Coagulopathy and Thrombosis as a Result of Severe COVID-19 Infection: A Microvascular Focus

Upendra K. Katneni¹, Aikaterini Alexaki², Ryan C. Hunt², Tal Schiller³, Michael DiCuccio⁴, Paul W. Buehler¹, Juan C. Ibla⁵ and Chava Kimchi-Sarfaty²*⁸

Affiliations:
1 The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore Maryland, USA.
2 Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US FDA, Silver Spring, MD, USA.
3 Diabetes, Endocrinology and Metabolic Disease Unit, Kaplan Medical Center, Rehovot, Israel.
4 National Center of Biotechnology Information, National Institutes of Health, Bethesda, MD, USA.
5 Department of Anesthesiology, Perioperative and Pain Medicine, Division of Cardiac Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.

* Corresponding author:
Chava Kimchi-Sarfaty, Ph.D.
OTAT Deputy Associate Director for Research
Division of Plasma Protein Therapeutics
FDA | CBER | OTAT
Office: 240-402-8203
E-mail: Chava.kimchi-sarfaty@fda.hhs.gov
Abstract

Coronavirus disease of 2019 (COVID-19) is the clinical manifestation of the respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While primarily recognized as a respiratory disease, it is clear that COVID-19 is systemic illness impacting multiple organ systems. One defining clinical feature of COVID-19 has been the high incidence of thrombotic events. The underlying processes and risk factors for the occurrence of thrombotic events in COVID-19 remain inadequately understood. While severe bacterial, viral or fungal infections are well recognized to activate the coagulation system, COVID-19 associated coagulopathy is likely to have unique mechanistic features. Inflammatory-driven processes are likely primary drivers of coagulopathy in COVID-19, but the exact mechanisms linking inflammation to dysregulated hemostasis and thrombosis are yet to be delineated. Cumulative findings of microvascular thrombosis has raised question if the endothelium and microvasculature should be a point of investigative focus. Von Willebrand Factor (VWF) and its protease, ADAMTS13 play important role in the maintenance of microvascular hemostasis. In inflammatory conditions, imbalanced VWF-ADAMTS13 characterized by elevated VWF levels and inhibited and/or reduced activity of ADAMTS13 has been reported. Also, an imbalance between ADAMTS13 activity and VWF antigen is associated with organ dysfunction and death in patients with systemic inflammation. A thorough understanding of VWF-ADAMTS13 interactions during early and advanced phases of COVID-19 could help better define the pathophysiology, guide thromboprophylaxis and treatment and improve clinical prognosis.
Keywords

COVID-19
Thrombosis
Inflammation
ADAMTS13
Von Willebrand Factor
Introduction

Coronavirus disease of 2019 (COVID-19) is a respiratory illness caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is an enveloped, positive-sense single-stranded RNA virus belonging to *Coronaviridae* family (1). The COVID-19 outbreak started in Wuhan, China, in late 2019 and rapidly spread to rest of the world. On March 11, 2020, the World Health Organization declared COVID-19 outbreak as pandemic. As of June 24, 2020, the global number of COVID-19 cases stood at 9.26 million with 478,000 deaths (Source: Johns Hopkins Coronavirus Resource Center, https://coronavirus.jhu.edu/). Disease course is markedly different between individuals while some are completely asymptomatic, others develop mild symptoms including mild fever, loss of taste or smell, dry cough, sore throat, shortness of breath and myalgia (2-4). In susceptible individuals, the disease progresses to pneumonia, hypoxemia, acute respiratory distress, multi-organ dysfunction that may lead to death (3). The predominance of asymptomatic or mild infections has contributed to the rapid spread of COVID-19 compared to earlier coronavirus outbreaks of severe acquired respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) in 2002 and 2012 respectively (4, 5).

Consumptive Coagulopathy and the High Incidence of Thrombosis in COVID-19 Patients

Altered coagulation is a common feature of acute systemic diseases, specifically to those affecting primarily the respiratory system. Based on studies in patients with acute respiratory distress syndrome, the coexistence of disseminated intravascular coagulation with subsequent consumption of pro-coagulation proteins and platelets has been consistently described (6). This in turn leads to the formation of micro-thrombi in the vascular bed of organs resulting from
excess coagulation byproducts and suppression of endogenous anti-coagulation factors (7). The coexistence of consumptive coagulopathy and thrombosis are the result of a common pathologic pathway; however the exact mechanisms that tilts the balance towards thrombosis in COVID-19 are less well understood (8). In this sense, some features of the coagulopathy associated with COVID-19 may be not unique to this disease, however the magnitude of the thrombotic response and its impact on mortality suggests the presence of additional mechanisms, beyond what is known for similar respiratory acute inflammatory diseases.

Several studies have linked coagulation abnormalities to severe COVID-19 illness (9, 10) (Table 1). In a study evaluating 449 severe COVID-19 patients, Tang et al. (11) reported positive correlation of 28-day mortality with fibrin degradation product, D-dimers and prothrombin time (PT) and negative correlation with platelet count. Laboratory parameters were recorded at the time of onset of severe COVID-19 in the study. In an earlier study comprising of 183 patients, Tang et al. (12) reported elevated D-dimer levels and fibrin degradation product (FDP) levels and prolonged PT and activated partial thromboplastin times (aPTT) at the time of admission in non-survivors compared to survivors. In the same study, significantly lower levels of fibrinogen and anti-thrombin levels were observed during the late hospitalization in non-survivors. Huang et al. (13) reported higher D-dimers and prolonged PT at the time of admission in ICU-patients compared to non-ICU patients in a study of 41 patients. Wang et al. (14) reported elevated PT in a study of 138 patients. In the same study, elevated levels of D-dimers were found in ICU-patients compared to non-ICU patients as well as in survivors compared to non-survivors in a sub-group of patients with a definitive outcome. In a study of 94 COVID-19 patients, Han et al. (15) reported lower antithrombin and higher D-dimers, FDP and fibrinogen levels compared to healthy controls. Zhou et al. (16) reported an association of elevated D-
dimers with in-hospital death in a study of 191 patients. Also, elevated PT and decreased platelet counts were observed in non-survivors compared to survivors. Elevated levels of D-dimers were reported by Richardson et al. (17) among 5700 patients in the New York City area. Ranucci et al. (18) reported a procoagulant profile in sixteen patients characterized by increased clot strength by viscoelastography, elevated D-dimer levels and hyperfibrinogenemia. A meta-analysis of 9 studies encompassing 1779 patients with severe disease has identified significantly lower platelet counts (19). A sub-group analysis based on survival has identified even lower platelet counts in non-survivors in this study. Llitzos et al. (20) and Helms et al. (7) reported elevated D-dimer and fibrinogen levels in 26 and 150 ICU-admitted patients respectively. Overall, elevated PT, increased D-dimer and fibrinogen levels, and thrombocytopenia are frequently reported in COVID-19 patients. However, bleeding events requiring therapeutic intervention are not reported.

Multiple studies have reported a higher incidence of thrombotic events, particularly pulmonary embolism, as a frequent complication in COVID-19 patients (Table 1). Llitzos et al. (20) reported overall rate of 69% venous thromboembolism (VTE) in severe COVID-19 patients admitted to ICU. In this study, VTE incidence was found to be significantly higher in patients treated with prophylactic anticoagulation compared to those treated with therapeutic anticoagulation. Helms et al. (7) reported 64 clinically relevant thrombotic complications in 150 ICU-admitted patients. Importantly, the incidence of thrombotic complications in COVID-19 acute respiratory distress syndrome (ARDS) patients was significantly higher than non-COVID-19 ARDS patients in this study. Ackermann et al. (21) compared lung sections of COVID-19 patients with those died from acute respiratory distress syndrome (ARDS) secondary to influenza A(H1N1) infection and found relatively higher; 1) endothelial cell injury, 2) alveolar
microthrombi (9-fold) and 3) intussusceptive angiogenesis in COVID-19 lung sections. Similarly, higher incidence of thromboembolic complications in ICU-admitted COVID-19 patients was also reported by Klok et al. (31%) (22), Lodigiani et al. (27.6%) (23), Middeldorp et al. (47%) (24), Nahum et al. (79%) (25) and Cui et al. (25%) (26). For comparison, in a study by Zhang et al., the reported cumulative incidence of VTE in ICU-admitted patients receiving guideline-recommended thromboprophylaxis was 9.55% (95% confidence interval: 6.55–13.81) (27).

A high incidence of disseminated intravascular coagulation (DIC) diagnosed by D-dimer, fibrinogen and antithrombin III levels has become a focus for the initiation of anti-coagulation therapy in severe COVID-19 patients (28), with some studies relying on D-dimers alone (11, 29). A retrospective analysis of 183 patients performed by Tang et al. (12) suggested that more than 70% of severe COVID-19 patients who succumb to the infection demonstrate increased risk of thrombosis, further this group suggests that all of these patients meet the International Society on Thrombosis and Haemostasis (ISTH) definition of DIC. Subsequently Tang et al. (11) reported an equivalent 28-day mortality rate (30%) in 99 patients receiving low molecular weight or unfractionated heparin for 7 days compared to 350 non-heparin treated patients or those receiving a less than 7-day course of therapy. A case series reported by Wang et al. (28) detailed the use and outcome following tissue plasminogen activator (tPA) in 3 patients with ARDS and coagulopathy consistent with DIC. Intravenous dosing with tPA indicated a potential benefit in each of the three cases of COVID-19. However, this study also warns of both unrelated effects and high risk of severe bleeding secondary to off-label tPA use. Several of the studies in coagulopathic COVID-19 patients suspected of DIC rely heavily on analysis of fibrin degradation and D-dimer levels, which are expected to be increased during DIC, arterial and
venous thromboses, strokes and thrombotic microangiopathies (30). However, D-Dimers are a non-specific indicator of thrombosis in severe COVID-19 patients with pulmonary injury. Fibrin accumulation and lysis continuously occur during non-thrombotic inflammation as well as tissue necrosis and therefore, significant D-dimer elevations also accumulate during cancers (31) and infections, consistent with inflammatory processes that coincide with the progression of severe COVID-19 related macrophage activation syndrome (32). Therefore, we suggest that more comprehensive and robust assays be used to evaluate changes in hemostasis. For example, to date the use of thrombin, plasmin or simultaneous thrombin/plasmin generation assays have not been reported within the context of hemostasis management of COVID-19 patients. Since their introduction thrombin and plasmin generation assays have been highly informative regarding the assessment of hemorrhage, coagulation and fibrinolysis (33, 34). Assessment of impairment of these systems would provide a useful and appropriate guidance needed for and monitoring of therapeutic interventions in the unique coagulopathies associated with COVID-19 (33, 34). Because, patients are often on unfractionated or low molecular weight heparin and plasminogen activator inhibitor 1, VWF, plasminogen, fibrinogen and FVIII are all reported to be elevated in SARS infection (35), careful modification of these assays may be warranted to optimize the concentrations of added tPA, tissue factor and thrombomodulin.

These studies present a heterogeneous picture that is difficult to evaluate in the aggregate. Inclusion criteria for patients varied across these studies, making direct comparisons between the studies difficult. Further, the studies used different regimens of thromboprophylaxis, which could impact outcomes. In some studies, a high proportion of patients were still hospitalized at the end of the reporting period; conclusions and clinical courses therefore were based on incomplete information, and completion of these patients’ clinical course could alter the final conclusions.
The picture of coagulopathy in COVID-19 is complex. Specific, sensitive and temporal assessments of coagulation and fibrinolysis should be established and further work is needed to untangle the roles of the host inflammatory response, pre-existing thrombotic risk, and pre-hospitalization pharmacologic regimens in the optimal management of coagulopathy in the setting of COVID-19.

Inflammation, Liver Injury and Hypoxia in COVID-19 Patients

The risk of hospitalization, morbidity, and mortality from COVID-19 is highest for older patients with preexisting conditions such as hypertension, diabetes, cardiovascular disease and obesity (13, 14, 16, 17, 36, 37). A common theme of all these co-morbidities is their association with vascular inflammation and endothelial dysfunction (38, 39). Pro-inflammatory conditions affect hemostasis by blocking of fibrinolysis and induction of prothrombotic conditions through activation of endothelial cells and innate immune cells via release of several factors including tissue factor, von Willebrand Factor (VWF) and neutrophil extracellular traps (NETs) that promote thrombosis (40). Induction of pro-inflammatory conditions was reported in the pathophysiology of several viral diseases including influenza and SARS (41). Increased inflammation is commonly observed in COVID-19 patients, while severe cases are characterized by immune dysregulation and hyper-inflammation, with a markedly increased serum IL-6 (42). Cytokine release syndrome (CRS) has also been reported in COVID-19 patients and correlates with adverse clinical outcomes (43). The presence of several inflammatory markers such as C-reactive protein (CRP), procalcitonin, ferritin, and fibrinogen are often reported in COVID-19 patients (13, 14, 16, 17, 36, 37, 44-48) (Table 2). Further, multiple studies reported elevated levels of the pro-inflammatory cytokine IL-6 in severe cases of COVID-19 (16, 37, 42, 47, 49-53) (Table 2). A concurrent increase in the levels of anti-inflammatory cytokine IL-10, probably
in response to overwhelming systemic inflammation was also observed in several studies. The role of IL-6, in particular, is considered central in the pathogenesis of COVID-19 complications (54), and therefore tocilizumab, an IL-6 inhibitor, is being used in ongoing clinical trials to prevent catastrophic inflammation (55-58).

Liver injury during COVID-19 infections was described in multiple studies, including elevated levels of alanine aminotransferase, aspartate aminotransferase and bilirubin (14, 16, 17, 36, 44, 47). The liver is the primary source of plasma proteins, particularly those involved in hemostasis. Thus, the occurrence of liver injury may contribute further to derangements of key hemostasis proteins and contributes to coagulopathy (59). Similarly, hypoxemia observed in COVID-19 patients induces prothrombotic conditions through upregulation of plasminogen activator inhibitor and stimulation of endothelial synthesis of pro-coagulants, including tissue factor and VWF (60-63). Thus, multiple clinical characteristics observed in COVID-19 patients contribute to altered coagulation and lead to increased incidence of thrombosis. However, the early onset of coagulopathy – before systemic organic effects occur - suggests pro-inflammatory conditions as the primary driving cause of thrombotic events in COVID-19 patients.

VWF-ADAMTS13 in Hemostasis and Thrombosis

VWF and its cleaving protease, ADAMTS13, play an important role in hemostasis particularly within the microvasculature (64). VWF is a large multimeric glycoprotein primarily expressed by endothelial cells and platelets. Endothelial cells show both basal secretion and regulated release of VWF stored in Weibel-Palade bodies in response to various stimuli. On the other hand, platelets secrete VWF stored in alpha-granules only upon activation (65). ADAMTS13 is expressed both by hepatic stellate cells and endothelial cells; the relative contribution of hepatic and microvascular expression is not clear (66). ADAMTS13 regulates the
biological activity of VWF by cleaving pro-thrombotic ultra-large VWF multimers (>10,000 kDa) secreted from endothelial cells into hemostatically active high molecular weight multimers (<10,000 kDa) under shear stress conditions (67). Severe deficiency of ADAMTS13 results in accumulation of ultra-large VWF multimers leading to microvascular thrombosis and consumptive thrombocytopenia, a condition termed thrombotic thrombocytopenic purpura (TTP) (64). In the event of vascular injury, VWF facilitates binding of platelets to sub-endothelium through its interactions with glycoprotein Ib and collagen, thereby inducing thrombus formation (64). A reciprocal relationship exists between VWF and ADAMTS13 levels where elevated circulatory VWF antigen levels are associated with concomitant decrease in ADAMTS13 activity and vice versa (68-70). Abnormal VWF-ADAMTS13 ratios are implicated in arterial thrombosis (71), ischemic stroke (72, 73) pediatric stroke (74) and perioperative thrombosis in infants (75). In addition abnormal VWF/ADAMTS13 metabolism has been positively associated with myocardial infarction in young women (76). It is worth highlighting that in the case of perioperative thrombosis, elevated VWF even in the absence of significant deficiency of ADAMTS13 was associated with thrombosis (75). Severe hypoxia and acidosis likely caused a higher increase in VWF during cardiac surgery and were at higher risk of thrombosis (75).

Elevated levels of VWF are found in several inflammatory and metabolic disorders including diabetes, obesity and sickle cell disease (77). In patients with systemic inflammatory response syndrome, active VWF predicted 28-day mortality (78). VWF is an acute-phase response protein released by activated endothelial cells in response to inflammatory stimuli (77). Inflammatory cytokines, IL-8 and TNF-α induced the release of VWF from human umbilical vein endothelial (HUVEC) cells (79). VWF released in inflammation binds to NETs released from activated neutrophils and recruits platelets and leukocytes to promote thrombosis (77).
ADAMTS13 deficiency in inflammatory conditions was demonstrated to promote VWF dependent leukocyte adhesion and extravasation in mice (80).

In patients with systemic inflammation, ADAMTS13 activity decreases proportional to the inflammatory response; an imbalance between ADAMTS13 activity and VWF antigen is associated with organ dysfunction and death (81, 82). Dysregulated host response to infection including inflammation can result in septic shock. In septic shock, ADAMTS13 activity was significantly lower (83-85) and elevated ratio of VWF pro-peptide (VWFpp) that is secreted along with ultra-large VWF multimers in to blood stream and ADAMTS13 was associated with disease severity (86). In patients with DIC, ADAMTS13 activity decreased with DIC score (87) and VWFpp/ADAMTS13 ratio was significantly elevated in non-survivors compared to survivors (88). An interesting observation is that smoking, which is associated with adverse outcomes in COVID-19 patients (89) was also found to be associated with decreased plasma ADAMTS13 levels in a study of 3244 individuals (90). Increased expression of ACE-2, the entry receptor for SARS-CoV-2, in the small airway epithelia of smokers was suggested as the potential mechanism for increased risk of severe COVID-19 in smokers (91). Smoking is also associated with increased inflammatory markers (92).

The imbalance between ADAMTS13 and VWF in heightened inflammation could be a result of inhibition and/or deficiency of ADAMTS13 activity (93). The inhibition of VWF cleavage by ADAMTS13 in inflammatory conditions was suggested to be mediated by several mechanisms: 1) thrombospondin-1 released from α-granules of activated platelets by binding to A2-A3 domain of VWF (94, 95); 2) α-defensins released from neutrophils by binding to A2 domain of VWF (96); and 3) oxidation of Met 1606 residue in the ADAMTS13 cleavage site of VWF (97). Moreover, non-physiological high concentrations of IL-6 have been shown to inhibit
cleavage of VWF by ADAMTS13 in vitro under shear flow conditions (79). Granulocyte elastases, plasmin, and thrombin that are elevated in inflammatory conditions lower ADAMTS13 activity through its proteolytic cleavage (98, 99).

VWF-ADAMTS13 Interactions in COVID-19

Despite playing an important role in the maintenance of hemostasis and the occurrence of micro and macrovascular thrombosis, VWF-ADAMTS13 interactions have not received much investigative attention in the evaluation of COVID-19 pathophysiology, specifically in relation to elevated incidence of VTE. Importantly, reduced ADAMTS13 activity has been shown to correlate with increased inflammation in multiple systems (100-102), while IL-6 has been shown to inhibit the cleavage of ultra-large VWF strings by ADAMTS13 under flowing conditions (79, 103). The authors could find only five studies evaluating both VWF and ADAMTS13 levels in COVID-19 patients in literature (104-108) (Table 3). Majority of these studies reported lower ADAMTS13 activity concurrent with higher VWF in COVID-19 patients (104-107). In one of these studies, Bazzan et al. (104) reported lower ADAMTS13 levels in 88 COVID-19 patients compared to healthy controls (48.71 ± 18.7% vs HC, 108 ± 9.1%; normal value 60–130%). Within patient cohort, lower ADAMTS13 and higher VWF levels were found non-survivors (9/88) compared to survivors. Further, lower than 30% ADAMTS13 activity were significantly associated with mortality in survivor analysis. Huisman et al. (105), observed low ADAMTS13 activity levels (0.48±0.14 IU/mL against a reference range of 0.61-1.31) in parallel with elevated VWF antigen and activity (~4 fold) in 12 ICU-admitted patients. A similar reduction in ADAMTS13 and increased VWF levels was also reported by reported by Adam et al. (106) and Latimer et al. (107) in 4 adult and 1 pediatric patients respectively. On the other hand, Escher et al. (108), observed normal to lower-normal ADAMTS13 levels concurrently with >2.5 fold
increase in VWF antigen and activity in 3 ICU-admitted patients. Two other studies (7, 109) reported VWF measurements alone, observing >3-fold increase in both VWF antigen and activity. From the limited number of studies so far, it appears that COVID-19 infection may be characterized by markedly elevated VWF levels and below normal ADAMTS13 activity. However, the current literature is limited by the small number of studies and variable timing of VWF/ADAMTS13 measurements in relation to disease onset. Further evaluation of VWF and ADAMTS13 interactions in large patient cohorts are warranted to more confidently understand their contributions to COVID-19 pathogenesis.

A secondary mechanism potentially contributing to ADAMTS13 deficiency relates to the anti-phospholipid antibody generation during SARS-CoV-2 infection (7, 110-112). Anti-phospholipid antibodies have been inconsistently reported in all cases of COVID 19 (7, 111, 112), but strongly associated to prolong aPTT as reported by Bowles et al. (112). Patients with anti-phospholipid syndrome have been found to have abnormal ADAMTS13 plasmatic activity further increasing the risk of thrombosis (113). The exact mechanisms by which anti-phospholipid antibodies interfere with ADAMTS13 cleaving activity are unclear. We speculate that anti-phospholipid antibodies generated during active SARS-CoV-2 infection can potentially bind the spacer domain of ADAMTS13 interfering with the recognition and proteolysis of VWF. Such a mechanism is similar to the binding of autoantibodies against ADAMTS13 present in thrombotic thrombocytopenic purpura resulting in clinical thrombosis (114).

Based on the limited available data, we propose a mechanistic model in which: 1) SARS-CoV-2 causes endothelial activation and damage leading to overwhelming VWF release and 2) pro-inflammatory mediators or antibodies during the severe phase of COVID-19 result in reduced cleavage of high molecular weight VWF by ADAMTS13, ultimately leading to
thrombosis, see Figure 1. This concept should be confirmed by large patient cohorts that encompass mild and severe clinical courses of COVID-19 disease. A mechanistic understanding of thrombosis during COVID-19 infection is greatly needed to better guide thromboprophylaxis and treatment. The extent to which VWF-ADAMTS13 interactions contribute to the pathophysiology of COVID-19 should be an important investigative focus.
Acknowledgements

This work was partly supported by funds from the Hemostasis Branch/Division of Plasma Protein Therapeutics/Office of Tissues and Advanced Therapies/Center for Biologics Evaluation and Research of the U.S. Food and Drug Administration.

Conflict of interest

Dr. Buehler reports personal fees from Kalocyte Inc., outside the submitted work. The rest of the authors has nothing to disclose.
References

Tocilizumab in COVID-19 Pneumonia (TOCIVID-19). Available at: https://ClinicalTrials.gov/show/NCT04317092.

Tocilizumab for Prevention of Respiratory Failure in Patients With Severe COVID-19 Infection. Available at: https://ClinicalTrials.gov/show/NCT04377659.

Efficacy of Early Administration of Tocilizumab in COVID-19 Patients. Available at: https://ClinicalTrials.gov/show/NCT04346355.

Tocilizumab in the Treatment of Coronavirus Induced Disease (COVID-19). Available at: https://ClinicalTrials.gov/show/NCT04335071.

Figure Legends

Figure 1: VWF-ADAMTS13 metabolism in inflammation. A) During normal homeostasis, ADAMTS13 regulates the activity of VWF by cleaving pro-thrombotic ultra-large VWF multimers released from endothelial cells into hemostatically active high molecular weight multimers. B) In inflammatory disorders, pro-inflammatory cytokines (e.g. IL-8 and TNF-α) stimulate excess release of VWF stored in Weibel-Palade bodies of endothelial cells. VWF interacts with neutrophil extracellular traps (NETs) released from neutrophils to provide a scaffold for platelet adhesion and thrombus formation. C) In inflammation, cleavage of VWF by ADAMTS13 is prevented by multiple mechanisms that either inhibit or reduce the proteolytic activity of ADAMTS13.
Tables

Table 1: Studies (multiple patients) reporting abnormal coagulopathy in COVID-19

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of study, number of patients</th>
<th>Findings /Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical features of COVID-19 patients, coagulation parameters included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang et al. (13)</td>
<td>Prospective, 41 patients</td>
<td>Prothrombin time and D-dimer levels on admission were higher in patients that required ICU treatment</td>
</tr>
<tr>
<td>Zhou et al. (16)</td>
<td>Retrospective, 191 COVID-19 patients</td>
<td>Increased d-dimer on admission is associated with poor prognosis</td>
</tr>
<tr>
<td>Guan et al. (44)</td>
<td>Retrospective, 1099 COVID-19 patients</td>
<td>Thrombocytopenia in 36.2%</td>
</tr>
<tr>
<td>Goyal et al. (36)</td>
<td>Retrospective, 393 COVID-19 patients</td>
<td>Thrombocytopenia in 27%</td>
</tr>
<tr>
<td>Zhu et al. (45)</td>
<td>Metanalysis</td>
<td>Elevated D-dimer in about 37.2% of patients</td>
</tr>
</tbody>
</table>

Studies on coagulation parameters

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of study, number of patients</th>
<th>Findings /Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranucci et al. (18)</td>
<td>Prospective, 16 ARDS COVID-19 patients</td>
<td>Patients showed a pro-coagulant profile (clot strength, platelet, fibrinogen, d-dimers, hyperfibrinogenemia)</td>
</tr>
<tr>
<td>Tang et al. (12)</td>
<td>Retrospective, 183 COVID-19 patients</td>
<td>Non-survivors had significantly higher D-dimer and fibrin degradation product (FDP) levels, longer prothrombin time and activated partial thromboplastin time compared to survivors on admission. 71.4% of non-survivors and 0.6% survivors met the criteria of DIC during their hospital stay</td>
</tr>
<tr>
<td>Authors</td>
<td>Study Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Lippi et al.</td>
<td>Metanalysis</td>
<td>Low platelet count associated with increased risk of severe disease and mortality in patients with COVID-19.</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>Retrospective, 343 COVID-19 patients</td>
<td>Continual increase of D-dimers, Elevated FVIII activity and normal platelet counts.</td>
</tr>
<tr>
<td>Escher et al.</td>
<td>Case study, 1 patient and 3 more in the follow up publication</td>
<td></td>
</tr>
<tr>
<td>Lorenzo-Villalba et al.</td>
<td>Case reports, 3 patients</td>
<td>Severe thrombocytopenia during COVID-19 infection associated with either cutaneous purpura or mucosal bleeding.</td>
</tr>
<tr>
<td>Yin et al.</td>
<td>Retrospective, 449 COVID-19 and 104 non-COVID severe pneumonia</td>
<td></td>
</tr>
</tbody>
</table>

Thrombosis in the COVID-19 patients

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study Type</th>
<th>Description</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middeldorp et al.</td>
<td>Retrospective, 198 patients</td>
<td>The cumulative incidences of VTE at 7, 14 and 21 days were 16%, 33% and 42% respectively. VTE was higher in the ICU and was associated with death.</td>
<td>Deep vein thrombosis was found in 22 patients (65%) at admission and in 27 patients (79%) when the venous ultrasonograms performed 48 hours after ICU admission were included. D-dimers and fibrinogen were also increased.</td>
</tr>
<tr>
<td>Nahum et al.</td>
<td>Prospective, 34 patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Study Design</td>
<td>Case Description</td>
<td>Findings/Results</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cui et al. (26)</td>
<td>Retrospective, 81 severe COVID-19 patients</td>
<td>Incidence of VTE at 25%. D-dimer increase has a predictive value</td>
<td></td>
</tr>
<tr>
<td>Klok et al. (22)</td>
<td>Retrospective, 184 patients, no control group</td>
<td>31% cumulative incidence of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction or systemic arterial embolism in COVID-19 patients</td>
<td></td>
</tr>
<tr>
<td>Zhang et al. (27)</td>
<td>Prospective, 281 ICU COVID-19 patients</td>
<td>Cumulative incidence of VTE at 28 days was 9.55%, despite all patients receiving thromboprophylaxis</td>
<td></td>
</tr>
<tr>
<td>Demelo-Rodriguez et al. (117)</td>
<td>Prospective, 156 COVID-19 patients</td>
<td>D-dimer levels > 1570 ng/ml were associated with asymptomatic DVT</td>
<td></td>
</tr>
<tr>
<td>Grandmaison et al. (118)</td>
<td>Cross-sectional study, 58 COVID-19 patients, 29 in the ICU and 29 in the medicine ward</td>
<td>In the ICU, VTEs were found in 17 (58.6%) of the 29 patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the medicine ward, VTEs were found in 6 (20.7%) patients</td>
<td></td>
</tr>
<tr>
<td>Fraissé et al. (119)</td>
<td>Retrospective, 92 ICU COVID-19 patients</td>
<td>High rate of thrombotic events (TE) in ICU COVID-19 patients highlighting the necessity for thromboprophylaxis and TE screening. Hemorrhagic events (HE) we also observed in patients on full-dose anticoagulation</td>
<td></td>
</tr>
<tr>
<td>Jain et al. (120)</td>
<td>Retrospective, 3218 COVID-19 patients</td>
<td>Acute stroke was the most common neuroimaging finding, present in 1.1% of hospitalized COVID-19 patients.</td>
<td></td>
</tr>
<tr>
<td>Desborough et al. (121)</td>
<td>Retrospective, 66 patients</td>
<td>10 patients had at least one proven episode of thromboembolism. Major bleeding occurred in seven cases</td>
<td></td>
</tr>
<tr>
<td>Akel et al. (122)</td>
<td>Case reports, 6 patients</td>
<td>Patients didn't have any hypercoagulable risk factors yet presented with pulmonary embolism</td>
<td></td>
</tr>
<tr>
<td>Kashi et al. (123)</td>
<td>Case reports, 7 patients</td>
<td>Arterial thrombosis</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Study Type</td>
<td>Number of Patients</td>
<td>Key Findings</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Lax et al.</td>
<td>Prospective autopsy study</td>
<td>11 deceased COVID-19 patients</td>
<td>Death may be caused by the thrombosis observed in segmental and subsegmental pulmonary arterial vessels despite the use of prophylactic anticoagulation</td>
</tr>
<tr>
<td>Thomas et al.</td>
<td>Retrospective</td>
<td>63 COVID-19 patients</td>
<td>High thrombotic risk in patients with COVID-19</td>
</tr>
<tr>
<td>Gomez-Arbelaez et al.</td>
<td>Case reports</td>
<td>4 patients</td>
<td>Aortic thrombosis and associated ischemic complications in patients with severe SARS-CoV-2 infection</td>
</tr>
</tbody>
</table>

Anticoagulation treatment in COVID-19 patients

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study Type</th>
<th>Number of Patients</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tang et al.</td>
<td>Retrospective</td>
<td>449 severe COVID-19 patients, 99 received heparin</td>
<td>Anticoagulant therapy is associated with better prognosis in severe COVID-19 patients with sepsis induced coagulopathy or markedly elevated D-dimer</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>3 case reports</td>
<td></td>
<td>Treatment with tissue plasminogen activator lead to improvement in the respiratory status</td>
</tr>
<tr>
<td>Ayerbe et al.</td>
<td>Retrospective</td>
<td>2075 COVID-19 patients, admitted in 17 hospitals in Spain</td>
<td>Heparin had been used in 1734 patients. Heparin was associated with lower mortality</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>Retrospective</td>
<td>1099 COVID-19 patients</td>
<td>High risk of venous thromboembolism, also high risk of bleeding</td>
</tr>
<tr>
<td>Artifoni et al.</td>
<td>Retrospective</td>
<td>62 patients</td>
<td>16 patients developed VTE, 7 patients developed PE</td>
</tr>
<tr>
<td>Russo et al.</td>
<td>Retrospective</td>
<td>192 COVID-19 patients</td>
<td>Pre-admission antithrombotic therapy, both antiplatelet and anticoagulant, does not seem to show a protective effect in severe forms of COVID-19 with ARDS at presentation and rapidly evolving toward death.</td>
</tr>
</tbody>
</table>

Link between SARS-CoV-2 and thrombosis
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Type</th>
<th>Study Details</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackermann et al. (21)</td>
<td>7 lung autopsies from COVID-19 patients and 7 from ARDS</td>
<td>Vascular angiogenesis distinguished the pulmonary pathobiology of COVID-19 from that of equally severe influenza virus infection</td>
<td></td>
</tr>
<tr>
<td>Maier et al. (131)</td>
<td>Case studies</td>
<td>15 COVID-19 patients with hyperviscosity</td>
<td>Possible causal relationship between hyperviscocity and thrombotic complications in COVID-19</td>
</tr>
<tr>
<td>Huisman et al. (105)</td>
<td>12 COVID-19 patients</td>
<td>Low ADAMTS13 activity, increased vWF levels and factor VIII levels</td>
<td></td>
</tr>
<tr>
<td>Galeano-Valle et al. (111)</td>
<td>Prospective study, 24 patients</td>
<td>Prevalence of antiphospholipid antibodies in COVID-19 and venous thrombosis was low</td>
<td></td>
</tr>
<tr>
<td>Magro et al. (132)</td>
<td>Case reports, 5 severe COVID-19 cases</td>
<td>Procoagulant state is associated with systemic complement activation</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Studies reporting elevated inflammatory markers in COVID-19

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient group (number of patients) comparison</th>
<th>Elevated inflammatory markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang et al. (13)</td>
<td>ICU (13) vs non-ICU (28)</td>
<td>Procalcitonin, IL-1β, IFN-γ, IP10, and MCP1</td>
</tr>
<tr>
<td>Wang et al. (14)</td>
<td>ICU (36) vs non-ICU (102)</td>
<td>Procalcitonin</td>
</tr>
<tr>
<td>Zhou et al. (16)</td>
<td>Non-survivor (54) vs Survivor (137)</td>
<td>Procalcitonin, Ferritin and IL-6</td>
</tr>
<tr>
<td>Richardson et al. (17)</td>
<td>Relative to reference range (3066)</td>
<td>Procalcitonin, Ferritin and CRP</td>
</tr>
<tr>
<td>Ruan et al. (37)</td>
<td>Non-survivor (68) vs Survivor (82)</td>
<td>CRP and IL-6</td>
</tr>
<tr>
<td>Bourbolis et al. (42)</td>
<td>Dysregulated (21) vs intermediate state (26) of immune activation</td>
<td>CRP and IL-6</td>
</tr>
<tr>
<td>Chen et al. (47)</td>
<td>Severe (≥9) vs moderate (≥7)</td>
<td>CRP, Ferritin, IL-6 and TNF-α</td>
</tr>
<tr>
<td>Han et al. (49)</td>
<td>COVID-19 Patients (102) vs controls (45)</td>
<td>CRP, IL-6, TNF-α and IFN-γ</td>
</tr>
<tr>
<td>Du et al. (50)</td>
<td>Mild pneumonia (124) vs no pneumonia (54) (pediatric patients)</td>
<td>Procalcitonin, IL-6, TNF-α and IFN-γ</td>
</tr>
<tr>
<td>Wang et al. (52)</td>
<td>SpO2≥90%(≥36) vs SpO2<90%(≥7)</td>
<td>CRP and IL-6</td>
</tr>
<tr>
<td>Tan et al. (53)</td>
<td>Severe (25) vs mild/moderate 31</td>
<td>CRP and IL-6</td>
</tr>
<tr>
<td>Tabatabai et al. (48)</td>
<td>Relative to reference range (10)</td>
<td>Fibrinogen, CRP and Ferritin</td>
</tr>
</tbody>
</table>

Abbreviations: ICU – Intensive care unit, IL-1β – Interleukin-1β, IFN-γ – Interferon-γ, IP-10 – Interferon-γ induced protein 10, MCP-1 – Monocyte chemotactic protein-1, IL-6 – Interluekin-6, CRP – C-reactive protein, TNF-α – Tumor necrosis factor-α, COVID-19 – Corona virus disease of 2019, SpO2 – Blood oxygen saturation level.
Table 3: Studies reporting ADAMTS13 and VWF levels in COVID-19

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient group (number of patients) comparison</th>
<th>Findings /Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bazzan et al. (104)</td>
<td>Non-survivor (9) vs survivor (79)</td>
<td>Lower ADAMTS13 and elevated VWF levels in non-survivors compared to survivors. After survival analysis, Lower than 30% ADAMTS-13 levels were significantly associated with higher mortality</td>
</tr>
<tr>
<td>Huisman et al. (105)</td>
<td>Relative to reference range (12)</td>
<td>Lower ADAMTS13 and elevated VWF levels</td>
</tr>
<tr>
<td>Adam et al. (106)</td>
<td>Relative to reference range (4)</td>
<td>Lower ADAMTS13 and elevated VWF levels</td>
</tr>
<tr>
<td>Latimer et al. (107)</td>
<td>Relative to reference range (1 pediatric patient)</td>
<td>Lower ADAMTS13 and elevated VWF levels</td>
</tr>
<tr>
<td>Escher et al. (108, 109)</td>
<td>Case study, 1 patient and 3 more in the follow up publication</td>
<td>Massive elevation of VWF and normal to lower-normal ADAMTS13 activity. COVID-19 coagulopathy may be a distinct entity of highly prothrombotic alterations most probably an endothelial disease</td>
</tr>
<tr>
<td>Helms et al. (7)</td>
<td>Relative to reference range (150)</td>
<td>Elevated VWF levels</td>
</tr>
</tbody>
</table>
Figure 1

A] Hemostasis

VWF → Cleavage by ADAMTS13 → Cleaved VWF

B] Inflammation

Proinflammatory cytokines → Endothelial cells → Excessive release of VWF + Neutrophil extracellular traps → Thrombus

C] Cleavage of VWF by ADAMTS13 is prevented by the following mechanisms

1) Binding of thrombospondin-1 released from α-granules of activated platelets to A2-A3 domain of VWF harboring the proteolytic cleavage site of ADAMTS13
2) Binding of α-defensins released from neutrophils to A2 domain of VWF
3) Oxidation of Met 1606 residue in the ADAMTS13 cleavage site of VWF by reactive oxygen species
4) High concentrations of IL-6
5) Proteolytic cleavage of ADAMTS13 by granulocyte elastases, plasmin, and thrombin that are elevated in inflammatory conditions