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Abstract – As an on-going pandemic caused by the out-break of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) or simply COVID-19 sweeps 

through the globe at an unprecedented rate leaving behind trails of high infection and 

mortality, it is crucial to understand the propagation dynamics of the virus in a host 

population in order to take urgent and effective remedial and mitigating steps to save 

life. It is already observed in many countries and communities that accurate and timely 

testing, tracing, and tracking of the infection lead to better containment and slowing 

down of the spread. In this exploratory research, the early growth dynamics of infection 

within a population is pursued based on real data. The study posits that the early growth 

in a homogenous population follows an exponential pattern motivating further rigorous 

quantitative treatment based on a number of analytical models such as logistic model, 

Richard’s model, and Gompertz model– the acceleration pattern of the outbreak is 

ascertained from the daily inflection data, and regression analysis against population 

models yields dynamic growth indices which allow very accurate prediction of the 

successive outbreak size when calibrated continually with updated data. The 

performance of the various models is evaluated with the real dataset. More, the basic 

reproduction number of the COVID-19 virus propagation in the community is estimated 

based on the on-set phase dataset using multi-compartmental epidemiological model. 

Also, the maximum infection size, infection doubling time and the scope of the herd 

immunity are also inferred for COVID-19 in a population.      
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1 Introduction 

 

The World Health Organization (WHO) upgraded the severe acute respiratory syndrome 

coronavirus 2  (SARS-CoV-2) outbreak to a pandemic on March 11, 2020, and chose 

COVID-19 (Coronavirus Disease 2019) as the suitable nomenclature for this virus-

mediated disease [1, 2]. The Chinese authority first reported the outbreak in December 

2019, and since then it spread throughout the globe relentlessly claiming lives of 

258,326 people and infected 3,727,301 more in as many as 212 countries as of May 

2020 [1]. The COVID-19 outbreak dynamics showed a critical nature of progressing to a 

large-scale transmission within a population from a rather mild local outbreak phase as 

observed in the first reported infection in the seafood market in Wuhan, China, via a 

community transmission phase where the contagion spread through interpersonal and 

cluster transmission. The acceleration of the outbreak is further facilitated by 

asymptomatic nature of contagion, i.e., an infected person may not show any symptoms 

of the COVID-19 upto nearly 15 days while may still keep on infecting others in his or 

her contact [2, 3, 4]. This renders the tracking and tracing of the infected individual a 

very demanding task. The virus targets the lungs by entering the body typically through 

mouth and nose as respiratory droplets [5, 6]. As a result, the transmissibility of the 

virus is rather high among communities with close proximity and high contact rate. This 

puts the countries with higher spatial population density at an extraordinary risk; 

specially, the countries in South Asia are apparently more vulnerable to the contagion 

due to a combination of factors ranging from population density, societal structure, 

culture to constrained health-care facilities. Bangladesh is among the south Asian 

countries with a significant population size drawing an utmost urgency to analyze and 

understand the COVID-19 outbreak dynamics.  

Globally ranked 8th for the population size, Bangladesh is home to approximately 161 

million people with a staggering population density of nearly 2864 per square miles, 

which is 7th highest in the world [7, 8]. Given this mammoth sized population packed in 

this rather limited area makes Bangladesh uniquely vulnerable to large outbreak and 

potential human catastrophe. Besides, the anticipated size of the infected population will 
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soon overwhelm any healthcare services and would make it difficult for any 

contingencies or interventions. The first infection broke with three cases on 7th March, 

2020, in Bangladesh, and the Government imposed an emergency ‘lockdown’ from 26th 

March, by declaring full-fledged closure of religious and educational institutions, offices, 

businesses, shops, malls, and a ban on all social gatherings, making an exception to 

some emergency services. As of 10th May, almost 62 days since the first reported 

cases, the total number of infected people in Bangladesh, according to the official 

report, stands at 20,995 with a total 314 dead as of 15th May, and the numbers are 

mounting daily [9, 10]. It cannot be emphasized more, the importance and urgency to 

analyze the infection dynamics in this spreading phase of COVID-19 in Bangladesh to 

help in the decision of executing any exit plan to come out of the outbreak with minimal 

loss of life and economic hardship.   

In recent times, for very obvious necessity and urgency, a huge effort is undertaken to 

understand the infection of COVID-19 pandemic based on the data in different spatial 

contexts globally, which is reflected by a growing number of research in this area [11, 

12, 13]. Infectious diseases are, typically, modeled as a diffusion process involving a 

pathogen that disseminates among a given homogeneous or heterogeneous population 

with a characteristic transmission strength governed by a system of coupled differential 

equations with variables indicating different compartments the populations are 

subdivided; e.g., the SIR epidemiological model assumes a homogeneous population to 

undergo transitions from susceptible (𝑆) to Infectious (𝐼) to removed (𝑅) states as a virus 

sweeps through; various model variants to this are widely used for understanding the 

outbreak and for exploring different scenarios to forecast future development of the 

outbreak, essentially to understand the ‘flattening’ behavior of the infection in order to 

impose and modulate emergency public measures like lockdown by gauging the 

healthcare facilities available to the population [14, 15, 16, 17, 18]. Moreover, another 

theoretical approach, to capture the inherent randomness of infection, is to recourse to 

stochastic epidemiological approaches based on (generalized) logistic models, and 

(sub) exponential models [19, 20, 21].   
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In this study, a phenomenological approach, based on both stochastic and multi-

compartment models, have been adopted to model the real dataset of COVID-19 

infection in Bangladesh. The study shows that the growth stage follows a very random 

nature in Bangladesh with typical exponential growth feature. Motivated by the growth 

trend in the real data, exponential model techniques along with logistic model have 

been applied to extract trending parameters of the outbreak. Further regression analysis 

has been conducted to extract high precision fitting of the data with the models, and the 

fitting parameters have produced a very commendable accuracy in predicting future 

infection values in the region. Comparative analysis have shown Richard’s model and 

Gompertz model have performed remarkably better than any other parametric 

approaches in fitting and predicting. The study, further, estimated the basic reproduction 

number, 𝑅0, for infection in Bangladesh, using multi-compartmental model against the 

real dataset. The estimation posits 𝑅0~3.0 for the infection which accounts for the 

observed exponential growth trend in the country. The temporal variation of 

reproduction is also noted. Further numerical analyses show the scope and rate of the 

growth of the pandemic in this region is fortunately lower than earlier grave projections. 

The doubling time of the infection, the maximum infection population size as well as the 

herd immunity threshold for the current growth are also estimated and presented in this 

study.  

 

2 Materials and Methods 

 

2.1 Phenomenological Growth Model 

Phenomenological models are data-driven empirical approaches without any specific 

basis on first principle or any physical mechanisms [20, 22]. These models provide 

insight in the patterns in the observed data, and so are good candidates to use as the 

initial probe of investigation, which eventually motivate reproducibility of empirical 

observation using more rigorous mathematical models. As data suggests, Bangladesh 

is still in the early stage of epidemic growth with exponential features, so an exponential 
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model such as the following is a good special power-law based method to study its 

initial growth dynamics. 

𝐼(𝑡) = 𝑎𝑒𝑏𝑡             (1) 

Here, 𝐼(𝑡) implies the cumulative incidences over time 𝑡, and 𝑎 and 𝑏 are parameters 

indicating the growth pattern – these can be estimated by fixing or fitting with data. The 

general generating rate form of equation 1 is 𝐼′(𝑡)~𝑐𝐼𝑝(𝑡), where 𝐼′(𝑡) is the rate of the 

cumulative incidence; parameter c indicates the growth rate, with 𝑝 = 0, the growth rate 

becomes constant resulting a linear cumulative infection growth. In semi-logarithmic 

scale, the exponential growth pattern is visually evident with straight-line fit of the data 

after consecutive generations in the growth pattern onto the equation 𝑙𝑜𝑔𝑒𝐼(𝑡) = 𝑏𝑡 +

𝑙𝑜𝑔𝑒𝑎, from equation 1, whereas, a concave-down shape of the curve would indicate a 

sub-exponential growth pattern.  

 

2.2 Logistic Model 

The logistic model is a basic epidemiological model with empirical touch, which is 

characterized by a sigmoid curve signifying an initial exponential growth until reaching 

an inflection point where the growth gradually slows down to saturation, resulting in the 

S-shaped profile of the dynamics [23]. It can roughly predict the development and 

transmission behavior of the outbreak through logistic regression analysis. The rate of 

cumulative infection, 𝐼(𝑡), according to logistic model, may be written as 

𝐼′(𝑡) =
𝑘

𝑁
𝐼(𝑡)(𝑁 − 𝐼(𝑡))                    (2) 

Here k represents the exponential growth rate, and N the total population size with 

lim
𝑡→∞

𝐼(𝑡) = 𝑁. The solution of (2), with the boundary condition 𝐼(𝑡 = 0) = 𝐼0 indicating the 

initial infection incidence, the equation (2) reduces to  

𝐼(𝑡) =
𝑁

1 + (
𝑁 − 𝐼𝑂

𝐼0
) 𝑒−𝑘𝑡

                 (3) 
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The model parameters in (3) are 𝑁, 𝐼0 and 𝑘, and these can be ascertained with fitting 

and regression analysis against the dataset.  

  

2.3 Gompertz Model 

Traditionally employed for population growth, The Gompertz model is characterized by 

a sigmoid function describing growth as being slowest at the onset and at the end of a 

given time period, and also the asymmetric nature of the resulting S-shaped curve is in 

contrast to that of the logistic curve [24]. The slow onset behavior as described by the 

model has rendered it very suitable for modeling the infection growth pattern in 

Bangladesh. The mathematical form of the Gompertz model may be written as  

𝐼(𝑡) = 𝑎𝑒−𝑏𝑒−𝑐𝑡
                            (4) 

Here, the parameters are 𝑎, 𝑏 and 𝑐, with a being an asymptote, lim
𝑡→∞

𝐼(𝑡) = 𝑎 = 𝑁, the 

size of the population; 𝑏 modulates the translation of the curve along the time axis; 𝑐 is 

the growth rate of the incidence.  

 

2.4 Richards Model 

The logistic and Gompertz models expound the growth dynamics in profile of a S-

shaped sigmoid curve with fixed growth rate due to the rigid model parameters. 

Richards model, on the other hand, offers flexibility in the growth profile incorporating 

additional modulating parameters in the form of exponent, resulting in a power-law 

formulation of the original logistic model [25]. This renders the model very effective for 

application in the current COVID-19 outbreak, as the infection incidences in the onset 

period in Bangladesh is observed to be very random and irregular. The Richards 

differential equation model for epidemiological application is by 

𝐼′(𝑡) = 𝑟𝐼(𝑡) (1 − (
𝐼(𝑡)

𝑁
)

𝑠

)                       (5) 
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Here, r represents the intrinsic growth rate of the epidemic, and s is the modulating 

parameter offering more freedom in the bending of the S-shaped sigmoid curve. The 

solution to equation (5) with boundary condition, 𝐼(𝑡 = 0) = 𝐼0, and asymptote, 

lim
𝑡→∞

𝐼(𝑡) = 𝑁, leads to the following equation  

𝐼(𝑡) =
𝑁

(1 + 𝑅𝑒−𝑠𝑟𝑡)
1
𝑠

                                  (6) 

Here, 𝑅 = −1 + (
𝑁

𝐼0
)

𝑠

; s and r are the fitting parameters. The model captures the 

observed exponential growth behavior at the early phase of the outbreak, when 𝐼(𝑡) ≪

𝑁. Note the model with value 𝑠 = 0 reduces to its traditional logistic model.  

 

2.5 Compartmental Model 

The counterparts to the phenomenological models are the mechanistic models 

describing the diffusion process of the transmission of the epidemic within a population 

as a spatial-temporal dynamical mechanism. Typically the population, in such models, is 

sub-grouped as compartments consisting of individuals who are susceptible, infectious, 

or removed, because of recovery or death, along the temporal progression of the 

infection [26]. Each of these compartments are expressed by an ordinary differential 

equation with coefficients indicating the virulence of the pathogen, physical contact 

chances, symptomatic as well as asymptomatic interactions among population, and also 

the probability of transference of individual among different sub-groups giving rise to 

nonlinear coupled dynamical system features in the model. Thus, compartmental 

models are useful for forecasting short-term as well as long-term development of the 

epidemic, and for assessing various interventions, such as lockdown, to control the 

speed and trajectory of the outbreak among a population. Compartmental models also 

help by being a crucial theoretical tool to interrogate the available public health 

resilience with respect to the predicted infection profile, and the interventions may be 

modulated along the temporal phases to better respond to infection, and thus the 

severity of the outbreak can be mitigated. One of the underlying assumptions of the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2020                   doi:10.20944/preprints202005.0372.v1

https://doi.org/10.20944/preprints202005.0372.v1


 8 

model is the homogeneity of the population with infection prevalence. The high spatial 

population density of this study case renders compartmental model especially suitable 

to explore the onset epidemiological states of the population and follow the 

development. The mechanistic model variant used in this study is the traditional SIR 

(susceptible-infectious-removed) compartmental model [27, 28] governed by the 

following system of differential equations  

𝜕𝑆

𝜕𝑡
= −𝛽𝑆𝐼                           (7) 

𝜕𝐼

𝜕𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼                      (8) 

𝜕𝑅

𝜕𝑡
= 𝛾𝐼                                   (9) 

Here, the three-compartment variables, denoted by (𝑆, 𝐼, 𝑅), evolves spatial-temporally 

by the dynamic systems (7) – (9) preserving the constraint for the total host population, 

𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡), and 𝛽 and 𝛾 are the non-negative parameters: 𝛽 indicates the 

transmission rate per infectious individual, while 𝛾 is the recovery rate, so the infectious 

period is exponentially distributed with the mean 
1

 𝛾 
. At the onset of the endemic growth 

phase, for a completely susceptible population indicated by 𝑆(0)~𝑁, the equation (8) 

can be solved analytically to incur the exponential form 𝐼(𝑡)~𝐼(0)𝑒(𝛽−𝛾)𝑡. The product of 

the transmission rate and the recovery period gives the average number of secondary 

incidences generated by an individual primary infection, which is referred to as the basic 

reproduction number, 𝑅0 (R- naught). In the late part of study, the reproduction number 

is estimated from the initial infection growth data of Bangladesh. Basic reproduction 

number can also be used to estimate another useful observable known as the herd 

immunity threshold (HIT), indicating the fraction of the susceptible population required to 

undergo immunization for the infection to die away statistically either by vaccine 

application or natural antibody generation. This value is also calculated for the case 

nation in later part.   
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2.6. Model Performance Metric 

The data obtained for the study is in the form of a time series infection incidence with a 

temporal resolution of 1 day. The observations are collected in a longitudinal vector (I1, 

I2, I3, … .. .., It, … ..), where t is the outbreak generation or simply time and It’s are the 

related cumulative infection values. In the numerical computation the successive 

incidences are updated as 𝐼𝑡+1 = 𝐼𝑡 + ∆𝐼𝑡∆𝑡, where ∆𝐼𝑡 is the increment rate in infection, 

and ∆𝑡 is the time step. Likewise, the models, after fitting with the dataset and 

calibration of the respective fitting parameters, yield a vector comprised of predicted 

cumulative infection incidences, may be denoted as 𝐼𝑡̂. Following the regression 

analysis of the model against the data, the sum of squares of the residual values, 

comprised of the difference between the observed and predicted values, is minimized to 

measure the goodness-fit of the model. As the performance metric, 𝑅2 value [29] or the 

regression coefficient is evaluated based on the following mathematical form 

𝑅2 = 1 −
𝛴(𝐼𝑡 − 𝐼𝑡̂)

2

𝛴(𝐼𝑡 − 𝐼)̅2
                   (10) 

Here, 𝑰 is the average of the actual cumulative confirmed incidences. It is obvious from 

the relation that a near unity value for the metric would imply an accurate prediction and 

so higher performance of the evaluating model. Also, the 95% confidence interval (CI) is 

estimated based on the t-values for the evaluation of the model fit with the reported data 

as well as to ascertain the model projection performances. 

  

2.7 Data and Tools 

Data exploited for analyses and predictions were extracted from the Institute of 

Epidemiology, Disease Control and Research (IEDCR) [9], a government research 

institute, and the Directorate General of Health Services (DGHS) [10], an agency of the 

government, both under the Ministry of Health and Family Welfare, Bangladesh. The 

World Health Organization’s situation reports on COVID-19 [30, 31] were also followed 

as the secondary source, and this was used as a cross-check for any irregularities. The 
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primary fields of the data as resourced from IEDCR and DGHS, containing the daily 

infection number along with total test counts conducted, daily mortality, and recovery 

numbers.  

The data configuration and management were done in MS Excel 2016, and the model 

simulation and regression analyses were conducted in Python 3 [32, 33] on Windows 10 

Pro. The hardware for the study was Intel(R) Core(TM) i3 processor with clock-rate 2.70 

GHz. 

 

3 Results and Discussion 

 

3.1 Empirical Growth Trend 

 

Figure 1: The COVID-19 cumulative infection incidences (back dots) of Bangladesh 

show exponential growth at the onset period and fitted to a phenomenological 

exponential function (equation1) with parameters: are 𝑎 = 3.0, 𝑏 = 0.13214. The semi-

logarithmic plot, shown in the inset, posits an exponential growth feature of the data 

closely following linear trend (red).  

 

For analysis, we use reported incidences data from 8th March to 15th May from the 

source as mentioned earlier. The onset transmission phase for a pandemic typically 

trends both sub-exponential and exponential pattern [11, 18, 22]. The exponential 

growth may alter to sub-exponential behavior over time indicating shift in the 
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transmission strength and development in a population. COVID-19 virus transmission in 

Bangladesh is observed to follow a sharp exponential feature. The main panel in Figure 

1 shows both the data and exponential fitted graph, and the inset hosts the semi-

logarithmic recasting of the cumulative infection resulting a straight line fit with 𝑅2~0.88 

estimated from equation 10. The observed deviation about the fitted curves and straight 

line is due to the sheer random nature of the dataset, though in the long progression to 

the outbreak the data appear to follow the generic exponential trend. According to the 

reported data, the COVID-19 outbreak in Bangladesh set off on 7th March with three 

incidences, and not until mid-April, the incidences did not really kick off. The reason 

behind the low number of incidences is due to the insufficient number of tests 

conducted in the country. However, the test number afterwards soared substantially on 

a daily basis, shown in Figure 2, along with the coronavirus positive incidences. As of 

the record on the 15th May, the cumulative figure stands at 20,065 individuals with 

positive incidence out of a total of 166,994 tests conducted, which measures to about 

8.3% of coronavirus positive cases. The cumulative growth factor of the incidence in 

population, determined by the ratio of 𝐼𝑡 to 𝐼𝑡−1 where 𝑡 is transmission generation 

period expressed in days, is computed to be approximately 1.05 as of reported data of 

15th May.    

 

 

Figure 2: Comparative illustration of the daily positive COVID-19 incidences with 

respect to corresponding daily growing number of tests conducted throughout the 

country. 
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3.2 Fitting and Analysis: Logistic Model 

 

Figure 3: The realistic cumulative infection data has been fitted to the logistic model 

(equation 3) in a variety of variations involving carrying capacities, 𝑁: (a) 30K, (b) 40K, 

(c) 50K, (d) 75K, (e) 100K, and (f) 120K. The inflection point is observed to move 

rightward with the increasing carrying capacity, 𝑁, of the infection in the population 

implying increasingly longer endemic period, until infection dynamics see a slowing 

down. The corresponding regression coefficient, 𝑅2, values after equation 10 represents 

the degree of goodness-of-fit.   
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One characteristic feature of the logistic model described by equation 3 is the inflection 

point, positioned in the middle of the S-shaped solution profile, which indicates a 

functional alternation of the dynamics – following for the rising part, the portion of the 

curve preceding the inflection point indicates an accelerating exponential growth while 

the behavior past the inflection is of slowing to a saturation level, in population 

dynamics, is the carrying capacity, i.e., the size of the target population for the infection. 

Figure 3 panels demonstrate the fitting outcome of the reported data and the 

corresponding S-shaped growth pattern of the infection, for varying carrying capacities. 

The fits indicate the data accord with the accelerating growth part of the model 

indicating the early stage of the infection. The corresponding goodness-of-fit 

measurements, in Figure 3, indicate that it is possible to fit the data very efficiently in 

variety of configurations of the model parameters.  Such degeneracy in the fitting 

implies that the logistic model is a good candidate to explore the onset transmission 

dynamics of a pandemic in contrast to its ability for the long-term projection of the 

transmission development. We note from the simulation results that Bangladesh is still 

to catch on with the inflection, which would result in the declining incidence rate. Figure 

4 is the rate model generated by the solution of equation 2 with carrying capacity for 

100K and other model parameters are found from fitting as 𝐼(0) = 3 and growth efficient 

parameter 𝑘 = 0.139065. The bars are the corresponding daily infection incidence 

values as per the recorded data. The inset of the figure indicates that the inflection point 

moves farther with larger target population, implying that it will take longer to reach to a 

slowing down phase if more people are put into risk of infection. Also, the simulation 

result from the dynamical form of the logistic model (equation 2) offers an outlook to the 

future development of the pandemic by predicting the duration of the outbreak, which is 

approximately 140 days, given the fitted growth pattern and carrying capacity.    
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Figure 4: Overlay of the daily infection incidence (black bars) on the logistic derivative 

curve generated by equation 2 (red profile) for 𝑁 = 100𝐾 and the fitted parameters of 

Figure 3e. The maximum of the derivative profile, also known as the inflection point, 

indicates the daily maximum the outbreak project and at the corresponding day since 

the first report of the incidence; here it occurs approximately at day 75 of the pandemic. 

The inset illustrates the shifting of the inflection points with the increasing maximum 

infection size or the outbreak carrying capacity. The red lines joining the observables 

(black dots) are artificially added to guide the eyes.  

 

3.3 Fitting and Analysis: Gompertz Model 

 

Figure 5: The real dataset fits the Gompertz model (equation 4) with high fidelity. The 

inset is the close up of the onset region reflecting the high correlation, 𝑅2~0.99 
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(equation 10) between the data (black dots) and the model fit; the parameters are 𝑎 =

100000, 𝑏 = 13.96191598, and 𝑐 = 0.03171862.  

 

The Gompertz model, borne out of population dynamical family of models, offers more 

flexibility in the S-shape with modulating parameters 𝑎, 𝑏, and 𝑐 (equation 4), endowing 

more degrees of freedom in the fitting and simulation. Figure 5 shows the outcome of 

the model fit with the Bangladesh COVID-19 virus transmission data shown in black 

dots. The goodness-of-fit indicator, 𝑅2, returns an almost perfect score of the fit. Unlike 

the logistic model, Gompertz model is not dependent on the carrying capacity and also 

the asymmetric profile of quick rise and longer period to slow down past the inflection is 

akin to what the observed pandemic transmission dynamics suggests.  

 

 

3.4 Fitting and Analysis: Richards Model 

 

Figure 6: The Richards model reproduces the cumulative infection at the onset with 

respect to the read data (black dots) with an astonishing regression coefficient value 

0.99 (after equation 10). The model parameters: 𝑁 = 100000, 𝑟 = 0.29493425, and 𝑠 =

0.12345197. The large panel shows the solution to equation 5 yielding the characteristic 

S-shaped profile (in red) governed by equation 6. The inset zooms in the realistic data 

overlay at the onset to visualize the fit clearly.    
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We observe a very similar high performance of the Richards model when trained by 

transmission incidence data of Bangladesh. Richards model, which is a generalized 

formulation of the logistic model (equation 2 and 3), with a distinguishing exponent 𝑠, 

which enables the model to be more flexible, like Gompertz model (equation 4), and 

allows reflecting the realistic data with trained model parameters. Our simulation 

estimates the value of the exponent parameter, 𝑠 = 0.12345, for the early growth phase 

of the pandemic in Bangladesh. Also, like its logistic counterpart, Richards model 

incorporates the size of the host population.     

 

3.5 Compartmental Model Fitting  

 

 

Figure 7: (a) The cumulative infection incidences 𝐼(𝑡), governed by SIR model 

(equation 8), are fitted to the observation for an entire susceptible population of 161 

million, the model parameters thus obtained are the transmission rate, 𝛽 = 0.2057, and 

the infection period 
1

 𝛾 
= 14 days. The corresponding basic reproduction number is 

estimated as 2.88. The model offers a rather conservative projection to the future 
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development of the infection by indicating a die-down phase after 250 days from 

inception on March 7. The panel (b) is the blow-out of the onset with overlay of data 

(dotted) and the model fit (line), the regression coefficient for the fit yields 𝑅2~0.89. The 

panel (c) illustrates in the cartoon how the secondary infection propagate (arrows) for a 

case with 𝑅0 = 3.0, where there are three emergent secondary incidences (circles) from 

single primary infected individual in a homogenous population in successive generation 

of the infection. The panel (d) demonstrates the temporal progression of the estimated 

𝑅0 of Bangladesh; the estimated values are shown in the dynamic spiral, and evidently 

the current estimate has decreased to 2.8 from a little over 3.0 at the very onset of the 

infection. Panel (e) portrays the concept of Herd immunity Index (HIT), estimated as 2/3 

for a case of 𝑅0 = 3.0; the cartoon illustrates that the infection eventually dies out if two-

third of the population grow an immunity to COVID-19, so the contagious transmission 

(solid arrow) stay within a small portion of the population and fail to affect most others 

(broken arrows). 

 

Compartmental models are traditionally applied to understand and analyze various 

aspects ranging from infection pattern, recovery, and latency to effectiveness of 

mitigating intervention measures and future course of propagation of viral diffusion in a 

host population. In our study, we use classic formalism of mechanically intertwined 

susceptible, infectious and removed compartments to model the infection progression 

based on the incidence data in Bangladesh. High population density of Bangladesh 

satisfies the homogeneity condition underlying the formulation of the SIR model 

(equations 7–9). Figure 7(a) and 7(b) show the result of fitting the reported infection 

incidences in Bangladesh with the model both visually and numerically. In the 

simulation, we consider the entire population as the susceptible host. In the onset 

phase, the underlying condition, 𝑆(0)~𝑁, leads to the prevalent exponential growth 

pattern: 𝐼(𝑡)~𝐼(0)𝑒(𝛽−𝛾)𝑡. According to data-trained estimation, the current transmission 

rate (𝛽) of COVID-19 virus in Bangladesh is 0.21, and the infection period is set to 14 

days as per the global observation [3, 4]. Though the simulation is tailored to capture 

the early-growth dynamics of the transmission, the simulations offer tentative insight into 

the future projection of the pandemic, given the current rates subsist. Figure 7(a) implies 

a 250-day duration window for the pandemic in the country, though it is observed that 

the parameters may change due applied interventions and also due to the intrinsic 

changes in the variables. Figure 8 depicts the degeneracy in the SIR model, where the 
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reported data may train the same model and fit quite efficiently in every scenario with 

different host population sizes yielding different parameter values. So, depending on the 

size of the target population hosting the infection, the initial growth trend may lead to 

different projected outcomes.  

 

Figure 8: This panel cluster illustrates the degeneracy involving modeling the early 

exponential phase of the infection, where the same data may be fitted to a high degree 

of accuracy to a multiple scenario governed by the SIR-Model across different points in 

parameter space. Across the panels (a)–(d) the vulnerable population size has been 

varied from 50K, 75K, 100K and 125K, respectively. Notably in each case the fit of the 

data (black dots) to the model generation (red profile) score high on evaluation scale 

(equation 10) and also yield varying degree of secondary infection proliferation (𝑅0). The 

insets are the close-ups of the corresponding data regions. This observation implies that 

the model projection is constrained to short temporal scale.  
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3.5.1 Basic Reproduction Number (𝑹𝟎) 

Compartmental model offers a quantitative way to compute the basic reproduction 

number or 𝑅0 (𝑅-naught) of the prevalent COVID-10 pandemic in a host population. 

Basic reproduction number is an important gauge to ascertain the virulence of an 

infection in a population and a risk assessment tool; it is expressed as the average 

secondary infection size from the one primary infected individual. Figure 7(c) illustrates 

the growing propagation envelope for a case 𝑅0 = 3.0, where one infected individual 

infect three others, and each one of them infects three more and so on in the 

successive generation of infection. This leads to the ubiquitous exponential growth 

observed during an outbreak. In the early growth phase, when initial number of infected 

individual (𝐼(0)) is far small than the total susceptible population leading to an 

approximation 𝑆(0)~𝑁, the basic reproduction number can be computed simply by 

multiplying the transmission rate (𝛽) with the recovery period (
1

 𝛾 
). From simulation 

(Figure 7(a, b)), we compute the basic reproduction number for Bangladesh is 2.88, 

which is well within the reported range of 1.4 to 6.5 for COVID-19 globally [34, 35]. We 

also track the change of 𝑅0 with time in the country, the spiral in Figure 7(d) indicates 

the value is shifting slowly towards desired unit value, starting from over 3.0 initially, 

which would imply a cease to the exponential growth phase to constant propagation, 

and a value less than 1 would mean an eventual dying out of the pandemic. In the 

course development of the pandemic, as the number of infected individual increases 

and likewise the susceptible individual count declines, effective reproduction number, 

𝑅𝑒, computed by 𝑅𝑒 =
𝑆(𝑡)

𝑁
𝑅0, is employed.   

 

3.5.2 Herd Immunity Threshold   

Herd immunity threshold (HIT) represents the fraction of host population that needs to 

undergo immunization against the virus to potentially neutralize the infection [36, 37, 

38]. The fraction may be calculated in terms of basic reproduction number given by 1 −

1

𝑅0
. Figure 7(e) illustrates the functional concept of HIT for a case with 𝑅0 = 3.0; the 

infection eventually eradicated as 
2

3
 of the population is immunized, i.e., the infection 
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fails to affect 2 individuals out of 3 incidences per infection generation, resulting in the 

decline of the pandemic. According to estimation from current reported data as of mid-

May at the time of writing, Bangladesh, to reach immunity, 65.3% of the population must 

be vaccinated or treated with antiviral drugs to eradicate the current pandemic in the 

country. It should be noted that the HIT value would change with temporal progression 

of infection due to its dependency on varying basic reproduction number.   

 

3.5.3 Doubling Period  

Doubling period is a useful long-term metric to probe the temporal developmental 

pattern of a pandemic. Doubling period of a pandemic, as the name suggests, is the 

time period taken for the infection to get double with respect to the baseline, 

mathematically, it can be computed as: for the early-growth, i.e., 𝑆(0)~𝑁, then doubling 

the infection would imply that  𝐼(𝑡𝑑) = 𝐼(0)𝑒(𝛽−𝛾)𝑡𝑑 = 2𝐼(0) following from equation 8, 

where 𝑡𝑑 indicates the doubling period of the infection; solving this results the 

mathematical equation to compute doubling time as  𝑡𝑑 =
ln 2

(𝛽−𝛾)
=

ln 2

𝛾(𝑅0−1)
. For COVID-19 

in Bangladesh, we compute the latest doubling period for the study period to be 5.16 

days, which is comparable to the early stage doubling periods in global cases [39]. 

 

3.5.4 The Maximum Size of the Infection  

In this section, we estimate the projected maximum size of infection, 𝐼𝑚𝑎𝑥, in the host 

population based on the data and trained parameters from model fitting. At the 

maximum infection, 
𝑑𝐼

𝑑𝑡
= 0, in the equation 8, which gives 𝑆 =

𝛾

 𝛽 
=

1

𝑅0
, also dividing 

equation 8 and 9 yields 
𝑑𝑆

𝑑𝐼
=

−𝛽𝑆𝐼

𝛽𝑆𝐼−𝛾𝐼
, which may be recast as 𝐼(𝑡) + 𝑆(𝑡) −

𝛾

𝛽
ln(𝑆(𝑡)) =

𝐼(0) + 𝑆(0) −
𝛾

𝛽
ln(𝑆(0)). Now, considering the entire host population as susceptible, 

𝑆(0)~𝑁, these equations may be manipulated to yield an expression for maximum 

infection: 
𝐼𝑚𝑎𝑥

𝑁
= 1 −

1

𝑅0
(1 + ln(𝑅0)). We use this expression to calculate the maximum 

infection size for Bangladesh, and we report, based on the calculated basic 
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reproduction number estimated earlier, 28.5% of the total population or 46 million 

people are at the risk of the infection if the current rate of transmission propagated 

unabated.   

3.6 Comparative Analysis of Model Performance 

 

In this study, we use both phenomenological and mechanical models to train and test 

for the on-going COVID-19 infection trend in Bangladesh. In our simulation, we find the 

Gompertz and Richards models perform the best in capturing the early growth trend as 

observed in the reported data. Table 1 summarizes the key comparative features of the 

models. And Figure 9 depicts a closer look at the fitting and projection capabilities of the 

best performing Gompertz and Richards models found in this study. The simulations for 

the two models have been projected to the 90th day beyond modeled 62 days’ 

observation period. The 95% confidence interval shown by the upper and lower bounds 

in the results imply the accuracy of the models both in the fitting area and the projection, 

along the future generation of infection in the host population.   

 

Table 1: Performance summary of the early-growth models 

Model Type Models Governing Growth 

Profile 

Carrying 

Capacity 

(𝑵) 

Goodness 

of Fit (𝑹𝟐) 

Phenomenological 

Simple 

Exponential 
𝐼(𝑡) = 𝑎𝑒𝑏𝑡 – 0.88 

Logistic 
𝐼(𝑡) =

𝑁

1 + (
𝑁 − 𝐼𝑂

𝐼0
) 𝑒−𝑘𝑡

 
100K 0.92 

Gompertz 𝐼(𝑡) = 𝑎𝑒−𝑏𝑒−𝑐𝑡
 – 0.99 

Richards 
𝐼(𝑡) =

𝑁

(1 + 𝑅𝑒−𝑠𝑟𝑡)
1
𝑠

 
100K 0.99 

Mechanical  Compartmental 𝐼(𝑡)~𝐼(0)𝑒(𝛽−𝛾)𝑡 161 Million 0.89 
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Figure 9: Richards (a) and Gompertz (b) model Performance Panels (a) and (b) are the 

visual demonstration of the model fit accuracy and projection performance of Richards 

and Gompertz models, respectively. The black dots are the real data seen closely 

superimposed on the red line generated by the calibrated Richard  (equation 5 with 

fitted parameters as in Figure 6) and Gompertz  (equation 4 with the model parameters 

as in Figure 5) models. The bounding contour around the red model generation 

indicates the 95% confidence interval (CI) of the future projection by the model down 

the infection progression. The narrower CI along the dataset on the uplifting stage 

indicates the high degree accuracy in the model fitting, and also in the projection until 

90-day period shown in the computation, holds to a high accuracy.   

 

 

4 Conclusions and Outlook 

Bangladesh continues to see an unabated exponential growth of the COVID-19 

infection, even during the preparation of the paper, after 60 days since the reported 

case in the country, though the suppressive intervention measures are in place. So, 

dynamic epidemiological modeling approach to understand the underlying nature and 

peculiarities of the infection diffusion dynamics in the country is imperative to ascertain 

and to interrogate the effectiveness and defectiveness of interventions [40, 41]. Our 

study explores the available real data in this early phase through the pandemic, despite 

the inevitable constraints involving the size and scope of the data, and attempts to 

depict a scale up assessment of the pandemic throughout the country, employing both 

phenomenological and mechanistic models. The spatial-temporal dynamics explored in 

this study can be generalized beyond the premises considered, and may be used to 
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understand the pandemic in other countries, especially those sharing similar 

demography. We may earmark few key conclusions of the study as following: 

1. The pandemic growth in the country paves a strong exponential growth pattern. 

2. The study finds population dynamical models based on the power-law featured 

growth, such as Gompertz model and the generalized logistic model counterpart, 

Richards model, perform very well in the onset phase of the pandemic, and are 

very successful in capturing the current infection pattern as well as projecting the 

future development of the pandemic in short temporal range.  

3. The study posits the basic reproduction number, 𝑅0, of current the COVID-19 

outbreak in Bangladesh stands at 2.88, at the time of the write up, and the study 

shows the deceleration trend in the growth reflected in the observed decrease in 

the 𝑅0 over time. 

4. The Herd Immunity Threshold (HIT) estimated in the study asserts that 65.3% of 

the population needs to achieve immunity in order to get out of the pandemic.  

5. The study finds that the mechanical model, based on the current available data, 

estimates the doubling period for the infection in Bangladesh is 5.16 days. 

6. The study estimates the upper bound of the total infection size in Bangladesh; 

according to the estimation, the current growth trend projects about 45.9 million 

people may be infected by coronavirus.    

The epidemiological modeling performance study conducted here offers a crucial insight 

into the dynamical features and numerical measures of the outbreak size in 

Bangladesh, which can be used as guiding tools to assess the responses and outcome 

by continuous monitoring of the situation. The basic reproduction number is a crucial 

indicator of any pandemic, and it must be computed and monitored on a regular basis to 

undertake and assess the suppressive and mitigating phases during the pandemic, 

more so at the onset phase, as the response interventions to safe-guard both life and 

economy of the country. The theoretical modeling and simulation as pursued in this 

study is an important step towards development of automation-based tools and machine 

learning techniques (e.g., [42]) to further the understanding of dynamical aspects of the 

outbreak and gauge various response protocols.  
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