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Abstract: The vastness of chemical-space constrains traditional drug-discovery methods to the 

organic laws that are guiding the chemistry involved in filtering through candidates. 

Leveraging computing with machine-learning to intelligently generate compounds that meet a 

wide range of objectives can bring significant gains in time and effort needed to filter through 

a broad range of candidates. This paper details how the use of Generative-Adversarial-

Networks, novel machine learning techniques to format the training dataset and the use of 

quantum computing offer new ways to expedite drug-discovery. 
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Introduction 

Computing provides researchers with attempts to virtualise biochemical interactions at a pace 

and volume that outperforms traditional in vitro or in vivo methods. Such technological 

advancements have made in-silico techniques increasingly effective in the drug-discovery 

phase, which can filter millions of molecules at a cost-efficient speed that would otherwise be 

unavailable. Virtual screening is, therefore, useful in simulating molecular interactions that can 

lead to a range of insights about molecular behaviour such as toxicity as shown by Wu and 

Wang (2018). With a resurgence in machine-learning (ML) due to advances in hardware and 

the dividends of networked research-communities coming into fruition in the form of enriched 

datasets, researchers can now correctly leverage in-silico methods. The most performant usage 

of ML in measuring toxicity come from Generative Adversarial Networks (GANs), but even 

then, these generally have provided sub-optimal results (Zhang et al. 2018). Much of this arises 

from the nature of how ML models exploit training data and then seek to maximise a return 

function — which is often over-simplified in the case of toxicity-based experiments. Such a 

fundamental reliance on training data shows how as it is the seed of many ML models, these 

models are compromised. Such problems become further compounded when they’re expected 

to adequately navigate the chemical space while fulfilling a range of parameters involved in 

toxicity. Specifically, this review suggests improvements that focus on the training data, the 

network architecture and the usage of quantum computing to improve toxicity predictions. It 

is, therefore, the goal of this review to offer several proposals that improve ML techniques used 

in assessing toxicity. 

 

History 

One of the earliest phases of developing new drugs involves drug-discovery: a process where 

structures are identified that best bind to a drug target such as a particular protein or enzyme. 

It became evident amongst researchers that rather than using traditional assays to identify 

prospects, computers could simulate these experiments at much more optimal costs. In-silico 

techniques subsequently encroached on toxicity experiments in the wake of a growing number 
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of datasets becoming available to researchers such as DeepChem, PyMol and the RCSB Protein 

Data Bank (Mayr et al. 2015). Virtualisation, however, meant that computational 

representations of molecules have been somewhat compressed and simplified, hindering the 

precision at which they can effectively virtualise the real biochemical realities of the properties 

they are examining. For instance, a one-dimensional molecular representation will typically 

only describe the molecular weight, solubility, charge and number of rotatable bonds atom type 

as highlighted by Karim et al. (2019). Two-dimensional representations take into account the 

graph of covalent and aromatic bonds but do not refer to spatial coordinates. Both dimensions 

naturally fail to account for three-dimensional space and their subsequent evolution across time. 

 

Historically, in silico simulations have used these data representations for two components - 

generative and predictive simulations. Generative tasks lead to the synthesis of virtual 

molecules that are reproducible with a chemical formula that’s returned by the computer, which 

is usually in the ORGANIC or SMILES format (Noorden, 2018). Predictive tasks compute the 

chemical properties of these generated virtual molecules like activity, toxicity and water 

solubility. Generative models such as GANs or auto-encoders have been used with varying 

degrees of success by using different physicochemical properties in their virtual molecular 

representations. 

 

However, these systems collectively suffer from a range of problems, including non-

convergence and mode-collapse. Underlying these problems is that while large training sets 

have been released, there is an inherent bias from researchers to pursue only profitable 

prospects which makes these datasets skewed mostly towards false positives (Karim et al., 

2019. Researchers have catalogued only 130 million organic and inorganic substances with the 

Chemical Abstract Service, representing a mere fraction of the purported potential of 1063 

molecules in the chemical space. This alludes to not only the limitation of the training data that 

is being used in ML techniques, but also the potential for undefined physiochemical insights 

that may be influencing results. 

 

State of the Art 

Standardised datasets give ML models the locality necessary to converge a solution towards a 

sensible result. In this way, ML-based predictions for protein folding are symptomatically 

similar to the scope of toxicity in that the domain of candidates is so large that intelligent 

mechanisms are needed to sift though high-dimensional information properly. ProteinNet 

represents one such dataset which provides a protein sequence, structures as secondary or 

tertiary along with supportive meta-details such as training, validation and test splits (Pu et al. 

2019). Experiments using ProteinNet have highlighted how, despite this rich dataset, there 

remain inherent biochemical properties which can compromise the sensibility of results. For 

instance, as proteins share an evolutionary relationship, this virtually guarantees that every 

protein is somewhat related to another. Worse, Hui (2018) describes how a computer can 

interpret sequences of categorical variables of two identical proteins as identical proteins which 

limits the model’s delineation between proteins. 

 

Cutting edge ML methods for toxicity prediction have transitioned from typical reinforcement-

learning models to more comprehensive GANs. Simpler ML models (Jeon, 2019) have been 

used with less success as seen in the cascade model of molecular mapping descriptors of 

compounds to their respective assay results which included: 

 

1. ALogP, 

2. Polarisability, 
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3. Number of rotatable bonds, 

4. Polar surface area, 

5. Number of hydrogen bond donors and acceptors, 

6. Molecular weight. 

 

Through these failings, researchers identified that multitask ML models aiming to accurately 

model biophysical properties require information to be shared between datasets for successful 

performance (Zhang et al. 2018). Subsequently, the encoder/decoder duality in GANs allows 

for the innate details of datasets to be translated across separate models which theoretically aid 

with the construction of high-dimensional representations of the target. This has ensured that 

by encoding molecules in a SMILES representation, GANs have been used in the first stage of 

the drug discovery process by generating desired biological activity and the generation of non-

fullerene electron acceptors for organic solar cells. GANs provide researchers with the ability 

to synthesise compounds than simply discriminate them as traditional ML methods allow. Even 

then, results from Karim et al. 2019 have shown there is typically a considerable amount of 

invalid molecules and even for those adequately structured, there is often low variance or a 

failure to reach all the necessary parameters. 

 

Attempts to control the shortcomings of GANs have relied on tactical changes that have mostly 

failed to overcome the naturally occurring architectural flaws of these models. Typical tactics 

used to improve GAN performance as described by Hui (2018) include: 

 

1. Normalising inputs between –1 and 1, 

2. A modified loss function to optimise (G) by using max(logD) as the first formulation 

has vanishing gradients early on, 

3. Using a spherical Z and interpolating via a great circle rather than straight lines, 

4. Constructing mini-batches for real and fake-data, 

5. Avoid using sparse gradients such as ReLu and MaxPool, and instead of using 

LeakyReLu. 

a. For downsampling use: 

i. Average pooling, cov2d and stride, 

b. For upsampling use: 

i. Pixel shuffle and convtranspose2d and stride, 

6. Use soft and noisy labels using floating numbers instead of integers and sporadically 

flip labels during training, 

7. Use SGD for discriminator and ADAM for generator, 

8. Add noise to inputs and add gaussian noise to every layer of generator, 

9. Use tanh as the last layer of the generator output, 

10. Use two discriminators for maximising discrimination of ‘real’ data and ‘fake’ data. 

 

Proposed Methods for Improvement 

Each of the following methods are designed to support GAN-based techniques at different 

stages of the model. 

 

Training Data: Iterative Complexity 

As ML models leverage insights derived from datasets, this seed must be properly configured 

to germinate correctly. Unfortunately, the datasets used today for toxicity prediction are 

skewed and consequently misguide ML models. With this in mind, the idea is then to generate 

instead a separate model that can accurately generate the periodic table and iteratively get this 

model to regenerate datasets modestly. 
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In this manner, this type of unsupervised learning follows the trend of impressive results of 

unsupervised learning that was catapulted into the spotlight after the accomplishments of Alpha 

Zero. Rather than developing a specialised, high-performant model in a tailored domain — the 

model should self-teach itself from first-principles and learn so by generating molecules that 

not only are bound to biophysical laws but are also elements of the Periodic Table. 

 

The reason for emulating the Periodic Table is that we want the model to be initially configured 

to the breadth of molecules available. The second stage of the model’s evolution will be to 

construct compounds consisting of two-molecules, three-molecules and continuing with an 

increasing molecular count. Obviously, the way these models evolve is subject to further 

tailoring, with each iterative discriminator able to be progressively advance the complexity of 

the preceding model. Experimental results will provide insights into the most optimal type of 

configurations between different classifications of molecules. Subsequently, this lends itself 

also to be optimised by ML models which optimise slate configurations. 

 

As for the type of molecular configuration, four-dimensional representations should be the 

golden standard for in-silico representations as counterpart techniques used for in-vivo or in-

vitro methods already exploit this by default. This, of course, further inflates the computational 

space. In this way, to not only compress but predict how molecules will behave in time, a 

Monte-Carlo Search Tree (MCST) should be utilised to store results as developed by Silver et 

al. (2017). Sifting through all possible combinations is impossible, and so the searching 

algorithm requires a separate model that is in many ways, a proxy for the loss function in the 

principal model that generates the training data. 

 

Subsequently, ‘iterative complexity’ means using a dataset for training a separate model that 

in turn, will produce the training data for the principal model. Datasets that have been manually 

composed should always be as imperfect representations of their problem domain. To counter 

this, three separate ML-based models are proposed to generate the training data. 

 

1. Slate model: 

a. Organises how the succeeding, ‘Principal’ model should evolve once it learns 

the Periodic Table. 

2. Principal model: 

a. Generates a training set in the form of a pre-configured set of weights that best 

represent molecules and compounds. 

3. Searching model: 

a. A model for searching through a MCST that holds the molecular behaviour 

interactions. 

 

In this way, it is hoped that by automating the training data generation, innate relationships that 

govern molecules and compounds can be represented appropriately and counter the void 

created by today’s datasets. 

 

Network Architecture: Concentrated Generalisers for Multi-Objective Completion 

Deep networks have proven successful for a range of discrete challenges, namely in computer 

vision and natural language processing but have failed to generalise to more abstract concepts 

or less-defined classifications. In this way, the failure of many GANs that employ deep 

architectures to predict toxicity understandably fits the expected outcome of these models. 
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The theoretical understandings of these failures aren’t correctly understood, but experimentally 

these type of models have failed to deliver the results necessary for high-performance toxicity 

predictions. Deep networks are not reflective of the ‘Universal Approximation Theorem’ 

(Kumar, 2019) which describes how a recurrent feed-forward network with just a single hidden 

layer can approximate continuous functions on compact subsets of real numbers. Pragmatically, 

the number of neurons required for this hidden layer may outnumber the bounds of practical 

implementations which implies a ceiling may exist within practical applications. 

 

As modern architectures have failed to reach a substantial level of general performance, the 

case for alternative architectures becomes evident. A proposed alternative then is to have a 

series of refined networks operate in unison with one another, each sharing the same hidden 

layer. This type of network shall be referred to as a form of a ‘Concentrated Generaliser’ (CG), 

which in essence, is about capturing the unifying similarities between varying learnt domains 

of knowledge. 

 

CGs follows recent research from Principal Component Analysis which highlights how a few 

features capture most variance. Assuming the usage of non-linear functions, all functions 

within the hypothesis space are therefore theoretically possible. CGs can develop by 

aggressively pruning the network through Taylor expansion as developed by Nvidia (Anwar, 

2015). This marks the beginning of a CG, a highly attenuated network that is hyper-localised 

to particular stimuli. The next step is to create another network that is tailored to a separate 

domain and then pruned upon successful performance. 

 

To concentrate these two independent nodes, the network needs to learn how to successfully 

merge and appropriately adjust the weights of the hidden layer to be able to reach an adequate 

standard of performance. This standard can be defined as a measure of processing time or the 

number of changes, but it is the system’s goal to minimise the number of changes necessary to 

reach comfortable performance. 

 

As can be seen, this process can be repeated countless times with each iteration bridging 

together two independently pruned networks. It may be initially advantageous to allow these 

systems to algebraically add their hidden layer to the net total of hidden nodes in the network 

until CGs performance can be better analysed. 

 

Quantum Computing 

Recent developments in quantum computing have brought the technology closer towards the 

realisation of Richard Feynman’s initial vision of using the machines for ‘quantum physics and 

chemistry simulations’. In this way, biochemists need to begin adapting their skillsets to utilise 

better this hardware that is a total subversion to the typical methodologies employed for in 

silico experiments. In the past few years and even recently, there has been steady progress on 

the engineering frontier of quantum computing, including the realisation that standard 

microfabrication facilities (Francis, 2015) can be used to create quantum processor units and 

Google’s recent ‘quantum supremacy’ breakthrough (Arute, 2019). 

 

The ever-improving state of quantum computers places greater emphasis on the need for 

biochemists to begin understanding how they can adapt their problem domains to that of 

quantum computers. Over fifty quantum algorithms have been identified as seen in the 

Quantum Algorithm Zoo (2019), with the Harrow-Hassidim-Lloyd (HHL) algorithms 

promising an exponential speed-up against classical computers. In the way that machine 

learning algorithms offer biochemists an opportunity to intelligently sift through millions of 
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data-points in much faster efficiency than a naïve, brute-force approach — a quantum computer 

running quantum algorithms for machine learning has obvious benefits (Niu, 2019). 

 

The significance of quantum algorithms can be seen in how HHL algorithms can solve a system 

of linear equations in log time. Granted, that a number of pre-conditions are necessary to enable 

this speed-up — but such challenges exist as engineering problems and will undoubtedly 

become resolved in time. Similarly, a polynomial-time quantum algorithm was proposed for 

estimating certain topological features of data, most notably Betti numbers (Lloyd et al. 2016) 

which count the number of holes and voids across the multiple dimensions of a scatter plot. 

 

Just as how pharmacology corporations reap lucrative rewards from the IP following a 

successful drug discovery, quantum computers can become the machines that can generate 

such lucrative IP in a much more efficient manner (Solenov, 2019). The need for biochemists, 

computer scientists and electrical engineers to begin the proper conversations across 

universities and research centres to start developing these quantum computers is only becoming 

more immediate. There exists substantial financial and scientific opportunities by properly 

leveraging these computers in the domain of chemistry. 

 

Conclusion 

Much of in silico methodologies remain ripe for disruption due in part to their reliance on 

cutting-edge technologies. It is therefore critical that those using them ensure their skillset 

remains relevant. Machine learning undoubtedly offers ample opportunity for biochemists to 

tackle toxicity in a far more efficient manner than before. However, new technologies are 

approaching that if successful, may even undermine classical machine learning approaches. 
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