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Abstract — As an on-going pandemic caused by the out-break of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) or simply COVID-19 sweeps
through the globe at an unprecedented rate leaving behind trails of high infection and
mortality, it is crucial to understand the propagation dynamics of the virus in a host
population in order to take urgent and effective remedial and mitigating steps to save
life. It is already observed in many countries and communities that accurate and timely
testing, tracing, and tracking of the infection lead to better containment and slowing
down of the spread. In this exploratory research, the early growth dynamics of infection
within a population is pursued based on real data. The study posits that the early growth
in a homogenous population follows an exponential pattern motivating further rigorous
guantitative treatment based on a number of analytical models such as logistic model,
Richard’s model, and Gompertz model- the acceleration pattern of the outbreak is
ascertained from the daily inflection data, and regression analysis against population
models yields dynamic growth indices which allow very accurate prediction of the
successive outbreak size when calibrated continually with updated data. The
performance of the various models is evaluated with the real dataset. More, the basic
reproduction number of the COVID-19 virus propagation in the community is estimated
based on the on-set phase dataset using multi-compartmental epidemiological model.
Also, the maximum infection size, infection doubling time and the scope of the herd

immunity are also inferred for COVID-19 in a population.
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1 Introduction

The World Health Organization (WHO) upgraded the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) outbreak to a pandemic on March 11, 2020, and chose
COVID-19 (Coronavirus Disease 2019) as the suitable nomenclature for this virus-
mediated disease [1, 2]. The Chinese authority first reported the outbreak in December
2019, and since then it spread throughout the globe relentlessly claiming lives of
258,326 people and infected 3,727,301 more in as many as 212 countries as of May
2020 [1]. The COVID-19 outbreak dynamics showed a critical nature of progressing to a
large-scale transmission within a population from a rather mild local outbreak phase as
observed in the first reported infection in the seafood market in Wuhan, China, via a
community transmission phase where the contagion spread through interpersonal and
cluster transmission. The acceleration of the outbreak is further facilitated by
asymptomatic nature of contagion, i.e., an infected person may not show any symptoms
of the COVID-19 upto nearly 15 days while may still keep on infecting others in his or
her contact [2, 3, 4]. This renders the tracking and tracing of the infected individual a
very demanding task. The virus targets the lungs by entering the body typically through
mouth and nose as respiratory droplets [5, 6]. As a result, the transmissibility of the
virus is rather high among communities with close proximity and high contact rate. This
puts the countries with higher spatial population density at an extraordinary risk;
specially, the countries in South Asia are apparently more vulnerable to the contagion
due to a combination of factors ranging from population density, societal structure,
culture to constrained health-care facilities. Bangladesh is among the south Asian
countries with a significant population size drawing an utmost urgency to analyze and
understand the COVID-19 outbreak dynamics.

Globally ranked 8" for the population size, Bangladesh is home to approximately 161
million people with a staggering population density of nearly 2864 per square miles,
which is 7" highest in the world [7, 8]. Given this mammoth sized population packed in
this rather limited area makes Bangladesh uniquely vulnerable to large outbreak and

potential human catastrophe. Besides, the anticipated size of the infected population will
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soon overwhelm any healthcare services and would make it difficult for any
contingencies or interventions. The first infection broke with three cases on 7" March,
2020, in Bangladesh, and the Government imposed an emergency ‘lockdown’ from 26"
March, by declaring full-fledged closure of religious and educational institutions, offices,
businesses, shops, malls, and a ban on all social gatherings, making an exception to
some emergency services. As of 10" May, almost 62 days since the first reported
cases, the total number of infected people in Bangladesh, according to the official
report, stands at 20,995 with a total 314 dead as of 15" May, and the numbers are
mounting daily [9, 10]. It cannot be emphasized more, the importance and urgency to
analyze the infection dynamics in this spreading phase of COVID-19 in Bangladesh to
help in the decision of executing any exit plan to come out of the outbreak with minimal
loss of life and economic hardship.

In recent times, for very obvious necessity and urgency, a huge effort is undertaken to
understand the infection of COVID-19 pandemic based on the data in different spatial
contexts globally, which is reflected by a growing number of research in this area [11,
12, 13]. Infectious diseases are, typically, modeled as a diffusion process involving a
pathogen that disseminates among a given homogeneous or heterogeneous population
with a characteristic transmission strength governed by a system of coupled differential
equations with variables indicating different compartments the populations are
subdivided; e.g., the SIR epidemiological model assumes a homogeneous population to
undergo transitions from susceptible (S) to Infectious (I) to removed (R) states as a virus
sweeps through; various model variants to this are widely used for understanding the
outbreak and for exploring different scenarios to forecast future development of the
outbreak, essentially to understand the ‘flattening’ behavior of the infection in order to
impose and modulate emergency public measures like lockdown by gauging the
healthcare facilities available to the population [14, 15, 16, 17, 18]. Moreover, another
theoretical approach, to capture the inherent randomness of infection, is to recourse to
stochastic epidemiological approaches based on (generalized) logistic models, and

(sub) exponential models [19, 20, 21].
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In this study, a phenomenological approach, based on both stochastic and multi-
compartment models, have been adopted to model the real dataset of COVID-19
infection in Bangladesh. The study shows that the growth stage follows a very random
nature in Bangladesh with typical exponential growth feature. Motivated by the growth
trend in the real data, exponential model techniques along with logistic model have
been applied to extract trending parameters of the outbreak. Further regression analysis
has been conducted to extract high precision fitting of the data with the models, and the
fitting parameters have produced a very commendable accuracy in predicting future
infection values in the region. Comparative analysis have shown Richard’s model and
Gompertz model have performed remarkably better than any other parametric
approaches in fitting and predicting. The study, further, estimated the basic reproduction
number, R,, for infection in Bangladesh, using multi-compartmental model against the
real dataset. The estimation posits Ry,~3.0 for the infection which accounts for the
observed exponential growth trend in the country. The temporal variation of
reproduction is also noted. Further numerical analyses show the scope and rate of the
growth of the pandemic in this region is fortunately lower than earlier grave projections.
The doubling time of the infection, the maximum infection population size as well as the
herd immunity threshold for the current growth are also estimated and presented in this

study.

2 Materials and Methods

2.1 Phenomenological Growth Model

Phenomenological models are data-driven empirical approaches without any specific
basis on first principle or any physical mechanisms [20, 22]. These models provide
insight in the patterns in the observed data, and so are good candidates to use as the
initial probe of investigation, which eventually motivate reproducibility of empirical
observation using more rigorous mathematical models. As data suggests, Bangladesh

is still in the early stage of epidemic growth with exponential features, so an exponential
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model such as the following is a good special power-law based method to study its

initial growth dynamics.
1(t) = ae® (D

Here, I(t) implies the cumulative incidences over time t, and a and b are parameters
indicating the growth pattern — these can be estimated by fixing or fitting with data. The
general generating rate form of equation 1 is I'(t)~cI?(t), where I'(t) is the rate of the
cumulative incidence; parameter c indicates the growth rate, with p = 0, the growth rate
becomes constant resulting a linear cumulative infection growth. In semi-logarithmic
scale, the exponential growth pattern is visually evident with straight-line fit of the data
after consecutive generations in the growth pattern onto the equation log.I(t) = bt +
log.a, from equation 1, whereas, a concave-down shape of the curve would indicate a

sub-exponential growth pattern.

2.2 Logistic Model

The logistic model is a basic epidemiological model with empirical touch, which is
characterized by a sigmoid curve signifying an initial exponential growth until reaching
an inflection point where the growth gradually slows down to saturation, resulting in the
S-shaped profile of the dynamics [23]. It can roughly predict the development and
transmission behavior of the outbreak through logistic regression analysis. The rate of

cumulative infection, I1(t), according to logistic model, may be written as

k
'@ = 1O -10) @

Here k represents the exponential growth rate, and N the total population size with
tlim I(t) = N. The solution of (2), with the boundary condition I(t = 0) = I, indicating the

initial infection incidence, the equation (2) reduces to

10 = —x— 3)
e
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The model parameters in (3) are N, I, and k, and these can be ascertained with fitting

and regression analysis against the dataset.

2.3 Gompertz Model

Traditionally employed for population growth, The Gompertz model is characterized by
a sigmoid function describing growth as being slowest at the onset and at the end of a
given time period, and also the asymmetric nature of the resulting S-shaped curve is in
contrast to that of the logistic curve [24]. The slow onset behavior as described by the
model has rendered it very suitable for modeling the infection growth pattern in

Bangladesh. The mathematical form of the Gompertz model may be written as
I(t) = ae~Pe™ (4)

Here, the parameters are a, b and c, with a being an asymptote, gim I(t) =a =N, the

size of the population; b modulates the translation of the curve along the time axis; c is

the growth rate of the incidence.

2.4 Richards Model

The logistic and Gompertz models expound the growth dynamics in profile of a S-
shaped sigmoid curve with fixed growth rate due to the rigid model parameters.
Richards model, on the other hand, offers flexibility in the growth profile incorporating
additional modulating parameters in the form of exponent, resulting in a power-law
formulation of the original logistic model [25]. This renders the model very effective for
application in the current COVID-19 outbreak, as the infection incidences in the onset
period in Bangladesh is observed to be very random and irregular. The Richards

differential equation model for epidemiological application is by

I'(6) = rI(t) <1 _ (%) ) (5)
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Here, r represents the intrinsic growth rate of the epidemic, and s is the modulating
parameter offering more freedom in the bending of the S-shaped sigmoid curve. The
solution to equation (5) with boundary condition, I(t =0)=1,, and asymptote,
tli_)rg I(t) = N, leads to the following equation

I(t) = (6)

(1 + Re=srt)s

S
Here, R = —1+(Iﬂ) ; S and r are the fitting parameters. The model captures the
0

observed exponential growth behavior at the early phase of the outbreak, when I(t) «

N. Note the model with value s = 0 reduces to its traditional logistic model.

2.5 Compartmental Model

The counterparts to the phenomenological models are the mechanistic models
describing the diffusion process of the transmission of the epidemic within a population
as a spatial-temporal dynamical mechanism. Typically the population, in such models, is
sub-grouped as compartments consisting of individuals who are susceptible, infectious,
or removed, because of recovery or death, along the temporal progression of the
infection [26]. Each of these compartments are expressed by an ordinary differential
equation with coefficients indicating the virulence of the pathogen, physical contact
chances, symptomatic as well as asymptomatic interactions among population, and also
the probability of transference of individual among different sub-groups giving rise to
nonlinear coupled dynamical system features in the model. Thus, compartmental
models are useful for forecasting short-term as well as long-term development of the
epidemic, and for assessing various interventions, such as lockdown, to control the
speed and trajectory of the outbreak among a population. Compartmental models also
help by being a crucial theoretical tool to interrogate the available public health
resilience with respect to the predicted infection profile, and the interventions may be
modulated along the temporal phases to better respond to infection, and thus the
severity of the outbreak can be mitigated. One of the underlying assumptions of the
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model is the homogeneity of the population with infection prevalence. The high spatial
population density of this study case renders compartmental model especially suitable
to explore the onset epidemiological states of the population and follow the
development. The mechanistic model variant used in this study is the traditional SIR
(susceptible-infectious-removed) compartmental model [27, 28] governed by the

following system of differential equations

aS
E = —,351 (7)
a1
R , .
Frimid 9

Here, the three-compartment variables, denoted by (S, 1, R), evolves spatial-temporally
by the dynamic systems (7) — (9) preserving the constraint for the total host population,
N =5(t)+1(t) + R(t), and g and y are the non-negative parameters: g indicates the

transmission rate per infectious individual, while y is the recovery rate, so the infectious

period is exponentially distributed with the mean % At the onset of the endemic growth

phase, for a completely susceptible population indicated by S(0)~N, the equation (8)
can be solved analytically to incur the exponential form 1(t)~I1(0)e®~"t. The product of
the transmission rate and the recovery period gives the average number of secondary
incidences generated by an individual primary infection, which is referred to as the basic
reproduction number, R, (R- naught). In the late part of study, the reproduction number
is estimated from the initial infection growth data of Bangladesh. Basic reproduction
number can also be used to estimate another useful observable known as the herd
immunity threshold (HIT), indicating the fraction of the susceptible population required to
undergo immunization for the infection to die away statistically either by vaccine
application or natural antibody generation. This value is also calculated for the case

nation in later part.
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2.6. Model Performance Metric

The data obtained for the study is in the form of a time series infection incidence with a
temporal resolution of 1 day. The observations are collected in a longitudinal vector (I,
I2, I3, ... .. .., I, ... ..), where t is the outbreak generation or simply time and Ii's are the
related cumulative infection values. In the numerical computation the successive
incidences are updated as I, = I; + Al,At, where Al, is the increment rate in infection,
and At is the time step. Likewise, the models, after fitting with the dataset and
calibration of the respective fitting parameters, yield a vector comprised of predicted
cumulative infection incidences, may be denoted as I;. Following the regression
analysis of the model against the data, the sum of squares of the residual values,
comprised of the difference between the observed and predicted values, is minimized to
measure the goodness-fit of the model. As the performance metric, R? value [29] or the

regression coefficient is evaluated based on the following mathematical form

2(1, - T,)°
Z(It - 1_)2

2= (10)

Here, I is the average of the actual cumulative confirmed incidences. It is obvious from
the relation that a near unity value for the metric would imply an accurate prediction and
so higher performance of the evaluating model. Also, the 95% confidence interval (Cl) is
estimated based on the t-values for the evaluation of the model fit with the reported data

as well as to ascertain the model projection performances.

2.7 Data and Tools

Data exploited for analyses and predictions were extracted from the Institute of
Epidemiology, Disease Control and Research (IEDCR) [9], a government research
institute, and the Directorate General of Health Services (DGHS) [10], an agency of the
government, both under the Ministry of Health and Family Welfare, Bangladesh. The
World Health Organization’s situation reports on COVID-19 [30, 31] were also followed

as the secondary source, and this was used as a cross-check for any irregularities. The
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primary fields of the data as resourced from IEDCR and DGHS, containing the daily
infection number along with total test counts conducted, daily mortality, and recovery

numbers.

The data configuration and management were done in MS Excel 2016, and the model
simulation and regression analyses were conducted in Python 3 [32, 33] on Windows 10
Pro. The hardware for the study was Intel(R) Core(TM) i3 processor with clock-rate 2.70
GHz.

3 Results and Discussion

3.1 Empirical Growth Trend
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Figure 1: The COVID-19 cumulative infection incidences (back dots) of Bangladesh
show exponential growth at the onset period and fitted to a phenomenological
exponential function (equationl) with parameters: are a = 3.0, b = 0.13214. The semi-
logarithmic plot, shown in the inset, posits an exponential growth feature of the data
closely following linear trend (red).

For analysis, we use reported incidences data from 8" March to 15" May from the
source as mentioned earlier. The onset transmission phase for a pandemic typically
trends both sub-exponential and exponential pattern [11, 18, 22]. The exponential

growth may alter to sub-exponential behavior over time indicating shift in the
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transmission strength and development in a population. COVID-19 virus transmission in
Bangladesh is observed to follow a sharp exponential feature. The main panel in Figure
1 shows both the data and exponential fitted graph, and the inset hosts the semi-
logarithmic recasting of the cumulative infection resulting a straight line fit with R?~0.88
estimated from equation 10. The observed deviation about the fitted curves and straight
line is due to the sheer random nature of the dataset, though in the long progression to
the outbreak the data appear to follow the generic exponential trend. According to the
reported data, the COVID-19 outbreak in Bangladesh set off on 7" March with three
incidences, and not until mid-April, the incidences did not really kick off. The reason
behind the low number of incidences is due to the insufficient number of tests
conducted in the country. However, the test number afterwards soared substantially on
a daily basis, shown in Figure 2, along with the coronavirus positive incidences. As of
the record on the 15" May, the cumulative figure stands at 20,065 individuals with
positive incidence out of a total of 166,994 tests conducted, which measures to about
8.3% of coronavirus positive cases. The cumulative growth factor of the incidence in
population, determined by the ratio of I, to I,_; where t is transmission generation
period expressed in days, is computed to be approximately 1.05 as of reported data of
15" May.
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Figure 2: Comparative illustration of the daily positive COVID-19 incidences with
respect to corresponding daily growing number of tests conducted throughout the
country.
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3.2 Fitting and Analysis: Logistic Model
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Figure 3: The realistic cumulative infection data has been fitted to the logistic model
(equation 3) in a variety of variations involving carrying capacities, N: (a) 30K, (b) 40K,
(c) 50K, (d) 75K, (e) 100K, and (f) 120K. The inflection point is observed to move
rightward with the increasing carrying capacity, N, of the infection in the population
implying increasingly longer endemic period, until infection dynamics see a slowing
down. The corresponding regression coefficient, R?, values after equation 10 represents
the degree of goodness-of-fit.
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One characteristic feature of the logistic model described by equation 3 is the inflection
point, positioned in the middle of the S-shaped solution profile, which indicates a
functional alternation of the dynamics — following for the rising part, the portion of the
curve preceding the inflection point indicates an accelerating exponential growth while
the behavior past the inflection is of slowing to a saturation level, in population
dynamics, is the carrying capacity, i.e., the size of the target population for the infection.
Figure 3 panels demonstrate the fitting outcome of the reported data and the
corresponding S-shaped growth pattern of the infection, for varying carrying capacities.
The fits indicate the data accord with the accelerating growth part of the model
indicating the early stage of the infection. The corresponding goodness-of-fit
measurements, in Figure 3, indicate that it is possible to fit the data very efficiently in
variety of configurations of the model parameters. Such degeneracy in the fitting
implies that the logistic model is a good candidate to explore the onset transmission
dynamics of a pandemic in contrast to its ability for the long-term projection of the
transmission development. We note from the simulation results that Bangladesh is still
to catch on with the inflection, which would result in the declining incidence rate. Figure
4 is the rate model generated by the solution of equation 2 with carrying capacity for
100K and other model parameters are found from fitting as 1(0) = 3 and growth efficient
parameter k = 0.139065. The bars are the corresponding daily infection incidence
values as per the recorded data. The inset of the figure indicates that the inflection point
moves farther with larger target population, implying that it will take longer to reach to a
slowing down phase if more people are put into risk of infection. Also, the simulation
result from the dynamical form of the logistic model (equation 2) offers an outlook to the
future development of the pandemic by predicting the duration of the outbreak, which is
approximately 140 days, given the fitted growth pattern and carrying capacity.

13
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Figure 4: Overlay of the daily infection incidence (black bars) on the logistic derivative
curve generated by equation 2 (red profile) for N = 100K and the fitted parameters of
Figure 3e. The maximum of the derivative profile, also known as the inflection point,
indicates the daily maximum the outbreak project and at the corresponding day since
the first report of the incidence; here it occurs approximately at day 75 of the pandemic.
The inset illustrates the shifting of the inflection points with the increasing maximum
infection size or the outbreak carrying capacity. The red lines joining the observables
(black dots) are artificially added to guide the eyes.

3.3 Fitting and Analysis: Gompertz Model
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Figure 5: The real dataset fits the Gompertz model (equation 4) with high fidelity. The
inset is the close up of the onset region reflecting the high correlation, R*~0.99
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(equation 10) between the data (black dots) and the model fit; the parameters are a =
100000, b = 13.96191598, and ¢ = 0.03171862.

The Gompertz model, borne out of population dynamical family of models, offers more
flexibility in the S-shape with modulating parameters a, b, and ¢ (equation 4), endowing
more degrees of freedom in the fitting and simulation. Figure 5 shows the outcome of
the model fit with the Bangladesh COVID-19 virus transmission data shown in black
dots. The goodness-of-fit indicator, R?, returns an almost perfect score of the fit. Unlike
the logistic model, Gompertz model is not dependent on the carrying capacity and also
the asymmetric profile of quick rise and longer period to slow down past the inflection is

akin to what the observed pandemic transmission dynamics suggests.

3.4 Fitting and Analysis: Richards Model
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Figure 6: The Richards model reproduces the cumulative infection at the onset with
respect to the read data (black dots) with an astonishing regression coefficient value
0.99 (after equation 10). The model parameters: N = 100000, r = 0.29493425, and s =
0.12345197. The large panel shows the solution to equation 5 yielding the characteristic
S-shaped profile (in red) governed by equation 6. The inset zooms in the realistic data
overlay at the onset to visualize the fit clearly.
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We observe a very similar high performance of the Richards model when trained by
transmission incidence data of Bangladesh. Richards model, which is a generalized
formulation of the logistic model (equation 2 and 3), with a distinguishing exponent s,
which enables the model to be more flexible, like Gompertz model (equation 4), and
allows reflecting the realistic data with trained model parameters. Our simulation
estimates the value of the exponent parameter, s = 0.12345, for the early growth phase
of the pandemic in Bangladesh. Also, like its logistic counterpart, Richards model

incorporates the size of the host population.

3.5 Compartmental Model Fitting
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Figure 7: (a) The cumulative infection incidences I(t), governed by SIR model
(equation 8), are fitted to the observation for an entire susceptible population of 161
million, the model parameters thus obtained are the transmission rate, § = 0.2057, and

the infection period %: 14 days. The corresponding basic reproduction number is
estimated as 2.88. The model offers a rather conservative projection to the future
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development of the infection by indicating a die-down phase after 250 days from
inception on March 7. The panel (b) is the blow-out of the onset with overlay of data
(dotted) and the model fit (line), the regression coefficient for the fit yields R2~0.89. The
panel (c) illustrates in the cartoon how the secondary infection propagate (arrows) for a
case with R, = 3.0, where there are three emergent secondary incidences (circles) from
single primary infected individual in a homogenous population in successive generation
of the infection. The panel (d) demonstrates the temporal progression of the estimated
R, of Bangladesh; the estimated values are shown in the dynamic spiral, and evidently
the current estimate has decreased to 2.8 from a little over 3.0 at the very onset of the
infection. Panel (e) portrays the concept of Herd immunity Index (HIT), estimated as 2/3
for a case of R, = 3.0; the cartoon illustrates that the infection eventually dies out if two-
third of the population grow an immunity to COVID-19, so the contagious transmission
(solid arrow) stay within a small portion of the population and fail to affect most others
(broken arrows).

Compartmental models are traditionally applied to understand and analyze various
aspects ranging from infection pattern, recovery, and latency to effectiveness of
mitigating intervention measures and future course of propagation of viral diffusion in a
host population. In our study, we use classic formalism of mechanically intertwined
susceptible, infectious and removed compartments to model the infection progression
based on the incidence data in Bangladesh. High population density of Bangladesh
satisfies the homogeneity condition underlying the formulation of the SIR model
(equations 7-9). Figure 7(a) and 7(b) show the result of fitting the reported infection
incidences in Bangladesh with the model both visually and numerically. In the
simulation, we consider the entire population as the susceptible host. In the onset
phase, the underlying condition, S(0)~N, leads to the prevalent exponential growth
pattern: I(t)~I(0)e®~Yt, According to data-trained estimation, the current transmission
rate (B) of COVID-19 virus in Bangladesh is 0.21, and the infection period is set to 14
days as per the global observation [3, 4]. Though the simulation is tailored to capture
the early-growth dynamics of the transmission, the simulations offer tentative insight into
the future projection of the pandemic, given the current rates subsist. Figure 7(a) implies
a 250-day duration window for the pandemic in the country, though it is observed that
the parameters may change due applied interventions and also due to the intrinsic

changes in the variables. Figure 8 depicts the degeneracy in the SIR model, where the
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reported data may train the same model and fit quite efficiently in every scenario with

different host population sizes yielding different parameter values. So, depending on the

size of the target population hosting the infection, the initial growth trend may lead to
different projected outcomes.
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Figure 8: This panel cluster illustrates the degeneracy involving modeling the early
exponential phase of the infection, where the same data may be fitted to a high degree
of accuracy to a multiple scenario governed by the SIR-Model across different points in
parameter space. Across the panels (a)—(d) the vulnerable population size has been
varied from 50K, 75K, 100K and 125K, respectively. Notably in each case the fit of the
data (black dots) to the model generation (red profile) score high on evaluation scale
(equation 10) and also yield varying degree of secondary infection proliferation (R,). The
insets are the close-ups of the corresponding data regions. This observation implies that

the model projection is constrained to short temporal scale.
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3.5.1 Basic Reproduction Number (Ry)

Compartmental model offers a quantitative way to compute the basic reproduction
number or R, (R-naught) of the prevalent COVID-10 pandemic in a host population.
Basic reproduction number is an important gauge to ascertain the virulence of an
infection in a population and a risk assessment tool; it is expressed as the average
secondary infection size from the one primary infected individual. Figure 7(c) illustrates
the growing propagation envelope for a case R, = 3.0, where one infected individual
infect three others, and each one of them infects three more and so on in the
successive generation of infection. This leads to the ubiquitous exponential growth
observed during an outbreak. In the early growth phase, when initial number of infected
individual (1(0)) is far small than the total susceptible population leading to an
approximation S(0)~N, the basic reproduction number can be computed simply by
multiplying the transmission rate (8) with the recovery period (%). From simulation
(Figure 7(a, b)), we compute the basic reproduction number for Bangladesh is 2.88,
which is well within the reported range of 1.4 to 6.5 for COVID-19 globally [34, 35]. We
also track the change of R, with time in the country, the spiral in Figure 7(d) indicates
the value is shifting slowly towards desired unit value, starting from over 3.0 initially,
which would imply a cease to the exponential growth phase to constant propagation,
and a value less than 1 would mean an eventual dying out of the pandemic. In the
course development of the pandemic, as the number of infected individual increases
and likewise the susceptible individual count declines, effective reproduction number,

R., computed by R, = %QRO, is employed.

3.5.2 Herd Immunity Threshold

Herd immunity threshold (HIT) represents the fraction of host population that needs to
undergo immunization against the virus to potentially neutralize the infection [36, 37,

38]. The fraction may be calculated in terms of basic reproduction number given by 1 —

Ri. Figure 7(e) illustrates the functional concept of HIT for a case with R, = 3.0; the
0

infection eventually eradicated as % of the population is immunized, i.e., the infection
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fails to affect 2 individuals out of 3 incidences per infection generation, resulting in the
decline of the pandemic. According to estimation from current reported data as of mid-
May at the time of writing, Bangladesh, to reach immunity, 65.3% of the population must
be vaccinated or treated with antiviral drugs to eradicate the current pandemic in the
country. It should be noted that the HIT value would change with temporal progression

of infection due to its dependency on varying basic reproduction number.

3.5.3 Doubling Period

Doubling period is a useful long-term metric to probe the temporal developmental
pattern of a pandemic. Doubling period of a pandemic, as the name suggests, is the
time period taken for the infection to get double with respect to the baseline,
mathematically, it can be computed as: for the early-growth, i.e., S(0)~N, then doubling
the infection would imply that I(t;) = I(0)ef~Vta = 21(0) following from equation 8,

where t; indicates the doubling period of the infection; solving this results the

mathematical equation to compute doubling time as t; = ([1;1 i) = y(;nzl). For COVID-19
— o

in Bangladesh, we compute the latest doubling period for the study period to be 5.16

days, which is comparable to the early stage doubling periods in global cases [39].

3.5.4 The Maximum Size of the Infection

In this section, we estimate the projected maximum size of infection, I,,,,, in the host

population based on the data and trained parameters from model fitting. At the

maximum infection, %= 0, in the equation 8, which gives S =%=Ri, also dividing
0

equation 8 and 9 yields % = %, which may be recast as I(t) + S(t) —%ln(S(t)) =
1(0) + S(0) —ﬁln(S(O)). Now, considering the entire host population as susceptible,
S(0)~N, these equations may be manipulated to yield an expression for maximum
infection: Imﬁ =1- Rio(l +In(R,)). We use this expression to calculate the maximum

infection size for Bangladesh, and we report, based on the calculated basic
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reproduction number estimated earlier, 28.5% of the total population or 46 million
people are at the risk of the infection if the current rate of transmission propagated

unabated.

3.6 Comparative Analysis of Model Performance

In this study, we use both phenomenological and mechanical models to train and test
for the on-going COVID-19 infection trend in Bangladesh. In our simulation, we find the
Gompertz and Richards models perform the best in capturing the early growth trend as
observed in the reported data. Table 1 summarizes the key comparative features of the
models. And Figure 9 depicts a closer look at the fitting and projection capabilities of the
best performing Gompertz and Richards models found in this study. The simulations for
the two models have been projected to the 90" day beyond modeled 62 days’
observation period. The 95% confidence interval shown by the upper and lower bounds
in the results imply the accuracy of the models both in the fitting area and the projection,

along the future generation of infection in the host population.

Table 1. Performance summary of the early-growth models

Model Type Models Governing Growth Carrying Goodness
Profile Capacity of Fit (R?)
(N)
Simple I(t) = ae®® - 0.88
Exponential
Logistic N 100K 0.92
’ 10 =——§=7
: 1+ (_0) ekt
Phenomenological Iy
Gompertz I(t) = ae~b¢™™ - 0.99
Richards N 100K 0.99
t=——

(1 + Re=s70)s

Mechanical Compartmental I(t)~1(0)e Bt 161 Million  0.89
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Figure 9: Richards (a) and Gompertz (b) model Performance Panels (a) and (b) are the
visual demonstration of the model fit accuracy and projection performance of Richards
and Gompertz models, respectively. The black dots are the real data seen closely
superimposed on the red line generated by the calibrated Richard (equation 5 with
fitted parameters as in Figure 6) and Gompertz (equation 4 with the model parameters
as in Figure 5) models. The bounding contour around the red model generation
indicates the 95% confidence interval (Cl) of the future projection by the model down
the infection progression. The narrower Cl along the dataset on the uplifting stage
indicates the high degree accuracy in the model fitting, and also in the projection until
90-day period shown in the computation, holds to a high accuracy.

4 Conclusions and Outlook

Bangladesh continues to see an unabated exponential growth of the COVID-19
infection, even during the preparation of the paper, after 60 days since the reported
case in the country, though the suppressive intervention measures are in place. So,
dynamic epidemiological modeling approach to understand the underlying nature and
peculiarities of the infection diffusion dynamics in the country is imperative to ascertain
and to interrogate the effectiveness and defectiveness of interventions [40, 41]. Our
study explores the available real data in this early phase through the pandemic, despite
the inevitable constraints involving the size and scope of the data, and attempts to
depict a scale up assessment of the pandemic throughout the country, employing both
phenomenological and mechanistic models. The spatial-temporal dynamics explored in

this study can be generalized beyond the premises considered, and may be used to
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understand the pandemic in other countries, especially those sharing similar

demography. We may earmark few key conclusions of the study as following:

1. The pandemic growth in the country paves a strong exponential growth pattern.

2. The study finds population dynamical models based on the power-law featured
growth, such as Gompertz model and the generalized logistic model counterpart,
Richards model, perform very well in the onset phase of the pandemic, and are
very successful in capturing the current infection pattern as well as projecting the
future development of the pandemic in short temporal range.

3. The study posits the basic reproduction number, R,, of current the COVID-19
outbreak in Bangladesh stands at 2.88, at the time of the write up, and the study
shows the deceleration trend in the growth reflected in the observed decrease in
the R, over time.

4. The Herd Immunity Threshold (HIT) estimated in the study asserts that 65.3% of
the population needs to achieve immunity in order to get out of the pandemic.

5. The study finds that the mechanical model, based on the current available data,
estimates the doubling period for the infection in Bangladesh is 5.16 days.

6. The study estimates the upper bound of the total infection size in Bangladesh;
according to the estimation, the current growth trend projects about 45.9 million

people may be infected by coronavirus.

The epidemiological modeling performance study conducted here offers a crucial insight
into the dynamical features and numerical measures of the outbreak size in
Bangladesh, which can be used as guiding tools to assess the responses and outcome
by continuous monitoring of the situation. The basic reproduction number is a crucial
indicator of any pandemic, and it must be computed and monitored on a regular basis to
undertake and assess the suppressive and mitigating phases during the pandemic,
more so at the onset phase, as the response interventions to safe-guard both life and
economy of the country. The theoretical modeling and simulation as pursued in this
study is an important step towards development of automation-based tools and machine
learning techniques (e.qg., [42]) to further the understanding of dynamical aspects of the

outbreak and gauge various response protocols.
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