,31]. The E protein also acts as an ion channel, an activity that has been 

associated with its TM domain [32,33]. In SARS-CoV, this activity is not essential for replication, but it 

appears to be required for virulence [34]. 

2.4. Nucleocapsid (N) protein 

The nucleocapsid (N) protein binds to genomic RNAs in a beads-on-a-string conformation. Unlike 

S, E and M, the N protein stays in the cytosol of the host cell after translation, where it binds genomic 

RNAs to form new nucleocapsids. These nucleocapsids travel to the ERGIC and are used for the 

assembly of new viral core particles. The N protein also appears to bind to Nsp3 and M, thus suggesting 

an important role in guiding viral RNA through replication, transcription and assembly [9]. The N 

protein contains two functional domains, termed N-terminal domain (NTD) (IPR037195) and C-

terminal domain (CTD) (IPR037179), both of which are capable to interact with RNA [35,36]. 

2.5. Accessory proteins 

Accessory proteins are genus- or species-specific and are usually dispensable for viral replication 

in vitro, but required in vivo [37]. The functions of accessory proteins and their pathophysiological roles 

are not completely understood. SARS-CoV contains at least eight ORFs encoding accessory proteins, 

namely, ORFs 3a, 3b, 6, 7a, 8a, 8b and 9b. Some of these proteins, particularly 6 and 7b, appear to 

contribute to virulence [38,39]. Most of these proteins are involved in cellular processes such as 

interfering with DNA synthesis, induction of caspase-dependent apoptosis, induction of 

proinflammatory cytokines and activation of the mitogen-activated protein kinase (MAPK) pathway 

[37]. Many of these accessory proteins are also incorporated into mature SARS-CoV virions, filling the 

role of minor structural proteins. The SARS-CoV-2 genome seems to encode a set of accessory proteins 

similar to that of SARS-CoV, with noticeable differences in ORFs 3a, 3b and 8b, which have been 

associated with interferon modulation and activation of the inflammasome [40]. 

Certain coronaviruses have one or two ORFs overlapping the N protein gene, although these are 

not always annotated in the corresponding genomes. Betacoronaviruses from the Embecovirus and 

Merbecovirus subgenera typically have a single overlapping ORF that has been found to encode a 23-

kDa protein in mouse hepatitis virus (MHV) [41] and bovine coronavirus [42]. Experiments performed 
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in MHV-infected cells have demonstrated that this protein is a structural component of the MHV virion 

and may be involved in the processing or transport of the S protein [41]. In the Sarbecovirus subgenus, 

there are usually one or two shorter ORFs overlapping the N gene, often termed ORF9b and ORF9c. 

ORF9b has been shown to encode an accessory protein that is also a virion component [43] and seems 

to participate in the suppression of host innate immunity [44]. 

2.6. Haemagglutinin esterase (HE) 

All known betacoronaviruses from the Embecovirus subgenus have an additional haemagglutinin 

esterase (HE) gene located upstream of that encoding the S protein [45]. This gene encodes a 

glycoprotein with neuraminate O-acetylesterase activity that mediates reversible attachment to O-

acetylated sialic acids by acting as a receptor-binding molecule and a receptor-destroying enzyme [46]. 

HE is an integral membrane protein with a single TM domain and a relatively large ectodomain, which 

contains the esterase core domain (IPR003860) and a lectin subdomain acting as the RBD [47]. This gene 

is suspected to be acquired from the influenza C virus through heterologous recombination [48]. Due 

to the absence of this gene in all other betacoronaviruses, this event is likely to have occurred after major 

subgenera diverged from common ancestors.  

3. Basic phylogenetic relationships 

Phylogenetic analyses help us understand the evolutionary history of viruses and provide a solid 

basis for their classification. A paramount application of these analyses is to make inferences about the 

origin of novel viral strains or species. This is particularly relevant in the context of outbreaks, to identify 

possible animal reservoirs involved in transmission to other susceptible hosts, including humans. To 

perform these analyses, researchers usually focus on genes or genomic segments conserved through all 

the species of interest, but with enough sequence divergence to allow their unambiguous separation in 

a phylogenetic tree. In the case of the coronaviruses, phylogenetic analyses are usually based on whole 

or partial sequences of the ORF1ab, S and N genes, whereas genes E and M are generally deemed as 

too short for these analyses [45]. 

Several genes are usually considered when exploring the phylogenetic relationships between 

coronaviruses, since trees built from different genomic regions often have inconsistent topologies [45] 

(Figure 4). One possible cause for these inconsistencies is genetic recombination, which is thought to 

occur frequently during evolution of coronaviruses (see Molecular epidemiology). Recombination 

usually involves segments totally or partially spanning the S gene, but may be associated with other 

regions of the genome. For instance, soon after the discovery of human coronavirus HKU1 in 2005, 

phylogenetic analysis suggested the existence of two putative genotypes, but conflicting results were 

obtained when using different regions of the genome to infer the phylogenetic relationship between 

these genotypes [49,50]. It was later demonstrated that these discrepancies were due to recombination 

between the two genotypes, with recombination breakpoints located within Nsp16 and HE [51]. 

For the taxonomic classification of coronaviruses, the ICTV currently recommends the use of 

domains 3CLpro, NiRAN, RdRp, ZBD and HEL1 of Nsp3, Nsp12 and Nsp13 [52]. These domains are 

conserved in all viruses of the order Nidovirales and can therefore be used for deeper phylogenetic 

analyses [53]. Recent studies exploring the phylogenetic position of SARS-CoV-2 have shown that trees 

built using some of these conserved domains are consistent with those based on whole genome 

sequences, at least at the genus and subgenus levels [4,52,54,55] (Figure 4A and 4B). However, in studies 

exploring shallower phylogenetic relationships, such as those focused on closely related viral strains 

isolated from different hosts, conserved domains may not have enough variability to ensure robust 

separation of some taxa. This is evidenced by the relatively low branch support estimates occasionally 

obtained for some subclades from the same subgenus in trees based on conserved domains, when 

compared to whole genome trees [4,52] (Figure 4B and 4D). More variable segments or complete 

genome sequences may be a better choice in these scenarios, to build more robust phylogenetic trees.  
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Fig. 4. Phylogenetic analysis of representative betacoronaviruses. Figure shows four alternative 

phylogenies for coronaviruses in Table 1, inferred from complete genome sequences (A), 

concatenated sequences of ORF1ab domains (B), whole S protein (C) and the receptor-binding domain 

(RBD) (D). Phylogenetic analysis was performed as previously described [4,52], briefly, sequences 

were aligned with MAFFT [56] and trees were built with IQ-TREE [57], with the maximum likelihood 

(ML) method and the GTR+G+I model. For protein sequences, amino acid alignments were converted

to nucleotides with PAL2NAL [58]. Numbers above or below branches indicate branch support

measures expressed as percentage and estimated using the Shimodaira-Hasegawa (SH)-like

approximate likelihood ratio test (aLRT) with 1,000 replicates. Trees were rooted with human

alphacoronaviruses 229E and NL63 (GenBank accession numbers NC_002645 and NC_005831,

respectively).
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Several studies addressing the origin of coronavirus species have identified bats as the natural 

reservoirs of alphacoronaviruses and betacoronaviruses [59,60]. This is not surprising, since bat 

coronaviruses are highly ubiquitous in most currently accepted taxonomic subgroups [1]. In fact, five 

of the seven known human coronaviruses are likely to have originated from bats, namely, NL63, 229E, 

MERS-CoV, SARS-CoV and SARS-CoV-2. The remaining two human coronaviruses, HKU1 and OC43, 

are thought to have originated from rodents [61]. In the case of SARS-CoV, its possible origin from bats 

was first suggested in 2005, when two studies independently reported the discovery of SARS-related 

coronaviruses isolated from Chinese horseshoe bats (Rhinolophus spp.) [62,63], with several more strains 

discovered in subsequent years (reviewed by Luk et al. [64]). Similar findings have been reported for 

MERS-CoV, which was found to be closely related to coronaviruses isolated from bamboo bats 

(Tylonycteris spp.) and pipistrelle bats (Pipistrellus spp.), respectively termed Tylonycteris bat 

coronavirus HKU4 (Ty-BatCoV-HKU4) and Pipistrellus bat coronavirus HKU5 (Pi-BatCoV-HKU5) [65]. 

In phylogenetic trees, these two coronaviruses separate well from MERS-related coronaviruses found 

in other bat species, including those recently isolated from serotine bats (Neoromicia spp.) in South Africa 

[66]. 

Another important conclusion drawn from exhaustive phylogenetic analyses is that, although bats 

appear to act as natural reservoirs of coronaviruses, intermediate animal hosts may also play a critical 

role in transmission to other susceptible hosts. The presumed intermediate host for SARS-CoV, the 

masked palm civet from the Viverridae family (Paguma larvata), was identified even before the natural 

bat carriers, when highly similar SARS-CoV strains were found in the civets from a wet market and in 

workers supposed to handle them [67]. The intermediate role of civets was suspected when comparing 

samples from market civets to those in the wild, which suggested that SARS-CoV was likely transmitted 

to the market civets by other animals [68]. A similar scenario has been reported for MERS-CoV and its 

intermediate host, the dromedary camel (Camelus dromedarius). After the 2012 MERS outbreak, MERS-

CoV strains highly similar in sequence to those from human patients were isolated from camels [69,70]. 

In 2013, a novel dromedary camel coronavirus HKU13 was also identified [71], however, phylogenetic 

analysis positioned it within the Embecovirus subgenus and it is therefore not directly related to MERS-

CoV. 

Soon after the onset of the 2019-20 COVID-19 pandemic and the availability of the whole genome 

sequence of the novel coronavirus, phylogenetic analysis revealed that it was closely related to SARS-

CoV and it was officially designated as SARS-CoV-2 [52]. Not surprisingly, it was soon reported that 

SARS-CoV-2 was phylogenetically related to two bat SARS-like coronaviruses, SL-CoVZC45 and SL-

CoVZXC21, previously isolated from Rhinolophus sinicus in 2018 [54,72,73]. Bat coronavirus RaTG13, 

isolated from Rhinolophus affinis in 2013, was found to be even more closely related to SARS-CoV-2 than 

the first two [4]. Further studies identified coronaviruses similar to SARS-CoV-2 in Malayan pangolins 

(Manis javanica), a highly smuggled animal illegally sold in China [55,74]. Although bat coronavirus 

RaTG13 is phylogenetically closer to SARS-CoV-2 than the pangolin coronaviruses, the RBD of the latter 

are more similar to those of SARS-CoV-2, thus suggesting a possible role of pangolins as intermediate 

hosts in transmission to humans [75].  

3. Molecular Epidemiology 

Molecular epidemiology focuses on the contribution of genomic, genetic and other molecular 

factors to etiology, distribution and prevention of diseases. Central to molecular epidemiology of 

betacoronaviruses is their circulation among different animal hosts, as well as the evolutionary forces 

that facilitate these cross-species jumps. Here, we discuss how genomic information has been used to 

better understand the rate of evolution of betacoronaviruses and their transmission in human 

populations, as well as the evolutionary changes associated with host and tissue tropism.  

3.1 Evolutionary rates and divergence 

Estimation of evolutionary rates is an important step to characterize the genetic diversity among 

viral lineages and to place a timescale in phylogenetic hypotheses explaining their origin and 

divergence. The rate of evolution of viruses is often assessed through the number of errors occurring 
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during replication of the viral genome (the mutation rate) and the frequency at which such mutations 

become fixed in the population (the substitution rate) [76]. The substitution rate depends on several 

factors, including the underlying mutation rate and the presence of selective forces that influence 

fixation of mutations in association with their fitness. Mutation rates of RNA viruses are generally 

higher than those of DNA viruses, due to the lack of a proofreading activity and consequent low fidelity 

of their RdRp [77]. However, due to the proofreading activity of Nsp14, members of the order 

Nidovirales have relatively lower mutation rates [78]. 

The substitution rate is often expressed in substitutions per nucleotide site per year (s/n/y) and can 

be estimated from phylogenetic reconstructions, when divergence time is known for particular lineages. 

Although several methods have been traditionally used to estimate substitution rates, including linear 

regression and maximum likelihood (ML), the most popular method nowadays is the Bayesian Markov 

chain Monte Carlo (MCMC) approach, such as that implemented in the BEAST package [79]. Globally, 

substitution rates of coronaviruses have been estimated to be in the order of 10-3–10-4 s/n/y [80,81]. 

Studies conducted in SARS-CoV and MERS-CoV have estimated substitution rates for the whole 

genome to be between 0.80–2.38 × 10-3 and 0.88–1.37 × 10-3 s/n/y, respectively [82,83]. However, variation 

in the estimates for particular genes have been observed for both SARS-CoV [84–88] and SARS-CoV-2 

[89,90], suggesting that some genes may be subjected to negative or positive selective pressure.  

An important application of this type of analysis is the estimation of the time to most recent 

common ancestor (TMRCA) between two lineages, as an approximate measure of their time since 

divergence. Several studies have estimated that the SARS-CoV lineage within the SARS-related 

coronaviruses most probably emerged between 1961-1985, while the civet SARS-CoV strains may have 

originated at a time period around 1986-1995 [86–88]. TMRCA estimates for the SARS-CoV and MERS-

CoV strains respectively involved in the 2002-03 and 2012 outbreaks have been roughly consistent with 

period of time in which the first cases were reported [83,88]. A preliminary study has estimated that the 

group containing SARS-CoV-2 and its closest bat coronavirus, RaTG13, may have diverged between 

40–70 years ago [91]. 

3.2. Recombination, RBD mutations and host/tissue tropism 

Recombination events are often inferred by comparing phylogenetic trees built from different 

genes or genomic regions, since occurrence of recombination often leads to inconsistent topologies in 

such trees (see Basic phylogenetic relationships). One of the most popular methods for detecting 

recombination in viral genomes is bootscan analysis [92]. To use this method, sequences of target 

genomes are aligned against reference sequences associated with the suspected recombination events. 

The alignments are divided into short sequential segments and phylogenetic trees are then built from 

these segments. Recombination is suspected in segments for which the trees exhibit an alternative 

topology, involving different reference sequences. Bootscan and other complementary methods, such 

as sequence similarity plots for the putative recombinant regions, are implemented in packages like 

SimPlot [93] or the Recombination Detection Program (RDP) [94]. Studies relying on these methods 

have documented the occurrence of recombination in several coronavirus genera and have also 

provided ample evidence supporting the important role of this process in coronavirus cross-species 

transmission [1,95,96].  

The first reported example of natural recombination in human coronaviruses was that occurring 

between two different HKU1 genotypes [51]. Putative recombination events between genotypes have 

also been documented for human coronaviruses NL63 [97] and OC43 [98]. In the case of SARS-related 

and MERS-related coronaviruses, recombination appears to occur among strains infecting several 

animal hosts, including bats, intermediary hosts and humans (reviewed by Hu et al. [60] and Su et al. 

[96]). Studies considering several bat SARS-related coronaviruses have suggested the occurrence of 

recombination in lineages leading to human and/or civet strains of SARS-CoV, with breakpoints often 

located close or within the S and ORF8 genes [87,99,100]. These findings suggest that recombination 

between existing strains can result in new strains or species, with possible differences in host and tissue 

tropism. For instance, bat coronavirus strains Rs3367 (WIV1) and WIV16 have been reported to have 

high sequence similarity to human/civet SARS-CoV at the S gene, allowing them to use ACE2 as a 
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receptor for cell entry [101,102]. Recombination analysis suggested that at least one civet SARS-CoV 

strain (SZ3) may have originated by recombination between WIV16 and another bat SARS-CoV strain 

(Rf4092) [103]. 

In the case of SARS-CoV-2, comparison of its genome to those of other SARS-related coronaviruses 

did not provide enough evidence supporting recent recombination as a possible explanation for its 

origin [4,54,73]. However, two putative breakpoints, possibly derived from a past recombination event, 

were identified within the S gene, flanking its RBD [73]. Globally, the SARS-CoV-2 genome is more 

similar to those of bat coronaviruses SL-CoVZXC21 and SL-CoVZC45, however, the region between the 

two breakpoints was found to be more similar to human/civet SARS-CoV and WIV1. Putative 

recombination signals have also been reported between SARS-CoV-2, RaTG13 and the pangolin-related 

coronaviruses [55,74]. Although SARS-CoV-2 is more similar to RaTG13 than to the pangolin 

coronaviruses, some of the later have higher sequence similarity to SARS-CoV-2 in the RBD. It has also 

been suggested that these similarities at the amino acid level may be due to convergent evolution, 

arising from positive selection instead of recombination [74,104].   

The fact that different evolutionary events often involve the RBD is likely to be associated with the 

role of this domain and its RBM in receptor recognition and adaptation to different animal hosts. In 

SARS-CoV-like viruses, six RBD amino acids have been found to be essential for binding to ACE2, five 

of which differ between SARS-CoV and SARS-CoV-2 [12,105]. Particular sets of RBD mutations appear 

to be associated with a specific host range for each coronavirus species, as is the case of humans and 

civets in SARS-CoV or humans and camels in MERS-CoV. Although it has been suggested that SARS-

CoV-2 is optimized for binding to human ACE2, it may also infect other animals with highly similar 

ACE2 homologs such as pigs, ferrets, cats and primates [75,105]. In fact, the S gene of a SARS-CoV-2 

strain recently isolated from a tiger (GenBank accession number MT365033) is identical to those of 

human isolates, both clustering into the same branch in phylogenetic trees (Figure 4). 

Comparative sequence analysis has suggested that positive selection may have a role in shaping 

the evolution of the S protein and the RBD of SARS-CoV and MERS-CoV [84,106–108]. The role of 

natural selection in the evolution of particular genes is typically inferred by computing the ratio of the 

rates of nonsynonymous to synonymous changes (Ka/Ks) between groups or lineages, with a value 

greater than 1 indicating an overall positive selective pressure. Although evolution of the SARS-CoV 

genome during the 2002-03 SARS outbreak was found to be largely neutral or nearly neutral, at least 

six mutations occurred in the S protein during the early, middle and late phases of the outbreak, all of 

which were present in the epidemic strain (Urbani) [106,109]. However, the average Ka/Ks values for 

the early phase were found to be significantly higher than those for the middle and late phases, 

suggestive of initial positive selection in the S gene, followed by purifying selection and stabilization. 

Likewise, a recent study has suggested limited episodes of positive selection during divergence of 

SARS-CoV-2 from RaTG13, although there is still insufficient evidence to associate these changes with 

its adaptation to humans [110]. 

3.3. Genetic variation and transmission in human populations 

As pathogenic viruses replicate and spread during outbreaks, their genomes accumulate random 

mutations that can be used to track the spread of the disease, reconstruct their transmission routes and 

detect lineages with different levels of virulence and transmissibility. There are several methods for 

tracking mutations and inferring the mode of transmission from genomic data, most of which require 

the alignment of sequences from new isolates to reference genomes and the subsequent identification 

of genetic variants such as single nucleotide variants (SNV) and insertion/deletions (indels). The 

simplest and fastest methods are based on pairwise distances among samples computed from these 

variants. However, these methods do not consider evolutionary models and can be highly inaccurate 

when there is substantial divergence between donor and recipients in transmission chains [111]. More 

advanced methods are based on ML or MCMC approaches, often within a Bayesian framework, 

applying an explicit model of evolution to phylogenetic estimation. When these methods are combined 

with sampling dates, estimations of the presence of significant molecular evolution over a sampling 
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period is possible [111]. Such analyses are implemented in packages like TransPhylo [112,113], 

Phyloscanner [114], Outbreaker2 [115] or Phybreak [113].  

The main output of these methods is a transmission tree indicating which individuals infected 

others. Although a transmission tree cannot be directly inferred from a phylogenetic tree, it must be 

consistent with the underlying phylogeny. Together, phylogenetic and transmission trees help us trace 

back the origin of an outbreak, detect multiple introductions of a pathogen into a given territory, 

identify mutations that define specific lineages and predict the potential existence of unsampled 

individuals that may have acted as missing transmission links. Due to their relatively recent 

development, transmission trees based on genomic data were not widely used to study the transmission 

routes of previous SARS and MERS outbreaks, however, a recent study analyzing data from the 2003 

SARS outbreak has provided new insights into its early stages [116].         

Progress in genome sequencing technologies has resulted in an exceptionally high number of 

SARS-CoV-2 genomes sequenced during the 2019-20 COVID-19 pandemic. In fact, the COVID-19 

pandemic is the second one in history, after the 2009 H1N1 influenza pandemic [117,118], for which 

genomic data has been generated almost in a real-time fashion, allowing a very detailed reconstruction 

of transmission trees. Genome sequences has been made publicly accessible through several 

repositories, including a data sharing service hosted by the Global Initiative on Sharing All Influenza 

Data (GISAID) (https://www.gisaid.org/) [119,120]. In addition to public genome repositories, open-

source platforms for real-time data visualization and analysis of genomic data are also available, 

including NextStrain (https://nextstrain.org) and CoV-GLUE (http://cov-glue.cvr.gla.ac.uk). NextStrain 

is fed with sequences from the GISAID repository and uses the Augur bioinformatics toolkit 

(https://github.com/nextstrain/augur) for tracking molecular evolution and the Auspice software 

(https://nextstrain.github.io/auspice/) for interactive visualization of phylogenomic data. Conversely, 

CoV-GLUE is a web application based on an integrated software environment called GLUE (Genes 

Linked by Underlying Evolution), designed to create bioinformatic resources based on viral genome 

sequences [121]. CoV-GLUE is also based on GISAID data and contains a database of replacements and 

indels that have been found in previously sampled SARS-CoV-2 sequences. New SARS-CoV-2 genome 

sequences can be loaded into the platform to identify novel or known mutations, assign them to 

potential lineages and visualize them in a phylogenetic context.    

Several attempts have been made to classify circulating strains of SARS-CoV-2 into lineages or 

genotypes with potential differences in transmissibility and disease severity. Among these, a study 

comparing 103 SARS-CoV-2 genomes suggested the existence of two lineages, termed L and S, with 

potential differences in prevalence [104]. Another recent study compared 160 genomes from different 

countries and suggested the existence of three subtypes, A B and C, with differences in geographic 

distribution and prevalence [122]. However, such studies have been criticized for possible sampling 

biases and misinterpretation of results [123–126], stressing that caution should be taken when drawing 

conclusions from genomic analyses. Limited or inappropriate sampling can bias the inference of 

transmission networks, potentially hiding introduction events and intermediate states and resulting in 

inaccurate mutation rate estimates [111]. When describing new lineages based on SNVs and other 

genetic variants, fixation of the corresponding mutations should be first demonstrated in local 

populations. 

4. Diagnostics, drug design and vaccine candidates  

Early diagnosis and rapid development of drugs and vaccines targeting emerging viruses are 

essential to limit their spread, but traditional development approaches are time-consuming and often 

inefficient. Conversely, sequence-based approaches allow rapid understanding of viral protein function 

and pathogenesis, as well as the identification of virus-specific factors and targets suitable for drug and 

vaccine design. Here, we briefly review how genomic information has fueled the development of 

diagnostic systems and the design of new drug and vaccine candidates. We begin with a brief 

introduction to the application of genomics in the development of reverse genetic systems, which are 

key to the previously mentioned fields. 
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4.1. Reverse genetic systems 

Genomic information has been widely used in the development of reverse genetic systems, 

allowing the construction of synthetic viral infectious particles and the manipulation of the genetic 

composition of viruses for research purposes [127]. These systems have proven indispensable for the 

characterization of human and animal betacoronaviruses, especially when there is limited access to 

clinical isolates or for research institutions that do not have the appropriate containment facilities [128]. 

Reverse genetics was initially difficult to implement for betacoronaviruses due to the relatively large 

size of their viral RNA genome, which affects transfection efficiency and stability in standard bacterial 

vectors [127]. Although several systems can be used to construct synthetic coronavirus genomes 

(reviewed by Almazán et al. [129]), most studies focusing on betacoronaviruses have used a sub-cloning 

strategy based on in vitro ligation, originally developed for the transmissible gastroenteritis virus 

(TGEV) [130]. This system is based on the systematic and precise assembly of complete cDNA genomes 

from a panel of cDNA cassettes that span the entire viral genome and that are flanked by native or 

engineered specific restrictions sites, allowing the construction of full-length infectious clones. This 

assembly strategy was rapidly deployed for the study of human pathogenic betacoronaviruses, 

including SARS-CoV, MERS-CoV and SARS-CoV-2 [131–133].  

The use of reverse genetic systems has allowed targeted genetic manipulation of viral genes and 

creation of homogeneous viral stocks for running in vitro and in vivo assays. Based on their genomic 

organization, reporter strains of both SARS-CoV and MERS-CoV have been created by replacing the 

ORFs of accessory proteins with luciferase and fluorescent proteins as reporter genes [134–137]. These 

reporter strains, as well as mouse-adapted SARS-CoV and MERS-CoV clones, have been used to assess 

the role of individual mutations in host adaptation [136–139]. Similar studies based on reverse genetics 

have been critical in characterizing the function of several Nsps in replication and transcription, as well 

as modulation of host processes such as inflammatory responses during infection [19]. 

Reverse genetic systems are also useful to understand how the viruses evolve during outbreaks 

and epidemics. For instance, S protein mutations from zoonotic, early, middle and late epidemic strains 

of the SARS-CoV outbreak have been introduced into the S protein of the epidemic strain of SARS-CoV 

(Urbani) to evaluate the effect of those mutations on viral entry into human cells and viral pathogenesis 

in rodent and primate models [140–142]. In addition, reverse genetic systems have proven useful in 

analyzing the emergence and pathogenic potential of bat SARS-related and MERS-related 

coronaviruses [143–146]. Recombinant versions of bat betacoronaviruses can be used to evaluate the 

efficiency of the S protein-mediated viral entry and replication and to characterize genetic changes 

required for efficient infection of human cells.  

4.2. Diagnostics 

Methods based on polymerase chain reaction (PCR) are the most frequently used for detecting 

highly pathogenic human betacoronaviruses. These methods have several advantages including their 

high sensitivity and specificity, their feasibility in settings where virus isolation is not possible due to 

safety concerns and their ability to detect virus presence early after infection, even before the onset of 

symptoms [147,148]. After the 2002-03 SARS-CoV outbreak, random-amplification deep-sequencing 

approaches have played a crucial role in discovery and characterization of genomic differences among 

SARS-related coronaviruses and identification of the emerging MERS-CoV and SARS-CoV-2 

[73,149,150]. These studies allowed the rapid development of genus- and species-specific real-time PCR 

assays based on the genomes of these viruses. Available PCR tests for human pathogenic 

betacoronaviruses employ either a single or multiple primer sets targeting specific regions of the 

ORF1ab, E and N genes [147,148,151–155]. Although most of the assays developed using the 

aforementioned genes show no cross-reactivity with related species and hence, high specificity, assays 

targeting the N gene displayed higher sensitivity, probably because this transcript is very abundant 

during replication of betacoronaviruses [148,151,153,156,157]. Actually, even if relative abundance of 

subgenomic mRNAs is believed to be kept well controlled during the replicative cycle, an increasing 
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gradient of expression has been reported from 5’ to 3’, with the N gene exhibiting the highest expression 

levels in cells infected with MHV [158]. 

Regardless of their efficiency, PCR-based assays have several drawbacks for their massive use 

during outbreaks and epidemics, including requiring specialized and costly equipment and reagents, 

as well as having turnaround times ranging from 2 to 4 days due to the time required for sample 

transportation to centralized testing facilities, preparation and performance of the actual PCR test. In 

recent years, a rapid molecular test based on a combination of reverse transcription loop-mediated 

isothermal amplification and a vertical flow visualization strip (RT-LAMP-VF) have been developed to 

detect the N gene of MERS-CoV, exhibiting no cross-reactivity with SARS-related coronaviruses and a 

turnaround time of approximately 35 minutes [156]. A new assay called DNA Endonuclease-Targeted 

CRISPR Trans Reporter (DETECTR) has been developed for SARS-CoV-2 detection, which can be 

performed in less than 40 minutes [157]. This assay performs simultaneous RT-LAMP for RNA samples 

followed by Cas12 detection using guide RNA sequences targeting species-specific regions of the E and 

N genes of SARS-CoV-2.  

Immunoassays based in antigen-antibody recognition are an alternative for the establishment of 

point-of-care tests that deliver fast results at a low-cost, and are fundamental for providing diagnostic 

evidence and for better understanding of the epidemiology of emerging betacoronaviruses, including 

the burden of asymptomatic infections and exposure. Knowledge of the genomic sequences of infecting 

coronaviruses has been critical for the development and validation of immunoassays that either use 

monoclonal antibodies (mAbs) to detect viral antigens in clinical samples or cloned viral antigens to 

detect patient antibodies directed against the virus [147,159–162]. Development of antigen tests requires 

the expression of recombinant viral proteins or fragments of them that contain potential epitopes 

predicted by sequence homology to previously described immunogenic motifs [163,164]. These 

recombinant antigens are subsequently used for the production of specific mAbs, followed by 

experimental validation of their affinity for viral antigens and characterization of their specific epitopes 

[165].  

Prototypes of direct antigen tests have been developed previously for SARS-CoV and MERS-CoV, 

but have not received regulatory approval, whereas SARS-CoV-2 antigen tests are currently under 

development [147,159,161,166]. Most of these antigen-based assays have targeted the N protein, since it 

is probably the most convenient target for virus detection in patients due to its high abundance. 

Serological assays that rely on recombinant proteins as antigens have been developed for detection of 

SARS-CoV, MERS-CoV and SARS-CoV-2, mainly using the N and S proteins as the two major 

immunogenic proteins of these viruses [160,162,167,168]. Although serological assays have limited 

utility for diagnostic purposes due to the variable time span for antibodies to be detectable after initial 

infection, these assays may be especially useful for unveiling the real epidemiological impact of 

pandemics such as the 2019-20 COVID-19 pandemic, given the increasing evidence of highly abundant 

asymptomatic carriers [169–171]. 

4.3. Drug design 

When SARS-CoV suddenly emerged in late 2002, the initial approach to drug discovery was to test 

existing broad-spectrum antiviral drugs as potential anti-betacoronavirus candidates [172]. In addition 

to drug repurposing, a more rational approach widely used in the aftermath of SARS-CoV and MERS-

CoV was structure-based drug design (reviewed by Hilgenfeld and Peiris [173]). Not surprisingly, 

similar strategies have also been explored since the beginning of the 2019-20 COVID-19 pandemic [174]. 

Accelerated discovery of new SARS-related betacoronaviruses and characterization of their genomes 

have allowed the incorporation of genomic information into drug discovery pipelines. Reverse genetic 

systems have made possible biological assays for characterizing the function of viral proteins, the first 

important step for identification of potential virus-specific drug targets [131–133]. Both genomic and 

functional knowledge have allowed the development of small interfering RNA (siRNA) molecules 

targeting specific viral proteins. This strategy has been used to design siRNA inhibitors targeting the 

ORF1b and S genes of SARS-CoV [175] and has also been suggested as a valid strategy against SARS-

CoV-2 [176]. 
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Genomic knowledge also serves as the basis for other ‘Omics’ such as transcriptomics, proteomics 

and interactomics, which have also been crucial for accelerating drug discovery against SARS-CoV-2. 

Based on the high sequence similarity between SARS-CoV-2 and other human betacoronaviruses, 

especially SARS-CoV, network proximity analysis of drug targets and virus-host interactions in the 

human interactome has been already used as a tool for accelerating drug repurposing [177]. In this type 

of analysis, proteins functionally associated with viral infection are localized in the corresponding 

subnetwork within the human protein-protein interaction network, and those proteins that serve as 

drug targets for specific diseases are selected as potential targets for antiviral drugs. These analyses are 

followed by bioinformatic validation of drug-induced gene signatures and human betacoronavirus-

induced transcriptomics in human cell lines to inspect the postulated mechanisms of action in a specific 

human betacoronavirus.  

A high-resolution map of the SARS-CoV-2 transcriptome and epitranscriptome has been recently 

elucidated [178]. Data from this study revealed a highly complex transcriptome, characterized by a large 

number of transcripts encoding unknown ORFs produced by fusion, deletion and/or frameshift events. 

Furthermore, direct RNA sequencing suggested 41 potential RNA modification sites on the viral 

transcripts, the majority of them containing the AAGAA motif. Functional characterization of these 

newly discovered ORFs and RNA modification sites may unveil key roles in viral pathogenesis, 

defining new potential targets for antiviral therapy. In a collaborative effort, several research groups 

were able to clone, tag and express 26 of the 29 viral proteins found in human cells [179]. More than 300 

high-confidence SARS-CoV-2-human protein-protein interactions were further identified using 

affinity-purification mass spectrometry (AP-MS). Applying a combination of systematic 

chemoinformatic drug search and pathway centric analysis to the whole set of interactions, 66 

druggable human proteins were identified that are targeted by 69 existing approved drugs and 

compounds in clinical and/or pre-clinical trials.  

4.4. Vaccine candidates 

In the aftermath of previous SARS and MERS outbreaks, several laboratories around the globe 

pursued the development of vaccines using the traditional strategy of inactivating whole viral particles 

(reviewed by Roper and Rehm [180] and Zumla et al. [172]). Increasing availability of genomic 

information regarding SARS-CoV, MERS-CoV and other related betacoronavirus have allowed the 

development of other types of vaccine formulations such as live-attenuated vaccines, recombinant 

vector vaccines and DNA vaccines. Reverse genetic systems have been used to develop and characterize 

live-attenuated vaccine platforms in both SARS-CoV and MERS-CoV, based on substitutions of key 

residues of the Nsp16 active site [181,182], deletion of the E gene [183–186] or inactivation of the 

exonuclease activity of Nsp14 [187]. Although showing promising results, these live-attenuated 

vaccines also raised safety concerns, due to the possibility of recombination and reversal of mutations 

that could restore the functionality of the inactivated proteins.  

As an alternative to live-attenuated vaccines, recombinant vector vaccine candidates have been 

developed for SARS and MERS using either adenovirus [188–194], parainfluenza [195], vesicular 

stomatitis virus [196], attenuated measles virus [197], baculovirus [198], vaccinia modified virus Ankara 

[199–201] and attenuated Salmonella [202] as vectors for expression of S, E, M and N proteins. These 

recombinant vectors express the foreign target protein in the cytoplasm of the host cell, thus inducing 

both cellular and humoral immune responses. Following a similar principle, DNA and RNA vaccines 

can induce both B- and T-cell mediated immunity without the use of any viral particle, by simply 

introducing into the host cell plasmids encoding proteins of the pathogen that are then endogenously 

produced. Several DNA vaccine formulations against SARS-CoV and MERS-CoV, mainly based on the 

S, M and N proteins, showed promising results in the pre-clinical phase [203–208]. 

Many SARS-CoV and MERS-CoV vaccine formulations evaluated in animal models protected 

animals from challenge with the virus, but failed to induce protective immunity in aged groups and 

exacerbated SARS symptoms in younger groups subsequently challenged with the virus [209–213]. 

These findings stress the importance of developing subunit vaccines, as these will offer targeted 

immunogenicity with improved safety. For this purpose, bioinformatic tools can be used to predict 
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potential epitopes in proteins encoded in the genomes, based on their sequence similarity to previously 

described immunogenic motifs or through structural methods such as molecular docking simulations. 

A recent study used predictive bioinformatic tools to identify potential B- and T-cell epitopes for SARS-

CoV-2 in regions of its genome with high sequence similarity to SARS-CoV [164]. Epitopes derived from 

the S protein of human betacoronaviruses seem to be the most promising for the development of strong 

subunit vaccines as it has been shown that the SARS-CoV S protein can induce serum-neutralizing 

antibodies [195,203] and generate CD4+ and CD8+ T-cell responses [214].  

Thanks to the availability of SARS-CoV-2 genome sequences and the previous experience with 

SARS-CoV and MERS-CoV, numerous vaccine projects using diverse technologies are currently in 

progress, with some already entering into clinical trials (reviewed by Amanat and Krammer [215]). 

Evidence that neutralizing antibodies against SARS-CoV cross-react with SARS-CoV-2 suggests that 

SARS-CoV vaccines might cross-protect against SARS-CoV-2. Unfortunately, the few SARS-CoV 

vaccines that made it to phase I clinical trials were not further funded due to the control of the disease 

[215]. Noteworthy is that, several of these abandoned projects for SARS-CoV vaccines have been 

reactivated and rapidly adapted to SARS-CoV-2. The relatively high sequence divergence between 

SARS-CoV-2 and MERS-CoV makes it unlikely that vaccines targeting MERS-CoV can induce strong 

cross-neutralizing antibodies against SARS-CoV-2. However, existing platforms for the development 

of MERS-CoV vaccines were also rapidly adapted for the production of SARS-CoV-2 vaccines, as is 

the case of the RNA-based vaccine developed by Moderna Therapeutics and the Vaccine Research 

Center at the National Institutes of Health (NIH), which encodes a segment of the S gene 

encapsulated in lipid-based nanoparticles (ClinicalTrials.gov: NCT04283461). The high genomic 

diversity observed in bat betacoronaviruses suggests that development of a pan-betacoronavirus 

vaccine will be unlikely, however, available technologies for vaccine production and rapid 

acquisition of genomic information can pave the way for the development of modular vaccine 

platforms that are rapidly adjustable to new antigens in potentially emerging epidemics [128]. 

Concluding remarks 

Since the 2002-03 SARS outbreak, genomic information has been crucial to tackle epidemics 

caused by betacoronaviruses. During the 2019-20 COVID-19 pandemic, quick availability of genomic 

data has allowed a very rapid, detailed and accurate follow-up of disease progression worldwide and 

has tremendously supported the development of diagnostic systems, drug candidates and vaccines. 

Full viral genome analysis has swiftly changed the way scientists deal with epidemic viruses in two 

main ways. First, the speed that allows the description and classification of the responsible pathogen 

in a record timeframe, and second, the ability to generate massive amounts of viral genome data, 

contributing to establishing sound hypotheses on evolution and transmission. It is remarkable that 

genome analyses at such scale are now increasingly feasible, without having to culture the viruses, 

many of which are classified as Biosafety Level 3 agents. However, it is important to stress that 

genomic information must be used carefully when drawing conclusions related to human and animal 

health. Sampling bias, selection of inadequate bioinformatic tools and misinterpretation of results can 

all lead to unreliable conclusions. Furthermore, the quality of genomic sequences used in comparative 

analyses is also crucial to establish sound conclusions. Currently, there are several platforms used for 

genome sequencing, each of them with their own patterns of systematic sequencing errors. Data 

curation and normalization is extremely important before conducting further analyses, particularly 

when comparing data from different sequencing platforms. If analyzed properly, genomic data will 

indisputably serve as strong basis for addressing future outbreaks caused by highly pathogenic 

emerging viruses such as SARS-CoV-2.       

Supplementary Materials: Table S1: Additional information on selected betacoronavirus genomes.  
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