Proof of Twin Prime Conjecture that can be Obtained by Using Contradiction Method in Mathematics

K.H.K. Geerasee Wijesuriya

Research Scientist in Physics and Astronomy

PhD student in Astrophysics, Belarusian National Technical University

BSc (Hons) in Physics and Mathematics University of Colombo, Sri Lanka

Doctorate Degree in Physics

geeraseew@gmail.com, geerasee1@gmail.com
Author’s Biography

The author of this research paper is K.H.K. Geerasee Wijesuriya. And this proof of twin prime conjecture is completely K.H.K. Geerasee Wijesuriya's proof.

Geerasee studied before at Faculty of Science, University of Colombo Sri Lanka. And she graduated with BSc (Hons) in Physics and Mathematics from the University of Colombo, Sri Lanka in 2014. And in March 2018, she completed her first Doctorate Degree in Physics with first class recognition. Now she is following her second PhD in Astrophysics with Belarusian National Technical University.

Geerasee has been invited by several Astronomy/Physics institutions and organizations worldwide, asking to get involved with them. Also, She has received several invitations from some private researchers around the world asking to contribute to their researches. She worked as Mathematics tutor/Instructor at Mathematics department, Faculty of Engineering, University of Moratuwa, Sri Lanka. Now she is a research scientist in Physics as her career. Furthermore she has achieved several other scientific achievements already.

List of Affiliations

Faculty of Science, University of Colombo, Sri Lanka, Belarusian National Technical University Belarus

Acknowledgement

I would be thankful to my parents who gave me the strength to go forward with mathematics and Physics knowledge and achieve my scientific goals.

Keywords: prime; contradiction; greater than; integer
Abstract

Twin prime numbers are two prime numbers which have the difference of 2 exactly. In other words, twin primes is a pair of prime that has a prime gap of two. Sometimes the part “twin prime” is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Up to date there is no any valid proof/disproof for twin prime conjecture. Through this research paper, my attempt is to provide a valid proof for twin prime conjecture.

Literature Review

The question of whether there exist infinitely many twin primes has been one of the great open questions in number theory since many years. This is the content of the twin prime conjecture, which states that there are infinitely many primes p such that $p + 2$ number is also prime. In 1849, de Polignac made the more general conjecture that for every natural number k, there are infinitely many primes p such that $p + 2k$ is also prime number. The case $k = 1$ of de Polignac's conjecture is the twin prime conjecture actually.

A stronger form of the twin prime conjecture, the Hardy–Littlewood conjecture, postulates a distribution law for twin primes akin to the prime number theorem indeed. On April 17, 2013, Yitang Zhang (a mathematician) announced a proof that for some integer N that is less than 70 million, there are infinitely many pairs of primes that differ by his paper was accepted by Annals of Mathematics in early May 2013. Terence Tao who is a removed mathematician, subsequently proposed a Polymath Project collaborative effort to optimize Zhang's bound. As of April 14, 2014, which is one year after Zhang’s announcement, the bound has been reduced to 246. Moreover, assuming the Elliott–Halberstam conjecture and its generalized form, the Polymath project wiki states that the bound has been reduced to 12 and 6, respectively. These improved bounds were discovered using a different approach that was simpler than mathematician Zhang's and was discovered independently by James Maynard and Terence Tao.
Assumption

Let’s assume that there are finitely many twin prime numbers…………….(1.0)

Therefore we proceed by considering that there are finitely many twin prime numbers. Then let the highest twin prime numbers are P_{n-1} and $(P_{n-1} + 2)$. Then for all prime numbers P_N greater than $(P_{n-1} + 2)$, $(P_N + 2)$ is not a prime number. Where N and n denote two distinct natural numbers. And P_N denotes the N^{th} prime number. P_{N-1} denotes $(N - 1)^{th}$ prime number.

Methodology

With this mathematical proof, I use the contradiction method to prove that there are infinitely many twin prime numbers.

Let P_n is an odd number greater than 1. But let P_3 is divisible by x_3. But x_3^2 does not divide P_3. And let we choose P_n such that $P_n = \left(\frac{M + 4}{x_3}\right) - (D_0.D_3/x_3)$; for some integer $D_0 \neq 0$. But $(D_0 + 2)$ is divisible by x_3. But $(D_0 + 2)$ is not divisible by x_3^2. But we must have chosen D_0 integer such that $x_3^2 | (P_L.x_3 + (D_0 + 2))$ for the non-zero integer P_L……………..(0.0)

(To know the meaning of P_L, please refer the below later content)

*** And we have chosen M such that $\{ \left(\frac{M + 4}{x_3}\right) - (D_0.D_3/x_3) \} (= P_n)$ is not divisible by x_3 ………………..(0’’

*** But we must have chosen P_3 and t such that $P_3 = (M + 4). \left(\frac{x_3 - 1}{2t}\right)$; where $x_3^2 | (t - 1)$ …….….…..(0’’’

To see the meaning of P_3, x_3, t and M, please refer the below content.

{ Let’s show that the conditions in (0’) and in (0’’’) both are possible simultaneously in the proof as below:

Let we choose integer ‘a’ such that ‘a’ is not divisible by x_3. Let choose integer P_Q such that $P_Q = 2.a + 2a.x_3^2$ (Then P_Q is not divisible by x_3 since ‘a’ is not divisible by x_3). Where we are responsible to choose P_Q such that $\left[P_Q - D_0.(P_3/x_3) \right]$ is not divisible by x_3.}
Where \(P_Q = (M + 4) / x_3 \). Then \(P_Q / (2.a) = (M + 4) / (2.a.x_3) \) = non-zero integer. Let choose integer \(t \ (\neq 0) \) such that \(t = \ P_Q / (2.a) \). Then \([(M + 4) / 2.t] = P_Q.x_3 / 2t = a.x_3 = integer \ (\neq 0) \).

Let’s choose integer \(P_3 \ (\neq 0) \) such that \(P_3 = (M + 4) \). \([(x_3 - 1) / 2.t] \) = integer. Then \(P_3 \) is divisible by \(x_3 \). But \(P_3 \) is not divisible by \(x_3^2 \). Then \(2.t.a.x_3 = (M + 4) \). And then \(P_3 = a.x_3. (x_3 - 1) \); here ‘\(a \)’ is an integer \((\neq 0) \) which is not divisible by \(x_3 \).

Then \((t - 1) = (P_Q / 2.a) - 1 = [(P_Q - 2a) / 2a] = x_3^2 \). Then \((t - 1) = x_3^2 \). Then \((t- 1) \) is divisible by \(x_3^2 \).

But \(P_n = P_Q - D_0.(P_3 / x_3) \) ………(0.0.1)

But since ‘\(a \)’ is not divisible by \(x_3 \), \(a.(x_3 - 1) \) is not divisible by \(x_3 \). And we chose \(P_Q \) such that \(P_Q - D_0.(P_3 / x_3) \) is not divisible by \(x_3 \). By (0.0.1): the given \(P_n \) in (0.0.1) is still not divisible by \(x_3 \).

Thus the conditions in (0)’ and in (0)’’ both are possible simultaneously in the proof.

\}

Let \(P_N \) is an arbitrary prime number greater than \((P_{n-1} + 2) \). Because there are infinitely many prime numbers. And here \((P_N - 2) > (P_{n-1} + 2) \). Thus \((P_N - 2) \) is not a prime number.

Where each arbitrary \(P_N \) prime number obey (that means we choose a set of \(P_N \ (> (P_{n-1} + 2) \)) arbitrarily such that each arbitrarily chosen \(P_N \) give us :

“ \(P_3 \) is divisible by \(x_3 \). But \(x_3^2 \) does not divide \(P_3 \); whenever \((P_N - 2) = P_3.x_3 \)”

And here \((P_N + 2) > (P_{n-1} + 2) \). Then according to our assumption, \((P_N + 2) \) is also not a prime number. Here \(P_N \) is a prime number such that \((P_N + 2) \) is dividing by prime number \(P_2 \). ……………………(1)

Thus \((P_N + 2) = P_2 * x_2 \) for some \(x_2 \) natural number. Since \(P_N \) is a prime number, for some \(r_2 \) (rational number which is not a natural number): \(P_N / r_2 = P_2 \). Thus \((P_N + 2) = P_2 * x_2 \) ……………………(02) and \(P_N = r_2 * P_2 \) ……………………(03)
\(x_2\) is a natural number and \(P_2\) is a prime number. Since \(P_N\) is a prime number, \((P_N - 2)\) is also not a prime number (Since \(P_N - 2 > P_{n-1} + 2\)). Then for some integer \(P_3\) greater than 1 such that \(\frac{P_N - 2}{P_3} = x_3\); where \(x_3\) is an integer greater than 1. But here we considered that \(x_3 | P_3\).

\[(P_N - 2) = P_3 * x_3 \quad \ldots \ ld
But P_N is an arbitrary prime greater than $(P_{n-1} + 2)$. Then let \{ $(P_N + A_1), P_N$ \} are two arbitrary consecutive primes set such that each primes are greater than $(P_{n-1} + 2)$. Where each arbitrary P_N prime number obey:

“P_3 is divisible by x_3. But x_3^2 does not divide P_3 ; whenever $(P_N – 2) = P_3.x_3$”

Here since $P_N > (P_{n-1} + 2)$ and since $(P_N + A_1) > (P_{n-1} + 2)$, A_1 ≠ (+/-) 2. Because for any two arbitrary consecutive primes greater than $(P_{n-1} + 2)$, the difference between those consecutive primes is greater than 2 (since the greatest twin primes are P_{n-1} and $[P_{n-1} + 2]$).

But A_1 ≠ 2. $(x_3 - 1)$. But now choose two particular two consecutive primes (greater than $(P_{n-1} + 2)$) from the arbitrary prime number set \{ $(P_N + A_1), P_N$ \} such that those chosen two particular consecutive primes obey \[P_3 | (A_1 - 2) \]. i.e. where particularly we choose A_1 such that $P_L - x_3 = B_2$. Where \((A_1 - 2) / P_3 = B_2 \). Where $P_L = (P - 4) / P_3$. Here P = chosen particular prime $(P_N + A_1)$.

Since A_1 ≠ - 2 , there exists an odd number P_3 greater than 1 such that \[[P_3 | (A_1 - 2) \]. Refer the ‘Proof’ below to see the existence of two consecutive primes $(P_N + A_1)$ and P_N such that \[[P_3 | (A_1 - 2) \]. And refer ‘Proof 1’ to see the existence of an integer $(P_N - 2)$ such that $(P_N - 2) = P_3.x_3$ such that P_3 is divisible by x_3. But x_3^2 does not divide P_3.

But we know that $(P_N + A_1) > (P_{n-1} + 2)$. Thus here A_1 ≠ (+/-) 2 , since there are finite number of twin primes according to our assumption. BUT REMEMBER THAT P_N AND $(P_N + A_1)$ ARE CONSECUTIVE PRIMES greater than $(P_{n-1} + 2)$.

\{ Here \((P_N – 2) = P_3.x_3 \) and $(P_N + A_1) = P = Prime$. That means $P_3.x_3 + (A_1 + 2) = P$

But $(A_1 - 2)$ is divisible by P_3 . Thus $(A_1 + 2)$ is not divisible by P_3. Because P_3 does not divide 4.

But since $P_3 * x_3$ is divisible by P_3 , P is not divisible by P_3.

But $(A_1 - 2)$ is divisible by P_3 and since $(x_3 | P_3), x_3 | (A_1 - 2)$. Thus $(A_1 + 2)$ is not divisible by x_3.

Because x_3 does not divide 4 since x_3 is an odd number (since $(P_N – 2) = P_3.x_3$).

But since $P_3 * x_3$ is divisible by x_3 , P is not divisible by x_3.

But $P = P_3.x_3 + A_1 + 2 ≠ P_3.x_3 + 2.(x_3 - 1) + 2 = P_3.x_3 + 2.x_3 = x_3.(P_3 + 2)$. Thus $P ≠ x_3.(P_3 + 2)$.

Therefore according to above steps, we can write $P_3.x_3 + (A_1 + 2) = P$ as a prime

But \((2.l + M) = P_N - P_n + 2 + M = (P_N + A_1) + (M + 2 - A_1 - P_n) \) ………..(9)
By (8.1): \(x_3 \mid (M + 4) \). But \([P_3 \mid (A_1 - 2) \). ……(10)

But since \([P_3 \mid (P - 2) \) and since \(P_3 \) does not divide \((A_1 + 2)\), \{ \((A_1 + 2) + (P - 2)\) \} does not divide by \(P_3 \). i.e. \(P (= (P + A_1) \) does not divide by \(P_3 \). Thus our choice of \(A_1 \) such that \([P_3 \mid (A_1 - 2) \] is okay.

But \([P_3 \mid (P - 2) \) and \([P_3 \mid (A_1 - 2) \]. Thus \((P - 2) = P_3.x_3 \) and \((A_1 - 2) = P_3.B_2 \); where \(x_3 \) and \(B_2 \) are integers and each of them not equals to 0.

Thus \((P + A_1 - 4) = P_3.x_3 + P_3.B_2 \) = \((P - 4) \)

i.e \(P_3 \mid (P - 4) \)……………………(11)

Let’s consider \(M \) integer such that \(M = P - C \); for some integer ‘\(C \)’ \(\neq 0 \) …………………(12).

But \(x_3 \mid (M + 4) \) and \(P_3 \mid (P - 4) \) by (8.1) and (11).

By (12): \(P = (M + C) \). Thus \([(M + C) - 4 = P_3 \). \(P_L \)…………(13)

Where \(P_L = \{ (P - 4) / P_3 \} \) = integer, but not equals to 0.

Then \((P_L / x_3) \) = \([(P - 4) / (x_3 P_3) \] = \((P - 4) / (P - 2) \)

\[= \{ (P - 2) + (A_1 - 2) \} / (P - 2) = 1 + \{ (A_1 - 2) / (P - 2) \} \]

If \(A_1 < 0 \), then either \(1 + \{ (A_1 - 2) / (P - 2) \} < 0 \) or \(0 < 1 + \{ (A_1 - 2) / (P - 2) \} < 1 \).

But \(P_L = \{ (P - 4) / P_3 \} \). Since \((P - 4) > 0 \) and since \(x_3 > 1 \), \(P_3 > 1 \); \(P_L > 0 \) Thus it is impossible to have \(1 + \{ (A_1 - 2) / (P - 2) \} < 0 \). Thus if \(A_1 < 0 \), we have \(0 < 1 + \{ (A_1 - 2) / (P - 2) \} < 1 \).

Then \((P_L / x_3) \) is not an integer. If \(A_1 > 0 \), then \(A_1 > 2 \). Then \((P - A_1) < (P - 2) \)………………..(13)’

Then \((P_L / x_3) \) = \(1 + \{ (A_1 - 2) / (P - 2) \} \) = \(2 + \{ (A_1 - P) / (P - 2) \} \) = \(2 + \{ (P - A) / (P - 2) \} \)

Since \(A_1 \neq (+/ -) 2 \) and by (13)’ : \([(P - A) / (P - 2) \] is not an integer.

Then \(2 - \{ (P - A) / (P - 2) \} = (P_L / x_3) \) is not an integer.

Then for \(A_1 > 0 \) and for \(A_1 < 0 \) : \((P_L / x_3) \) is not an integer.

Thus here \(x_3 \) does not divide \(P_L \)………………..(13.1)
But \(\frac{(M + 4)}{x_3} = P_Q = \text{integer, but not equals to 0.} \)

Thus by (13): \(\left[(x_3 . P_Q - 4 + C) \right] - 4 = P_3 . P_L \)

Thus \(C - 4 = \left[(P_3 . P_L + 4) - x_3 . P_Q \right] \)(14)

By (09): \((2.l + M) = (P_N + A_1) + (M + 2 - A_1 - P_n) = P + (M + 2 - A_1 - P_n) \)

\[\begin{align*}
\text{Thus } & P + P - C + 2 - A_1 - P_n = 2P - C - P_3.B_2 - P_n \\
& \text{............(15)}
\end{align*} \]

By (14): \(C = \left[(P_3 . P_L + 8) - x_3 . P_Q \right] \). Then \(2P - C - P_n = 2P + x_3 . P_Q - (P_3 . P_L + 8) - P_n \)

\[\begin{align*}
&= x_3 . P_3 . \left[(P_L / x_3) + [(P_Q / P_3) - (P_n / (x_3 . P_3))] \right] \)(16)
\]

But we chose \(P_n \) such that \(x_3 . P_n = (M + 4) - D_0 . P_3 \); for some integer \(D_0 \).

*** But we have chosen \(D_0 \) integer such that \(x_3^2 | (P_L . x_3 + (D_0 + 2)) \). Where \(D_0 \neq 0 \) and \((D_0 + 2) \) is divisible by \(x_3 \) (it implies that \(D_0 \) is not divisible by \(x_3 \)). But \((D_0 + 2) \) is not divisible by \(x_3^2 \).

And here \((P_L / x_3) + [(D_0 + 2) / x_3^2] = D' \) for some integer \(D' \).

Since \(P_L \) is not divisible by \(x_3 \), there exists such an integer number \((D_0 + 2) \) (not equals to zero), such that \(x_3^2 | (P_L . x_3 + (D_0 + 2)) \); whenever \((2 + D_0) \) is not divisible by \(x_3^2 \).

Then \(P_n = [(M + 4) / x_3] - (D_0 . P_3 / x_3) \). Then \([(P_Q / P_3) - (P_n / P_3)] = (D_0 / x_3) \)

\[\begin{align*}
&= x_3 . (P_Q / P_3) - (P_n / P_3) \} - (x_3 - 1). (P_Q / P_3) .
\end{align*} \]

Then \([x_3 . (P_Q / P_3) - (P_n / P_3)] = (D_0 / x_3) + (x_3 - 1). (P_Q / P_3) \)

Then \([(P_Q / P_3) - (P_n / (x_3 . P_3)) = (D_0 / x_3^2) + (x_3 - 1). (P_Q / (x_3 . P_3)) =

(D_0 / x_3^2) + (x_3 - 1). (P_Q / (x_3^2 . u)) = [D_0 . u + (x_3 - 1). P_Q] / (u . x_3^2) \)(16.0)

where \(u.x_3 = P_3 \), then \(u \) is not divisible by \(x_3 \).

But we chose \(t . P_3 = (M + 4) \). \([(x_3 - 1) / 2] \); \(t \) is an integer \(\neq 0 \) such that \(x_3^2 | (t - 1) \).

Then \(P_3 / x_3 = u = (M + 4) . (x_3 - 1)] / (2.t.x_3) = \text{integer} \)

Then \(u = P_Q . (x_3 - 1)] / 2.t \)
Thus by (16.0): \[(P_Q / P_3) - (P_n / (x_3 \cdot P_3)) \] = \[(D_0 \cdot u + 2 \cdot t \cdot u) / (u \cdot x^2_3) = (D_0 + 2t) / x^2_3 \] ; where

P_Q is not divisible by x_3. Then according to the formula for u, still ‘u’ is not divisible by x_3.

Then \[(P_L / x_3) + [(P_Q / P_3) - (P_n / (x_3 \cdot P_3))] \] = \[(P_L / x_3) + [(D_0 + 2t) / x^2_3] \]

= \[(P_L / x_3) + [(D_0 + 2) / x^2_3] + [2 \cdot (t - 1) / x^2_3] \]

= \[[P_L \cdot x_3 + (D_0 + 2)] / x^2_3 \] + t’ = D’ = integer number (since t’ = 2 \cdot (t - 1) / x^2_3 = integer).

Since P_L is not divisible by x_3, there exists such an integer number D_0 (not equals to zero), such that x^2_3 | (P_L \cdot x_3 + (D_0 + 2)). Whenever (2 + D_0) is divisible by x_3. Whenever (2 + D_0) is not divisible by x^2_3.

Then by (16): 2 \cdot P - C - P_n = P_3 \cdot x_3 [D’] ; where (P_L / x_3) and (D_0 + 2) / x^2_3 are not integers (by 13.1). But we chose D_0 such that x^2_3 | (P_L \cdot x_3 + (D_0 + 2)).

Then \[2 \cdot P - C - P_n = P_3 \cdot x_3 \cdot D’ \]

where D’ = (P_L \cdot x_3 + (D_0 + 2)) / x^2_3 + t’ = integer, but not equals to 0.

Then \[P_3 | (2 \cdot P - C - P_n) \] \……………………..(17)

by (15), (17): \[P_3 | (2 \cdot l + M) \] \…………………..(18)

Thus by (i): P_3 does not divide (2 \cdot l + M) \……………………..(19). Thus by (18) and (19): We have a contradiction \…………………..(20)

Therefore the only possibility is: our assumption (1.0) is false. Therefore there are infinitely many Twin Prime Numbers.
Proof

Let’s prove that there exists consecutive primes P_N and $(P_N + A_1)$ such that \[P_3 \mid (A_1 - 2) \] for some odd integer P_3 which is greater than 1 (when there exist consecutive prime numbers P_N and $(P_N + A_1)$ which both are greater than $[P_{n+1} + 2]$) through this ‘Proof’ as below.

By 2^{nd} reference: $P_{N-1} = (P_N + A_1) = 2 + \sum_{j=1}^{N-2} h_j$,where $h_j = P_{j+1} - P_j$ for all $j \in \{1, 2, ..., (N-2)\}$ or $P_{N+1} = (P_N + A_1) = 2 + \sum_{j=1}^{N} h_j$ when $j \in \{1, 2, ..., N\}$. Here $(P_N + A_1) = P_{N+1}$ or P_{N-1} , depends on the sign of A_1.

$P_{N-1} = P_N + A_1 = 2 + \sum_{j=1}^{N-2} h_j$ (when $A_1 < 0$). If $A_1 > 0$, $P_{N+1} = P_N + A_1 = 2 + \sum_{j=1}^{N} h_j$

Consider the case that $A_1 < 0$.

Then $(A_1 - 2) = -P_N + \sum_{j=1}^{N-2} h_j$. Then $(2 - A_1) = P_N - \sum_{j=1}^{N-2} h_j$

Then $(2 - A_1) = P_N - k' - \sum_{j=1}^{N-2} h_j$(21) Because here inside the term $\sum_{j=1}^{N-2} h_j$, I have included $(+ k')$ term.

But by 2^{nd} reference: for all $\mathcal{C} > 0$, there is a natural number ‘m’ such that for all $(N- 2) > m$;

$h_{N-2} < P_{N-2} \cdot \mathcal{C}$

Let C_s is a positive real number $\mathcal{C}_s = [- B + C_s + k' + P_N + B_2. P_3] / P_s > 0$, such that $h_s < P_s \cdot \mathcal{C}_s$ for all $s > (N - 3)$. Let here the chosen \mathcal{C}_s implies that $m = (N - 3)$ (Here s is going from 1 to $(N- 2)$. Then " for all $s > (N - 3)"$ means $s = (N - 2)$. Where k' is an integer number which not equals to 0 and we choose k' such that $k' / (N - 2)$ is an integer. Here the chosen k' integer number is responsible for $h_s < P_s \cdot \mathcal{C}_s$ for all $s > (N - 3)$ (i.e. $s = N - 2$) and $\mathcal{C}_s > 0$. That means here the value of k' is responsible to say " \mathcal{C}_s is existing such that $h_s < P_s \cdot \mathcal{C}_s$, for $s = (N - 2)$ ".

Here $h_j = b_j - [k' / (N- 2)]$ for all $j < (N - 2) = s$. And where $\Sigma b_j = B$ for $j < (N - 2) = s$. Then for some C_s, $h_s = P_s \cdot \mathcal{C}_s - C_s$; here $s \equiv (N - 2)$. *** the meaning of ‘j’ is the order number and h_j is the prime gap between P_{j+1} and P_j . Please refer the below content and the 2^{nd} reference. But here we chose C_{N-2} such that $h_{N-2} = P_{N-2} \cdot C_{N-2} - C_{N-2}$

But $h_{N-2} = P_{N-2} \cdot C_{N-2} - C_{N-2} = (- B + k' + P_N + B_2. P_3)$. Where k' is a natural number. Now let’s use the 2^{nd} reference to proceed further. By (21):

11
\[(A_1 - 2) = -P_N + \sum_{j=1}^{N-2} hj = -P_N + (- B + k' + PN + B_2, P_3) + B - (N - 2)[k' / (N- 2)] = B_2. \]

Thus by (22): \((A_1 - 2) = P_3B_2 \). Thus there exist consecutive prime numbers \(P_N\) and \((P_N + A_1)\) both greater than \((P_{n-1} + 2)\) such that \((A_1 - 2) = B_2P_3 \); for integer \(B_2 (\neq 0)\).

Similar to above, if \(A_1 > 0\), we can proceed with the similar steps to prove that \((A_1 - 2) = B_2P_3 \); for integer \(B_2 (\neq 0)\) when \(A_1 > 0\).

Proof 1

Let’s prove the existence of an integer \((P_N - 2) (> P_{n-1} + 2)\) such that \((P_N - 2) = P_3x_3\) such that \(P_3\) is divisible by \(x_3\). But \(x_3^2\) does not divide \(P_3\) as below.

By 2nd reference: \(P_N = 2 + \sum_{j=1}^{N-1} gj \), where \(g_j = P_{j+1} - P_j\) for all \(j \epsilon \{1 , 2, \ldots , N- 1 \}\)

Then \((P_N - 2) = \sum_{j=1}^{N-1} gj \)(23)

But by 2nd reference: for all \(C > 0\), there is a natural number ‘\(m_0\)’ such that for all \(N > m_0\); \(g_N < P_N .C\).

Let \(C_s\) is a positive real number \(C_s = [- A + C_s + x_3^2, k_1] / P_s > 0\), such that \(h_s < P_s * C_s\) for all \(s > (N - 2)\). Let here the chosen \(C_s\) implies that \(m_0 = (N - 2)\) (Here \(s\) is going from 1 to \(N-1\). Then " for all \(s > (N - 2)"\) means \(s = (N – 1)\)). Where \(k_1\) is an integer number which is not divisible by \(x_3\). And let \(k_1 = P_0. (x_3 - 1) / 2t\). Where \(P_0\) is an integer which is not divisible by \(x_3\). Here the chosen \(P_0\) and \(t\) integer numbers (\(\neq 0\)) are responsible for \(g_s < P_s * C_s\) for all \(s > (N - 2)\) (i.e. \(s = N-1\)) and \(C_s > 0\). OR in another words, the previously chosen integer \(M\) and \(t\) are responsible to say that above fact. That means here the value of \(k_1\) (or in another words, \(P_0\) and \(t\)) is responsible to say " \(C_s\) is existing such that \(g_s < P_s * C_s\) , for \(s = N - 1 "\). Here \(g_j = a_j\) for all \(j < (N – 1) = s\). And where \(\Sigma a_j = A \) for \(j < (N – 1) = s\). Then for some \(C_s\), \(g_s = P_s * C_s - C_s \); here \(s \equiv (N – 1)\).

*** the meaning of ‘\(j\)’ is the order number and \(g_j\) is the prime gap between \(P_{j+1}\) and \(P_j\). Please refer the below content and the 2nd reference. But here we chose \(C_{N-1}\) such that \(g_{N-1} = P_{N-1} * C_{N-1} - C_{N-1}\).

But \(g_{N-1} = (- A + x_3^2, k_1)\). Now let’s use the 2nd reference to proceed further.
By (23): \((P_{n} - 2) = \sum_{j=1}^{N-1} gj\). But \(\sum_{j=1}^{N-1} gj = A + (-A + x^{2}. k_{1}) = x^{2}. k_{1} \) ……………………(24)

Thus by (23) and (24): \((P_{n} - 2) = x^{2}. k_{1} \); where \(k_{1}\) is not divisible by \(x_{3}\).

Then \((P_{n} - 2) = x_{3}.(x_{3}.k_{1}) = x_{3}. P_{3} \); where \(P_{3}\) is divisible by \(x_{3}\).

Thus \((P_{n} - 2) = P_{3}. x_{3} \); where \(P_{3}\) is divisible by \(x_{3}\). But \(P_{3}\) is not divisible by \(x^{2}_{3}\).

Thus there exists an integer set \(\{P_{3}. x_{3} : \text{where } P_{3} \text{ is divisible by } x_{3} \text{ but } P_{3} \text{ is not divisible by } x^{2}_{3}\}\).

Discussion

We assumed initially that there are finitely many twin primes. After proceeding with that, I ended up with a contradiction. But to get the contradiction, I used that \(P_{n}\) as a prime number greater than \((P_{n-1} + 2)\). And we chose \(P_{n}\) odd integer \((> 1)\) and also we chose an integer \(A_{1}\) such that \(P_{3} | (A_{1} - 2)\). Also to get the contradiction, I used the facts that \((P_{n} + 2)\) and \((P_{n} - 2)\) as non-primes since \(P_{n} - 2 > (P_{n-1} + 2)\). And also I have used that \(x_{2}\) and \(x_{3}\) as natural numbers (since, \((P_{n} + 2)\) and \((P_{n} - 2)\) are not prime numbers). And also I have used the fact (to get the contradiction as in (20)): The difference between any two consecutive prime numbers (which are greater than \((P_{n-1} + 2)\)) is greater than 2. Therefore to get the contradiction, I have used the facts got from our assumption (1.0). Then the only possibility is our assumption (1.0) is false.

Results

Therefore I have used our assumption (1.0) to get the contradiction finally, as showed in (20). Therefore it is possible to conclude that our assumption (1.0) is false. Thus the negation of the assumption (1.0) is true.

Thus there are infinitely many twin prime numbers.
Appendix

Prime number: A natural number which divides by 1 and itself only.

Twin Prime Numbers: Two prime numbers which have the difference exactly 2.

We denote ‘i’ th prime gap $g_i = P_{i+1} - P_i$

Then according to the 2nd reference; Prime number $P_N = 2 + \sum_{j=1}^{N-1} g_j$

Also by 2nd reference: for all $\epsilon > 0$, there is a natural number ‘n’ such that for all $N - 1 > n$;

$g_{N-1} < P_{N-1} \cdot \epsilon$

References

2. https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Prime_gap.html

3. Terry Tao, Small and Large Gaps between the Primes

