
Storage, Indexing, Query Processing, and Benchmarking
in Centralized and Distributed RDF Engines: A Survey

Waqas Ali
Department of Computer
Science and Engineering,

School of Electronic,
Information and Electrical

Engineering (SEIEE),
Shanghai Jiao Tong University,

Shanghai, China
waqasali@sjtu.edu.cn

Muhammad Saleem
Agile Knowledge and

Semantic Web (AKWS),
University of Leipzig, Leipzig,

Germany
saleem@informatik.uni-

leipzig.de

Bin Yao
Department of Computer
Science and Engineering,

School of Electronic,
Information and Electrical

Engineering (SEIEE),
Shanghai Jiao Tong University,

Shanghai, China
yaobin@cs.sjtu.edu.cn

Aidan Hogan
IMFD; Department of

Computer Science (DCC),
Universidad de Chile,

Santiago, Chile
ahogan@dcc.uchile.cl

Axel-Cyrille Ngonga Ngomo
University of Paderborn,

Paderborn, Germany
axel.ngonga@upb.de

ABSTRACT
The recent advancements of the Semantic Web and Linked
Data have changed the working of the traditional web. There
is significant adoption of the Resource Description Framework
(RDF) format for saving of web-based data. This massive
adoption has paved the way for the development of various
centralized and distributed RDF processing engines. These
engines employ various mechanisms to implement critical
components of the query processing engines such as data
storage, indexing, language support, and query execution.
All these components govern how queries are executed and
can have a substantial effect on the query runtime. For ex-
ample, the storage of RDF data in various ways significantly
affects the data storage space required and the query runtime
performance. The type of indexing approach used in RDF
engines is critical for fast data lookup. The type of the un-
derlying querying language (e.g., SPARQL or SQL) used for
query execution is a crucial optimization component of the
RDF storage solutions. Finally, query execution involving
different join orders significantly affects the query response
time. This paper provides a comprehensive review of cen-
tralized and distributed RDF engines in terms of storage,
indexing, language support, and query execution.

PVLDB Reference Format:
. . PVLDB , (xxx): xxxx-yyyy, .
DOI:

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. , No. xxx
ISSN 2150-8097.
DOI:

Keywords: Storage, Indexing, Language, Query Plan-
ning, SPARQL Translation, Centralized RDF Engines, Dis-
tributed RDF Engines, SPARQL Benchmarks, Survey.

1. INTRODUCTION
Over recent years, the simple, decentralized, and linked

architecture of Resource Description Framework (RDF) data
has greatly attracted different data providers who store their
data in the RDF format. This increase is evident in nearly ev-
ery domain. For example, currently, there are approximately
150 billion triples available from 9960 datasets1. Some huge
RDF datasets such as UniProt2, PubChemRDF3, Bio2RDF4

and DBpedia5 have billions of triples. The massive adoption
of the RDF format requires effective solutions for storing and
querying this massive amount of data. This motivation has
paved the way the development of centralized and distributed
RDF engines for storage and query processing.
RDF engines can be divided into two major categories: (1)

centralized RDF engines that store the given RDF data as a
single node and (2) distributed RDF engines that distribute
the given RDF data among multiple cluster nodes. The com-
plex and varying nature of Big RDF datasets has rendered
centralized engines inefficient to meet the growing demand of
complex SPARQL queries w.r.t. storage, computing capacity
and processing [126, 81, 50, 3]. To tackle this issue, various
kinds of distributed RDF engines were proposed [40, 33, 49,
85, 50, 103, 104]. These distributed systems run on a set of
cluster hardware containing several machines with dedicated
memory and storage.

1http://lodstats.aksw.org/.
2http://www.uniprot.org/.
3http://pubchem.ncbi.nlm.nih.gov/rdf/.
4http://bio2rdf.org/.
5http://dbpedia.org/.

1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202005.0360.v3
http://creativecommons.org/licenses/by/4.0/

Efficient data storage, indexing, language support, and
optimized query plan generation are key components of RDF
engines:

� Data Storage. Data storage is an integral component
of every RDF engine. Data storage is dependent on
factors like the format of storage, size of the storage
and inference supported by the storage format [81]. A
recent evaluation [4] shows that the storage of RDF
data in different RDF graph partitioning techniques
has a vital effect on the query runtime.

� Indexing. Various indexes are used in RDF engines
for fast data lookup and query execution. The more
indexes can generally lead to better query runtime per-
formance. However, maintaining these indexes can be
costly in terms of space consumption and keeping them
updated to reflect the variations in the underlying RDF
datasets. An outdated index can lead to incomplete
results.

� Query Language. Various RDF engines store data
in different formats, thus support various querying lan-
guages such as SQL [37], PigLatin [79] etc. Since
SPARQL is the standard query language for RDF
datasets, many of the RDF engines require SPARQL
translation (e.g., SPARQL to SQL) for query execution.
Such language support can have a significant impact on
query runtimes. This is because the optimization tech-
niques used in these querying language can be different
from each other.

� Query Execution. For a given input SPARQL query,
RDF engines generate the optimized query plan that
subsequently guides the query execution. Choosing the
best join execution order and the selection of different
join types (e.g., hash join, bind join, nested loop join,
etc.) is vital for fast query execution.

Various studies categorize, compare, and evaluate different
RDF engines. For example, the query runtime evaluation of
different RDF engines are shown in [81, 3, 96, 21, 6]. Studies
like [31, 70] are focused towards the data storage mechanisms
in RDF engines. Svoboda et al. [114] classify various indexing
approaches used for linked data. The usage of relational
data models for RDF data is presented in [91]. A survey
of the RDF on the cloud is presented in [58]. A high-level
illustration of the different centralized and distributed RDF
engines and linked data query techniques are presented in
[80]. Finally, empirical performance evaluation and a broader
overview of the distributed RDF engines are presented in [3].
According to our analysis, there is no detailed study that
provides a comprehensive overview of the techniques used to
implement the different components of the centralized and
distributed RDF engines.
Motivated by the lack of a comprehensive overview of the

components-wise techniques used in existing RDF engines.
We present a detailed overview of the techniques used in
a total of 77 (the largest to the best of our knowledge)
centralized and distributed RDF engines. Specifically, we
classify these triples stores into different categories w.r.t
storage, indexing, language and query planning. We provide
simple running examples to understand the different types.
We hope this survey will help readers to get a crisp idea
of the different techniques used RDF engines development.

Furthermore, we hope that this study will help users to
choose the appropriate triple store for the given use-case.
The remaining of the paper is divided into different sec-

tions. Section 2 provides vital information on RDF, RDF
engines and SPARQL. The section 3 is about related work.
Section 4, 5, 6 and 7 reviews the storage, indexing, query
language and query execution process. Section 8 explains
different graph partitioning techniques. Section 9 explains
centralized and distributed RDF engines w.r.t storage, index-
ing, query language and query execution mechanism. Section
10 discusses different SPARQL benchmarks. Section 11 illus-
trates research problems and future directions, and section
12 gives the conclusion.

2. BASIC CONCEPTS AND DEFINITIONS
This section contains a brief explanation of RDF and

SPARQL. The main purpose of explanation is to establish a
basic understanding of the terminologies used in the paper.
For complete details, readers are encouraged to look at origi-
nal W3C sources of RDF6 and SPARQL7. This discussion is
adapted from [80, 98, 50, 94].

2.1 RDF
Before going to explain the RDF model, we first define the

elements that constitute an RDF dataset:

� IRI: The International Resource Identifier (IRI) is a
general form of URIs (Uniform Resource Identifiers)
that allowing non-ASCII characters. The IRI globally
identifies a resource on the web. The IRIs used one
dataset can be reused in other datasets to represent
the same resource.

� Literal: is of string value which is not an IRI.

� Blank node: refers to anonymous resources not hav-
ing a name; thus, such resources are not assigned to a
global IRI. The blank nodes are used as local unique
identifiers, within a specific RDF dataset.

The RDF is a data model proposed by the W3C for rep-
resenting information about Web resources. RDF models
each "fact” as a set of triples, where a triple consists of three
parts:

� Subject. The resource or entity upon which an asser-
tion is made. For subject, IRI (International Resource
Identifier) and blank nodes are allowed to be used.

� Predicate. A relation used to link resources to an-
other. For this, only URIs can be used

� Object. Object can be the attribute value or an-
other resource. Objects can be URIs, blank nodes, and
strings.

Thus the RDF triple represents some kind of relationship
(shown by the predicate) between the subject and object.
An RDF dataset is the set of triples and if formally defined
as follows.
6RDF Primer: http://www.w3.org/TR/rdf-primer/.
7SPARQL Specification: https://www.w3.org/TR/
sparql11-query/

2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

http://www.w3.org/TR/rdf-primer/.
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.20944/preprints202005.0360.v3

Table 1: Sample RDF dataset with Prefixes: resource =
http://uni.org/resource, schema = http://uni.org/schema
rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#. Col-
ors are used to easily understand the data storage techniques
discussed in section 4.

Subject Predicate Object
resource:Bob rdf:type Person
resource:Bob schema:interestedIn resource:SemWeb
resource:Bob schema:interestedIn resource:DB
resource:Bob schema:belongsTo “USA"
resource:Alice rdf:type Person
resource:Alice schema:interestedIn resource:SemWeb
resource:SemWeb rdf:type Course
resource:SemWeb schema:fieldOf “Computer Science"
resource:DB rdf:type Course
resource:DB schema:fieldOf “Computer Science"

Definition 1 (RDF Triple, RDF Dataset). I, B,
and L (IRIs, Blank nodes, and Literals, respectively) are
considered as disjoint infinite sets. Then an instance <
s, p, o >2 (I[B)�I�(I[B[L) is called RDF triple, where
s is the subject, p is the predicate and o is an object. An
RDF dataset D is a set of RDF triples D = f< s1, p1, o1 >
, . . . , < sn, pn, on >g.

An example RDF dataset, repenting information about a
university student is shown in Table 1.
RDF models data in the form of a directed labelled graph

where resources are represented as nodes and the relationship
between resources are represented as a link between two
nodes. For a triple < s, p, o >, a node is created for subject
s, another node is created for object o, and a directed link
with labeled-predicate p is crated from s to o.

An RDF graph can be defined as below [80].

Definition 2 (RDF Graph). An RDF graph is a tu-
ple of six things G = hV , LV ,fV , E, LE, fE i, where,

1. V = Vc[Ve[Vl is a collection of vertices that correspond
to all subjects and objects in RDF data, where Vc, Ve,
and Vl are collections of class vertices, entity vertices,
and literal vertices, respectively

2. LV is a collection of vertex labels.

3. A vertex labelling function fV : V ! LV is a bijective
function that assigns to each vertex a label. The label
of a vertex u 2 Vl is its literal value, and the label of a
vertex u 2 Vc [Ve is its corresponding URI.

4. E =
{

»u1, u2

}
is a collection of directed edges that

connect the corresponding subjects and objects.

5. LE is a collection of edge labels.

6. An edge labelling function fE : E ! LE is a bijective
function that assigns to each edge a label. The label of
an edge e 2 E is its corresponding property.

Figure 1 shows the corresponding RDF graph of the sample
RDF dataset given in Table 1.

Bob

SemWeb

Person DB

“USA”

Alice Course

“Computer Science”

type

type

interestedIn

type

interestedIn

type

fieldOf

fieldOf

interestedIn

belongsTo

Figure 1. Pictorial representation of graph

2.2 SPARQL
SPARQL [47] is the standard querying language to query

RDF data. The basic building units of the SPARQL queries
are triple pattern and Basic Graph Pattern (BGP). A triple
pattern is like an RDF triple except that each of the subjects,
predicate and object may be a variable. A set of triple
patterns constitute a BGP8 and is formally defined as follows.

Definition 3. (Triple Pattern and Basic Graph Pattern):
Assume there are infinite and pairwise disjoint sets I (set of
IRIs), B (set of blank nodes), L (set of literals) and V (set
of variables). Then, a tuple from (I [V [B)� (I [V)� (I [
L [V [B) is a triple pattern. A sequence of triple patterns
with optional filters is considered a single BGP. As per the
specification of BGPs, any other graph pattern (e.g., UNION,
MINUS, etc.) terminates a basic graph pattern.

Any BGP of a given SPARQL query can be represented as
directed hypergraph (DH) [98], a general form of a directed
graph in which a hyperedge can be used to join any number of
vertices. This representation shows that every hyperedge can
capture a triple pattern. This representation of hyperedge
makes the subject of the triple to becomes the source vertex,
and target vertices are shown as the predicate and object
of the triple pattern. The hypergraph represented of the
SPARQL query is shown in Figure 2. Unlike a common
SPARQL representation where the subject and object of
the triple pattern are connected by a predicate edge, the
hypergraph-based representation contains nodes for all three
components (i.e., subject, predicate, object) of the triple
patterns. This representation allows to a capture a joins
with predicates of triple patterns involved. The SPARQL
representation of the hyperedge is defined as follows:

Definition 4 (Directed hypergraph of a BGP).
The basic graph pattern (BGP) B in hyperedge representa-
tion is shown as a directed hypergraph HG = (V,E) whose
vertices are all the components of all triple patterns in B,
i.e., V =

⋃
(s,p,o)∈Bfs, p, og, and that contains a hyperedge

(S, T) 2 E for every triple pattern (s, p, o) 2 B such that
S = fsg and T = (p, o).

SPARQL query represented as DH is represented as a
UNION of query BGPs.
Following features of SPARQL queries are defined on the

basis of DH representation of SPARQL queries:
8BGP https://www.w3.org/TR/sparql11-query/
#BasicGraphPatterns

3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://www.w3.org/TR/sparql11-query/#BasicGraphPatterns
https://www.w3.org/TR/sparql11-query/#BasicGraphPatterns
https://doi.org/10.20944/preprints202005.0360.v3

SELECT DISTINCT * WHERE
{

? student : interestedIn ? course .
? student : belongsTo ? country .
? student ?p ? sType .
? course ?p ? cType .
? course : fieldOf ? field .
? field : label ? fLabel .

}

student sType

country

field

hyperedge

interestedIn fieldOf

labelfLabel

p

cType

course

belongsTo

Star SinkPath Hybrid

tTail of hyperedge predicate to object edge

SimpleVertex Types

Figure 2: Directed hypergraph representation of a SPARQL
query. Prefixes are ignored for simplicity.

Definition 5 (Join Vertex). For every vertex v 2 V
in such a hypergraph we write Ein(v) and Eout(v) to denote
the set of incoming and outgoing edges, respectively; i.e.,
Ein(v) = f(S, T)2E j v2Tg and Eout(v) = f(S, T)2E j v2
Sg. If jEin(v)j+ jEout(v)j > 1, we call v a join vertex.

Definition 6 (Join Vertex Types). A vertex v 2 V
can be of type star, path, hybrid, or sink if this vertex
participates in at least one join. A star vertex has more than
one outgoing edge and no incoming edges. A path vertex has
exactly one incoming and one outgoing edge. A hybrid vertex
has either more than one incoming and at least one outgoing
edge or more than one outgoing and at least one incoming
edge. A sink vertex has more than one incoming edge and
no outgoing edge. A vertex that does not participate in joins
is simple.

Definition 7 (Join Vertex Degree). Based on the
DH representation of the queries the join vertex degree of a
vertex v is JVD(v) = jEin(v)j+ jEout (v)j, where Ein(v) resp.
Eout(v) is the set of incoming resp. outgoing edges of v.

3. LITERATURE REVIEW
The focus of this section to present studies that discussed

the partitioning and storage, indexing, and query processing
techniques used in RDF engines.
For example, Sakr et al. [91] presented one of the first

surveys on the usage of the relational model for RDF data.
This survey is all about the use of the relational models for
RDF data storage and query processing. A broader overview
of the data storage and query processing techniques in cen-
tralized and distributed RDF engines is presented in [80]. A
survey of the storage of RDF data in relational and NoSQL
database stores is presented in [70]. Pan et al. [81] discussed
the storage and query processing techniques in centralized
and distributed RDF engines. They also compared various
benchmarks datasets. A high-level illustration of both stor-
age and query processing in centralized and distributed RDF
engines is presented in Sakr et al. [92]. They also discussed
various SPARQL benchmarks.

Svoboda et al. [114] discuss different indexing schemes used
in centralized and distributed RDF engines. In particular,
three types of indexing are discussed, i.e., local, distributed
and global. Faye et al. [31] also discussed the storage and
indexing techniques in centralized RDF engines. They di-
vided these techniques into non-native and native storage
solutions. The non-native solutions make use of the Database
Management Systems (DBMS) or other related systems to
store RDF data permanently. On the other hand, the native
storage solutions store the data close to the RDF model.
Thus, such storage solutions avoid the use of DBMS. Rather,
the data can be directly stored in different RDF syntaxes9

such as N-Triples, RDFa, JSON-LD, TriG. A classification
of RDF engines is presented in [126]. This study focuses on
storage, indexing, query processing mechanisms among RDF
engines.
Kaoudi et al. [58] present a survey of RDF systems de-

signed specifically for a cloud-based environment. The focus
of the paper to classify the cloud-based RDF engines accord-
ing to capabilities and implementation techniques. Elzein et
al. [28] presented another survey on the storage and query
processing techniques used in the RDF engines on the cloud.
Janke et al. [54, 57] presented surveys on RDF graph parti-
tioning, indexing, and query processing techniques used in
distributed and cloud-based RDF engines. They also dis-
cussed some of the available SPARQL benchmarks for RDF
engines. A survey and experimental performance evaluation
of distributed RDF engines is presented in [3]. The study
reviews 22 distributed RDF engines and presents an experi-
mental comparison of 12 selected RDF engines. Reviewed
systems belong to categories like graph-based, MapReduce
based, and specialized systems.
Yasin et al. [128] discussed the limitations and discrepan-

cies in distributed RDF engines. In particular, they discussed
the SPARQL 1.1 support in these engines. Authors in [5]
discussed the different categories of RDF engines, including
centralized, memory-based, cloud-based, graph-based and
binary stores etc. are discussed with their respective ex-
amples. In [100], there is a discussion of different mapping
techniques to map the RDF data into the NoSQL databases.
The respective paper describes the mapping process in differ-
ent types of NoSQL databases, i.e., key-value and columnar
databases etc. through their various examples.
An overview of the surveys, as mentioned earlier on RDF

engines is shown in Table 2. The summary indicates that
most of the existing studies are focused on the specific compo-
nents (storage, indexing, query processing) of the centralized
or distributed RDF engines. According to our analysis, there
exists no detailed study which provides a combined, com-
prehensive overview of the techniques used to implement
the different components of both centralized and distributed
RDF engines. Furthermore, previous studies only considered
limited RDF engines. We fill this gap by presenting a detailed
overview of the techniques used, pertaining to the storage,
indexing, language and query execution, both in centralized
and distributed RDF engines. We included a complete list of
the existing RDF engines as compared to previous studies. In
addition, in Section section 10, we discuss different SPARQL
benchmarks designed for the performance evaluation of RDF
engines. We show the pro and cons of these benchmarks,

9RDF Syntaxes https://www.w3.org/TR/rdf11-concepts/
#rdf-documents

4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://www.w3.org/TR/rdf11-concepts/#rdf-documents
https://www.w3.org/TR/rdf11-concepts/#rdf-documents
https://doi.org/10.20944/preprints202005.0360.v3

Table 2: An overview of the existing surveys on RDF engines.

Study Year Central Focus
Janke et al. [57] 2020 Partitioning, indexing, and query evaluation in distributed RDF engines
Santana et al. [100] 2020 Mapping strategies for storage of RDF based data into the NoSQL databases
Alaoui [5] 2019 General categorization of different RDF engines
Janke et al. [54] 2018 Partitioning, indexing, and query evaluation in distributed and cloud RDF engines
Sakr et. al [92] 2018 Storage and query evaluation in centralized and distributed RDF engines
Wylot et. al [126] 2018 Storage and indexing in centralized and distributed RDF engines
Pan et al. [81] 2018 Storage techniques in centralized and distributed RDF engines
Yasin et al. [128] 2018 Suitability and query evaluation of distributed RDF engines
Elzein et al. [28] 2018 Storage and query evaluation in RDF engines on cloud
Abdelaziz et al. [3] 2017 Performance evaluation of distributed RDF engines
Ma et al. [70] 2016 Storage techniques in centralized RDF engines
Ozsu [80] 2016 General overview of centralized and distributed RDF engines
Kaoudi et al. [58] 2015 RDF engines on cloud
Faye et al. [31] 2012 Storage and Indexing techniques in centralized RDF engines
Svoboda et al. [114] 2011 Indexing in centralized, distributed, and global RDF engines
Sakr et al. [91] 2010 Storage and query evaluation in SPARQL transnational RDF engines

which will help the user to choose the best representative
benchmark for the given use-case.

4. STORAGE
Data storage is an integral component of any Database

Management System (DBMS). Efficient data storage is criti-
cal for disk space consumption, security, scalability, mainte-
nance, and performance of the DBMS. This section reviews
storage mechanisms commonly used in centralized and dis-
tributed RDF engines. We divide these mechanisms into
five broader categories (ref. Figure 3) namely Triple Ta-
ble, Property Table, Vertical Partitioning, Graph-based data
storage solutions, and miscellaneous category comprising of
Key-Value, Hbase Tables, In-memory, Bit Matrix, storage as
an index permutations and systems using another system as
their the storage component.

4.1 Triple Table
The Triple Table (TT) is the most general approach to

save RDF data in a relational style (ref. discussed in section
section 9). This style stores all its RDF data in a one large
table, which contains three columns, for Subject, Predicate,
and Object of the RDF triple. Table 3 shows the TT repre-
sentation of the RDF Pictorial representation of the sample
RDF dataset shown in Table 1.

Table 3: Triple Table representation of the sample RDF
dataset shown in Table 1. Prefixes are ignored for simplicity.

Subject Predicate Object
Bob type Person
Bob interestedIn SemWeb
Bob interestedIn DB
Bob belongsTo “USA”
Alice type Person
Alice interestedIn SemWeb
SemWeb type Course
SemWeb fieldOf “Computer Science”
DB type Course
DB fieldOf “Computer Science”

To minimize the storage cost and increase query execution
performance, the URIs and Strings used in the TT can be
encoded as IDs or hash values, and separate dictionaries can
be maintained. For example, using a very simple integer
dictionary given in Table 4b, the TT table given in Table 3
can be represented as integer TT shown in Table 4a. The
use of a dictionary is particularly useful for RDF datasets
having many repeating IRIs or literals. However, in RDF
datasets, IRIs are more commonly repeated as compared to
literals. As such, encoding each distinct literal and assigning
a dictionary id may unnecessarily increase the dictionary size.
Consequently, this can leads to performance downgrade due
to extra dictionary lookups during the query execution. To
tackle this problem, some RDF engines (e.g. Jena 2 [121])
only make use of the dictionary tables to store strings with
lengths above a threshold. On the one hand, this design aids
in applying filter operations directly on the TT. But this
multiple storage of string values results in higher storage
consumption.
In general, an RDF dataset is a collection of RDF graphs.

Thus, an RDF dataset comprises exactly one default graph
and zero or more named graphs10. Each named graph is a
pair consisting of an IRI or a blank node (the graph name),
and an RDF graph. Graph names are unique within an
RDF dataset. The SPARQL query language lets the user
specify the exact named graph to be considered for query
execution, thus skipping all others named graphs data to
be considered for query processing. Since every RDF triple
either belongs to the default graph or specifically named
graph, the TT storage can exploit this information and
stored the corresponding named graph as the fourth element
for each input triple. This specific representation of TT is
also called Quad, where the table contains four columns; 3
for storing subject, predicate, and object of a triple and the
fourth column stores the corresponding named graph of the
given triple. According to RDF specification, named graphs
are IRIs. For simplicity, let’s assume all the triples gave in
table Table 3 belongs to named Graph G1, then the Quad
representation of the given TT is shown in Table 5. The
quad representation has been used in many well-known RDF

10RDF named graph: https://www.w3.org/TR/
rdf11-concepts/#section-dataset

5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://www.w3.org/TR/rdf11-concepts/#section-dataset
https://www.w3.org/TR/rdf11-concepts/#section-dataset
https://doi.org/10.20944/preprints202005.0360.v3

Figure 3: Pictorial representation of Storage in Centralized and Distributed RDF Engines (*RDF Engines in bold text are
Distributed engines)

Table 4: Triple Table representation of the TT shown in
Table 3 using dictionary encoding.

(a) Integer Triple Table using dictionary

Subject Predicate Object
1 5 9
1 6 3
1 6 4
1 7 12
2 5 9
2 6 3
3 5 10
3 8 11
4 5 10
4 8 11

(b) Dictionary

ID String ID String
1 Bob 2 Alice
3 SemWeb 4 DB
5 type 6 interestedIn
7 belongsTo 8 fieldOf
9 Person 10 Course
11 “Computer Science” 12 “USA”

engines11 such as Virtuoso [30] and 4store [43]. Please note
that as per SPARQL specification12, a SPARQL query may
specify the RDF graph to be used for matching by using
the FROM clause and the FROM NAMED clause to describe the
RDF dataset. Such queries can be efficiently executed by
using Quad tables; as such queries should be executed over
the specified named graph and hence skipping triples that
belong to other named graphs.

Table 5: Quad representation of the sample RDF dataset
shown in Table 1. Prefixes are ignored for simplicity.

Subject Predicate Object Named Graph
Bob type Person G1
Bob interestedIn SemWeb G1
Bob interestedIn DB G1
Bob belongsTo "USA” G1
Alice type Person G1
Alice interestedIn SemWeb G1
SemWeb type Course G1
SemWeb fieldOf "Computer Science” G1
DB type Course G1
DB fieldOf "Computer Science” G1

Summary. The relational DBMS storage style used in TT
saves expensive joins between separate tables but incurs
expensive self joins. SPARQL queries containing multiple
triple patterns applied in this storage style are slow to execute
because of the huge number of self joins. Consequently, this
might not be a scaleable solution for storing Big Data. Query
execution over a single giant table is also sub-optimal. This
is because the whole dataset has to be scanned at least once,
even if the query is only for a minimal subset of the table.
However, this problem can be degraded by using multiple
indexes on the TT. For example, in section section 9 we will

11Further details given in section section 9.
12Specifying RDF datasets: https://www.w3.org/TR/
sparql11-query/#specifyingDataset

6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://www.w3.org/TR/sparql11-query/#specifyingDataset
https://www.w3.org/TR/sparql11-query/#specifyingDataset
https://doi.org/10.20944/preprints202005.0360.v3

see that TT often comes with various indexes, mostly six
triple permutations P(< s, p, o >) = SPO, SOP, PSO,
POS, OPS, OSP.

4.2 Property Table
The Property Tables approach aims to lessen the number of

joins needed evaluation of for SPARQL Basic Graph Pattern.
In this approach, all properties (i.e. predicates) that are
expected to be used in combination are stored in one table.
A typical property table contains exactly one column to store
the subject (i.e. a resource) and n number of columns to
store the corresponding properties of the given subject. For
example, in our sample RDF dataset shown in Table 1, the
subject DB has two properties namely type and fieldOf,
thus a typical property table would have three columns:
one to store the subject and two to store the corresponding
properties.
There are two ways to determine the set of properties

grouped together in a property table: (1) make use of the type
definitions (rdf:type as shown in Table 1) in the dataset itself,
(2) use some clustering algorithm to determine the properties
groups. Our sample RDF dataset shown in Table 1 explicitly
mentions two rdf:types namely Person and Course. Thus,
we can group all properties that belongs to Person in one
table and all properties that belongs to Course in another
table. Table 6 shows the corresponding property tables for
the RDF dataset shown in Table 1. Table 6 revealed two
explicit disadvantages of using property tables:

� Multi-valued properties: Multi-valued predicates
are common in databases. For example, a person can
have more than one contact numbers. In our exam-
ple, interestedIn is multi-valued predicate: Bob is
interested both in SemWeb and DB courses. A typ-
ical multi-valued predicate will introduce duplicated
information in the columns. For example, in Table 6a,
the type and the country (belongsTo predicate) in-
formation is duplicated for the subject Bob. One way
to handle this problem to use the typical database
normalization approach, i.e. create separate property
tables for multi-valued predicates. Table 7 shows the
corresponding properties tables, after creating separate
tables for multi-valued predicates.

� Null values: It is very common in RDF datasets that
certain resources have missing information for some
particular predicates. For example, the country of the
resource Alice is missing in Table 1. Such missing
information is typically represented as null values. The
low datasets structuredness values shown in [99] suggest
that many real-world RDF datasets contain missing
information for different resources.

Summary. PT performs very well for executing star joins
(ref. Figure 2) in the query. This is because, a star join node
is based on a subject-subject joins, thus a typical property
table will act like a subject-based index for executing such
joins. However, it suffers for executing other types of joins
e.g, path, hybrid, and sink (ref. ref. Figure 2) used in the
SPARQL queries. A path join node refers to subject-object
join, sink join node refers to object-object join, and hybrid
join node refers combination of all. The real-world users
queries statistics of the four datasets, presented in [93], show
that 33% of the real-world queries contain star join, 8.79%

Table 6: Property tables representation of the sample
RDF dataset shown in Table 1. Multi-valued predicate
interestedIn is not treated separately. The additional
row containing majority of the duplicate entries introduced
by the multi-valued predicate is highlighted gray. Prefixes
are ignored for simplicity.

(a) Property table of the subjects of type Person

Subject type interestedIn belongsTo
Bob Person SemWeb “USA"
Bob Person DB “USA"
Alice Person SemWeb null

(b) Property table of the subjects of type Course

Subject type fieldOf
SemWeb Course “Computer Science"
DB Course “Computer Science"

Table 7: Property tables representation of the sample
RDF dataset shown in Table 1. Multi-valued predicate
interestedIn is treated separately. Prefixes are ignored
for simplicity.

(a) Property table of the subjects of type
Person, excluding multi-valued predicates

Subject type belongsTo
Bob Person “USA"
Alice Person null

(b) Property table of the subjects of type
Person for multi-valued predicate

Subject interestedIn
Bob SemWeb
Bob DB
Alice SemWeb

(c) Property table of the subjects of type Course

Subject type fieldOf
SemWeb Course “Computer Science"
DB Course “Computer Science"

7

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

contain path join, 6.62% contain sink join, 4.51% contain
hybrid join, and 66.51% contains no join at all. Thus, this
approach can produce give efficient results for majority of
the queries containing joins between triple patterns. Fur-
thermore, different tools tried to reduce the problems and
performance deficiencies associated PT. For example, in [121],
PT were used together with a TT, where the PT aims to
store the most commonly used predicates. Finally, this ap-
proach is sensitive to the underlying schema or data changes
in the RDF datasets.

4.3 Vertical Partitioning
Vertical Partitioning (VP) was proposed in [2]. In contrast

to PT and TT, a VP stores RDF data in two columns tables
form. Subject and object named by the property.The number
of tables equals the number of distinct predicates used in the
RDF dataset. Since there are four distinct predicates in the
sample RDF dataset shown in Table 1, the corresponding
vertical tables are shown in Table 8.

Table 8: Vertical partitioning of the sample RDF dataset
shown in Table 1. Prefixes are ignored for simplicity.

(a) Predicate type

Subject Object
Bob Person
Alice Person
SemWeb Course
DB Course

(b) Predicate
interestedIn

Subject Object
Bob SemWeb
Bob DB
Alice SemWeb

(c) Predicate belongsTo

Subject Object
Bob “USA"

(d) Predicate fieldOf

Subject Object
DB “Computer Science"
SemWeb “Computer Science"

In contrast to VP, the VT does not suffer from the multi-
valued predicates and the missing information that corre-
sponds to null values. The approach is particularly useful for
answering SPARQL triple patterns with bound predicates
(e.g. ?s p ?o). This is because the predicates tables can
be regarding as an index on predicates, hence only a single
table needs to considered while answering triple patterns
with bound predicates. However, this type of storage is
not optimized for answering triple patterns containing un-
bounded predicates (e.g., s ?p ?o). This is due to the fact
since predicate is shown as a variable in the triple pattern,
the triple pattern matching will consider all vertical tables.
Consequently, may fetched a large portion of intermediate
results which will be discarded afterwards.
Summary. VP proves to be efficient in practice for large
RDF datasets with many predicates, as it also offers an
indexing by predicates.This approach is particularly useful
for column-oriented DBMS and is easy to manage in a dis-
tributed setups. However, the table sizes can significantly
vary in terms of number of rows. As such, some partitions
can account for a large portion of the entire graph, leading
to workload imbalance. Furthermore, it can cause a lot of
I/O resources for answering SPARQL queries with unbound
predicates.

4.4 Graph Based Storage

A graph is a natural storage form of RDF data. Various
(un)directed, (a) cyclic (multi) graph data structures can be
used to store RDF graphs. For example, [133] store RDF
graphs as directed signature graphs stored as a disk-based
adjacency list table, [15] store as balanced binary tree, and
[51] store as multigraphs etc. A very simple labelled, directed
signature graph of the Figure 1 is shown in Figure 4. In
Graph-based approaches, the given SPARQL query is also
represented as graph and sub-graph matching is performed
to answer the query.

1

3

9 4

12

2 10

11

5

5

6

5

6

5

8

8

6

7

N1

N2 N3

N4

N5

N6

N7

N8

Figure 4. Signature graph representation using dictionary
encoding shown in Table 4b

Summary. The main advantage of graph storage of RDF
data is that it is the original representation of the RDF data
hence and represents the the original semantics of SPARQL.
As graph homo-morphism is NP-complete, the sub-graph
matching can be costly. In particular, graph storage can
raises issues pertaining to the scalability of the RDF engines
for large graphs, which can be addressed by indexing of
database management techniques.

4.5 Miscellaneous Storage
This category includes multiple storage schemes which are

yet not widely used in the state of the art. Main storage
schemes are Key-Value based [132], HBase tables based13 [82],
API based like Sesame SAIL Storage And Inference Layer
[16], on disk or in memory-based [12], and Bit Matrix-based
[129]. We encourage readers to refer to the corresponding
papers for the details of these RDF storage schemes.

5. INDEXING
Indexing is one of the important component of the database

management systems. The right selection of indexing can
significantly improve the query runtime performances. How-
ever, indexes need to be updated with underlying changes in
the data sets. In particular, if the data changes on regular
intervals, too many indexes may slow down the performance.
In addition, indexes needs extra disk space for storage. Major
types of indexing that we found during the study are given
in Figure 5.

� Indexing By Predicate

This type of indexing is found in RDF engines where
the data is stored as Vertically Partitioned (VP) tables.

13http://hbase.apache.org.

8

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

Figure 5: Pictorial representation of Indexing schemes in Centralized and Distributed RDF Engines (*RDF Engines in bold
text are Distributed engines)

Each of the VP table is naturally indexed by predi-
cate. Predicate-based indexing is particularly helpful
for answering triple patterns with bound predicates. In
such cases, only one VP table is consulted to answer
the given triple pattern. However, a SPARQL triple
pattern can have 8 different combinations based on
bounded or unbounded s, p, o, as shown in Figure 6.
As such, only using a single predicate-based index will
be less efficient for triple patterns with unbound predi-
cates.

Summary. If data is stored in VP tables, it is auto-
matically indexed by predicate as well. It is a space
efficient solution and can be useful for datasets with
frequent updates. Furthermore, triple patterns of types
<?s, : p, ?o >,<: s, : p, ?o >, and <?s, : p, : o >, can
directly answered by only consulting a single VP table.
However, it is less efficient for tps with predicates as
a variable, e.g. <: s, ?p, ?o >,<?s, ?p, : o >, and <:
s, ?p, : o >.

� Triple-Permutation Indexing. As mentioned be-
fore, an RDF triple comprises Subject, Predicate, and
Object. Figure 7 shows the permutations of an RDF
triple

〈
s,p,o

〉
. The RDF engines in this category cre-

ates indexes pertaining to some or all permutations of
the SPO. The goal is to efficiently execute the different
types of SPARQL triple patterns shown in Figure 6.
Consequently, the Triple-Permutation indexes can be
particularly helpful in the efficient execution of triple
types of SPARQL joins (ref. Figure 2). The subject,
predicate, object permutations can be extended to quad
to include the fourth element of named graph or model.

Figure 8 shows the SPO index for the sample RDF
dataset given in Table 1. For each distinct subject si in
a dataset D, a vector of predicates VP = fpi1, . . . , ping in
maintained; and for each element pij 2 VP , a separate
list LO = foi,j1 , . . . , oi,jk g of the corresponding objects
maintained. The SPO index can directly answer triple

patterns of type <: s, : p, ?o >. Similarly, SOP can
directly answer triple pattern of type <: s, ?p, : o >
and so on. Finally, both SPO and sop can be used
to answer triple pattern of type <: s, ?p, ?o >. The
same approach can be followed for other type of triple-
permuted indexes. The use of dictionary is helpful to
reduce the storage cost of such indexes.

Summary. The triple-permutation indexes solve the
aforementioned issue of unbound predicates, associated
with predicate-based indexing. The triple-permutation
indexes can directly answer all types of triple patterns
shown in Figure 6, and hence avoiding expensive self
joins on the large TT. However, they suffers from a
severe storage overhead and are expensive to be main-
tained for RDF data with frequent changes.

� Backend Database Indexing Certain RDF engines,
e.g. Jena1, Jena2, and Sesame, etc. make use of the ex-
isting DBMS as backend for storing RDF data. Usually,
there are multiple indexes available from that backend
DBMS which are utilized as an indexes. For exam-
ple, in Oracle DBMS various index including b-tree,
function-based reverse key etc. are available. Post-
greSQL14 provides several indexes e.g., b-tree, hash,
GiST, SP-GiST, GIN and BRIN.

Summary. Using existing DBMS systems avoid the
extra work of creating indexes. The available indexes
in such DBMS are already mature and optimized for
the data these DBMS are designed. However, due to
different semantics of RDF data, they available indexes
or storage solutions in the existing DBMS may not be
optimized for RDF datasets.

� No Indexing Some centralized and distributed RDF
engines do not create any indexing scheme at all. This
could be due to the storage solution they used can be

14PostgreSQL index types: https://www.postgresql.org/
docs/9.5/indexes-types.html

9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://www.postgresql.org/docs/9.5/indexes-types.html
https://www.postgresql.org/docs/9.5/indexes-types.html
https://doi.org/10.20944/preprints202005.0360.v3

Figure 6. Different types of SPARQL triple patterns based on (un)bound subject S , predicate P and object O. The “:” refers
to bound and “?” refers to unbound subject, predicate or object of a triple pattern.

Figure 7. Common Triple-Permutation indexes in RDF-3X and Hexastore.

type

Person SemWeb
DB

USA

interestedIn belongsTo

Bob

type

Person SemWeb

interestedIn

Alice

type

Course Computer
Science

fieldOf

SemWeb

type

Course Computer
Science

fieldOf

DBsi:

VP:

LO:

Figure 8: Simple SPO index for the sample RDF dataset given in Table 1.

10

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

working as natural index. For example, the graph-based
storage solutions serve as natural index as well; where
the query execution is reduced to sub-graph matching
problem.

� Miscellaneous Indexing

This type of indexing contains multiple types, i.e., Local
predicate and global predicate indexing [131], Space-
filling [132], array indexing [64] and Hbase tables15 [82]
indexing scheme etc. We encourage readers to refer
to the corresponding papers for the details of these
indexing schemes.

6. LANGUAGE SUPPORT
Language is an interface through which any data repos-

itory can be queried. RDF data can be directly queried
via SPARQL. However, a translation of SPARQL to other
querying language is required if the data is not stored in
RDF format. Summary of query languages in centralized
and distributed RDF engines is shown below in Figure 9.
The efficient translation of SPARQL into other querying

languages is one of the major optimization step in such
engines. Some RDF engines use different API’s for querying
purposes as well. Different types of the query languages
found during the study are given below.

1. SPARQL: SPARQL is the standard query language
for RDF based dataa. Directly using SPARQL on top
of RDF can be much faster, as the underlying semantics
of RDF and SPARQL can be utilized towards better
runtime performance. In addition, the aforementioned
triple-permutation indexes can be leveraged to further
optimize the query execution. Majority (ref. Figure 9)
of the RDF engines make use of the direct SPARQL
execution on top of RDF data. However, storing Big
RDF datasets in format that can be directly queried
via SPARQL is still a challenging task.

2. SPARQL Translation: As mentioned before, certain
RDF engines make use of the existing DBMS as backend
for storing RDF data. The relational DBMS systems
(PostgreSQL, Oracle etc.) are the most popular among
them. Since SPARQL is not directly supported by these
DBMS, a translation of SPARQL to DMBS-supported-
language is required for query execution. Most of the
RDF engines in this category translate SPARQL to
SQL using existing translation tools e.g., Sparklify [110],
Ontop [18] etc.

3. Other Languages: Some RDF engines also use their
own query language other than SPARQL i.e., RDF
Data Query Language (RDQL) [72], Interactive Tucana
Query Language (iTQL) etc. Some RDF engines are
used as a libraries to be used with different applications
and offer full or part of RDF functionality [12].

7. QUERY EXECUTION
Different RDF engines employ different query execution

strategies. The overall goal is to devise an optimized query
execution plan that leads to fast query execution. This

15https://hbase.apache.org/

is generally achieved by using different query optimization
strategies, e.g., the selection of query planning trees (e.g.
bushy tree vs. left-dept tree), the lowest cardinality joins
should be executed first, parallel execution of different joins,
minimization of intermediate results, use of different joins
(hash, bind, merge sort etc.), filter operations are push down
in the query plan etc. As such, categorizing the complete sur-
veyed systems according to their query execution strategies
is rather hard; a variety of optimization strategies are used
in state-of-the-art RDF engines. A broader categories (ref.
Figure 10) of the query execution strategies are explained
below.

1. Statistics Based

This type of query plans is based on the cardinality (es-
timated or actual) of triple patterns and join between
triple patterns. The cardinality estimations are may be
performed by using stored statistics. The actual cardi-
nalities can be obtained at runtime by using different
queries, executed on the underlying dataset. The goal
is to execute the lowest cardinality join first, followed
by the next lowest cardinality join and so on. The
advantage of executing the lowest cardinality joins first
is that the intermediate results for the next join could
be significantly reduced, hence the join operations are
performed quickly. The cost of cardinality of a partic-
ular join is estimated by using the stored statistics as
index.

2. Translation Based Those RDF engines that make
use of the existing DBMS systems can take advantage of
different optimization steps used, already implemented
in these DBMS. For such systems, the SPARQL query
language is translated into another language supported
by the underlying DBMS. Thus, additional optimiza-
tion can be applied during the translation, e.g., the
ordering of triple patterns, the use of filters etc.

3. API Based

Some RDF engines are used as a library (e.g. Jena [72],
Sesame [16] to store and query datasets. Query execu-
tion is dependent on the Application-specific procedure
to generate efficient query plans.

4. Subgraph Matching Based

RDF engines in this category exploit the graph nature
both for RDF data and the corresponding SPARQL
query. Once both data and query is represented as
graph, the query execution problem is reduced to the
subgraph matching problem. query execution.

5. Miscellaneous In this category, different types of
query execution models exist. For example index lookups
combined with different joins, heuristic-based query
processing and join ordering etc.

8. RDF GRAPH PARTITIONING
In distributed RDF engines, the data is distributed among

cluster nodes. This partitioning of big data among multiple
data nodes helps in improving systems availability, ease of
maintenance, and overall query processing performances.
Formally, the problem of RDF graph partitioning is defined
as below.

11

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

Figure 9: Pictorial representation of Query languages in Centralized and Distributed RDF Engines (*RDF Engines in bold
text are Distributed engines)

Figure 10. Types of Query Execution in Centralized and Distributed RDF Engines(*Bold represents the Distributed RDF
Engines)

Definition 8 (RDF Graph Partitioning Problem).
Given an RDF graph with vertices (V) and edges (E), G =
(V,E), divide the graph G into n sub-graphs G1, . . . Gn such

that G = (V,E) =
n⋃

i=1

Gi.

RDF graph partitioning techniques can be divided into
two major categories:

� Horizontal Partitioning. It is row-wise distribu-
tion of data into different partitions. It is also called
database sharding. In RDF each row of a TT repre-
sents a triple, the triple-wise distribution of complete
dataset is regarded as horizontal partitioning.

� Vertical Partitioning. It is column-wise distribution
of data into different partitions and involves creating
tables with fewer columns and using additional tables
to store the remaining columns. In the context of
RDF dataset, each triple represents a row with three
columns namely subject, predicate and object. Hence,
distribution by any of these columns is regarded as
vertical RDF partitioning. Famous example of vertical
partitioning by predicate column is already discussed
in 4.

A recent empirical evaluation [4] of the different RDF
graph partitioning showed that the type of partitioning used
in the RDF engines have a significant impact of the query

12

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

runtime performance. They conclude that the data that is
queried together in SPARQL queries should be kept in same
node, thus minimizing the network traffic among data nodes.
The Figure 11 shows categories of the partitioning techniques
found in distributed RDF engines. Please note that all the
engines under workload-based, hash-based and graph-based
categories are the examples of horizontal partitioning.
Now we define each of the category given in Figure 11.

We explain commonly used [54, 60, 104, 95] graph parti-
tioning techniques by using a sample RDF graph shown in
Figure 1216. In this example, we want to partition the 11
triples into 3 partitions namely green, red, and blue parti-
tions.

Range Partitioning: It distributes triples based on certain
range values of the partitioning key. For example, create a
separate partition of all RDF triples with Predicate age and
object values between 30 and 40. In our motivating example,
let the partition key is the triple number with partitions
defined according the following ranges: first partition is
created for all the triples in the range [1,4], a second partition
is created for all the triples in the range [5,8], and third
partition is created for all the triples in the range [9,11].
Workload-Based Partitioning: The partitioning tech-
niques in this category make use of the query workload to
partition the given RDF dataset. Ideally, the query work-
load contains real-world queries posted by the users of the
RDF dataset which can be collected from the query log of
the running system. However, the real user queries might
not be available. In this case the query work load can ei-
ther be estimated from queries in applications accessing the
RDF data or synthetically generated with the help of the
domain experts of the given RDF dataset that needs to be
partitioned.
Hash-Based Partitioning: There are three techniques

used in this category:

� Subject-hashed. In this technique hash function is
applied on the subject of the triple and based on the
output value, subject is assigned to a partition [56].This
causes imbalance among partitions. This imbalance
is shown in example given in Figure 12. Using this
technique, our example dataset is split such that, triples
3,10 and 11 are assigned into red partition, triple 7 is
assigned into blue partition, and the remaining triples
are assigned into green partition. It is a clear imbalance
of partitioning.

� Predicate-hashed. This technique applies function is
applied on the predicate of the triple and based on the
output value, predicate is assigned to a partition. This
causes all the triples with the same predicate assigned
to one partition. In example given in Figure 12, there
are four distinct predicate while the required number
of partitions are 3. Thus by using the first come for
serve strategy, all the triples with predicate p1 are
assigned to first partition (red), p2 triples are assigned
to a second partition (green), p3 triples are assigned to
third partition (blue), and p4 triples are again assigned
to first partition. This technique can leads to significant
performance improvement, provided that the predicates

16We used different example to show a clear difference between
the discussed RDF partitioning techniques.

are intelligently grouped intro partitions, such that
communication load among data nodes is reduced [4].

� URI Hierarchy-hashed: This partitioning technique
is based on assumptions of that IRIs have path hierar-
chy and those with a same hierarchy prefix are often
queried together [56]. Same assumptions works in this
technique, which extracts the path hierarchy of IRIs and
those with same are assigned to same partition. For ex-
ample in the case of "http://www.w3.org/1999/02/22-
rdf-syntax-ns#type", the path hierarchy is "org/w3/www/1999/02/22-
rdf-syntax-ns/type". int the subsequent steps, for each
level in the path hierarchy (e. g., “org", “org/w3",
“org/w3/www", ...), this technique computes the per-
centage of triples with a same hierarchy prefix. In
case of exceeding a percentage to experimentally de-
fined threshold and the number of prefixes is equal to
or greater than the number of required partitions at
any level of hierarchy, then these prefixes are used for
the hash-based partitioning on prefixes. For the deter-
mination of IRI prefixes to apply hash function, this
technique is computationally expensive. This technique
is exhibited in example given in Figure 12, shows all
the triples having hierarchy1 in subjects are assigned
to the green partition, triples having hierarchy2 in
subjects are assigned to the red partition, and triples
having hierarchy3 in subjects are assigned to the blue
partition. This partitioning may not produce the best
query runtimes as the underlying assumptions about
IRIs might not be true in practice [4].

Graph-Based Partitioning: It makes use of the graph-
based clustering techniques to split a given graph into the
required pairwise disjoint sub-graphs. There are three tech-
niques used in this category:

� Recursive-Bisection Partitioning. This technique
is used to solve the k-way partitioning problem as pre-
sented in [60]. It works in three steps i.e Coarsening,
Partitioning and Uncoarsening. In Coarsening: smaller
graphs are generated by the input graph. The par-
titioning phase computes the 2-way partition which
divides the vertices into two parts. In the last phase of
Uncoarsening, partitions of a graph are projected back
to an original graph.
This technique is shown by the example given in Fig-
ure 12, triples 1, 2, 4, 7, and 8 are labelled green
partition, triples 3, 5, 6, 9 and 10 are labelled with red
partition, and triple 11 is labelled with blue partition.

� TCV-Min Partitioning. This technique is also used
to solve the problem of k-way graph partitioning with
the main objective is to minimize the total communi-
cation volume [17] of the partitioning. This technique
also comes with phases. But the second phase, i.e.
the Partitioning, is about the minimization of com-
munication costs. This is shown by example given in
Figure 12, triples 1, 2, 4, 5, 6, 8 and 9 are labelled with
the green partition, triples 3, 7 and 10 are labelled with
the red partition, and triple 11 is labelled with the blue
partition.

� Min-Edgecut Partitioning. The Min-Edgecut [60]
is also used to solve the problem of k-way graph par-
titioning. However, unlike TCV-Min, the focus is to

13

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

Figure 11. Types of Partitioning used in RDF Engines

partition the vertices by minimizing the number of
edges connected to them. This is shown by example
given in Figure 12, triples 1, 2, 4, 7 and 8 are labelled
with green the partition, triples 3, 5, 6, 9 and 10 are
labelled with the red partition, and only triple 11 is
labelled with the blue partition.

The graph-based partitioning techniques are computationally
complex, and may takes very strong resources for splitting
big RDF datasets.
Vertical Partitioning: The vertical partitioning is already
discussed in section 4. This technique generally divides
the given RDF dataset based on predicates17. It creates n
number of two columns tables, where n is the number of
distinct predicates in the dataset. Please note that it breaks
the triples and only store the subject and objects parts.
The predicate become the caption of the table. Ideally, the
number of distinct partitions would be equal to the number
of distinct predicates used in the dataset. However, it is
possible that the the required number of partitions may be
smaller than the number of predicates used in the dataset.
In this case the predicate tables are grouped into partitions,
i.e., multiple predicate tables are stored in partitions. There
can be multiple way of grouping predicates into partitions:
(1) first come, first serve, (2) by looking at the number of
triples per predicate and thus group predicates such that
maximum load balancing is achieved among partitions, (3)
using some intelligence to determine which predicates will
be queried together, and hence grouped their corresponding
triples in one partition.

9. STATE-OF-THE-ART RDF ENGINES
Now we present state-of-the-art centralized and distributed

RDF Engines. The goal is to provide a broader overview of
these engines and classify them according to the previously
discussed data storage and partitioning, indexing, language,
and query processing techniques. Summary of these charac-
teristics in centralized and distributed RDF engines is shown
in table 9 and 10.

9.1 Centralized RDF Engines
17Division by subject and object is also possible but not
common in RDF partitioning.

Redland [12] is a set of RDF libraries for storing and
querying RDF data that can be used by other RDF-based
applications. It provides a TT like storage based on creating
three hashes – SP2O, PO2S, SO2P – per RDF triple, where
S, P, O stands for Subject, Predicate and Object respectively.
Each hash is a map of a key to a value with duplicates
allowed. The first two characters represent the hash key and
the last character represent the value. For example, in SP2O
the key for this hash is subject and predicate and value is the
object. These hashes also serve as three triple-permutation
indexes. The hashes can be stored either in-memory or on a
persistent storage. It creates an RDF model which can be
queried with SPARQL and RDQL using the Rasqal RDF
query library22.
Jena1 [72] uses relational databases to store data as TT

called statements tables. Jena1 statement table has entries
for subject, predicate, objectURI, and objectliteral. URIs
and Strings are encoded as IDs and two separate dictionaries
are created for literals and resources/URIs. This scheme
is very efficient in terms of storage because of the one-time
storage of multiple occurrences of URIs and literals. However,
the query execution performance is greatly affected by the
multiple self joins as well as dictionary lookups. The indexing,
query processing depends upon the relational DBMS (e.g.,
Postgresql, MySQL, Oracle) it uses for storage. RDQL is
used as a query language that is translated into SQL to be
run against the underlying relational DBMS.
TDB23 is a component of the Jena API24 for storing and

querying RDF data. It runs on the single machine and
supports full Jena APIs. A dataset in TDB consists of three
table namely the node table, the triple and Quad indexes,
and the prefixes table. TDB assigns a node ID to each
dataset node and is stored in a dictionary table called node
table. Triple and quad indexes table uses: (1) three columns
or TT to store all the RDF triples belonging to the default
named graph, (2) four columns or quads to store triples
(along with the corresponding named graphs), belonging to
other named graphs. Prefixes table does not take part in
a query processing and only contains node table and an
index for GPU. For query processing, TDB makes use of

22RASQAL library http://librdf.org/rasqal/
23https://jena.apache.org/documentation/tdb/architecture.html
24Jena: https://jena.apache.org/

14

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

http://librdf.org/rasqal/
https://jena.apache.org/
https://doi.org/10.20944/preprints202005.0360.v3

@pref ix h i e ra rchy1 : <http :// f i r s t / r/> . @pref ix h i e ra rchy2 : <http :// second/ r/> .
@pref ix h i e ra rchy3 : <http :// th i rd / r/> . @pref ix schema : <http :// schema/> .
h i e ra rchy1 : s1 schema : p1 h i e ra rchy2 : s11 . #Tr ip l e 1
h i e ra rchy1 : s1 schema : p2 h i e ra rchy2 : s2 . #Tr ip l e 2
h i e ra rchy2 : s2 schema : p2 h i e ra rchy2 : s4 . #Tr ip l e 3
h i e ra rchy1 : s1 schema : p3 h i e ra rchy3 : s3 . #Tr ip l e 4
h i e ra rchy3 : s3 schema : p2 h i e ra rchy1 : s5 . #Tr ip l e 5
h i e ra rchy3 : s3 schema : p3 h i e ra rchy2 : s13 . #Tr ip l e 6
h i e ra rchy2 : s13 schema : p1 h i e ra rchy2 : s8 . #Tr ip l e 7
h i e ra rchy1 : s1 schema : p4 h i e ra rchy3 : s9 . #Tr ip l e 8
h i e ra rchy3 : s9 schema : p1 h i e ra rchy2 : s4 . #Tr ip l e 9
h i e ra rchy2 : s4 schema : p4 h i e ra rchy2 : s13 . #Tr ip l e 10
h i e ra rchy2 : s11 schema : p2 h i e ra rchy1 : s10 . #Tr ip l e 11

(a) An example RDF triples

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

13

3

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

Basic RDF Graph Range-based Predicate-Hash-basedSubject-Hash-based

Hierarchical-Hash-based Graph-based Recursive-Bisection Graph-based TCV-Min Graph-based Min-Edgecut

(b) Graph representation and partitioning. Only node numbers are shown for simplicity.

Figure 12: Partitioning an example RDF into three partitions using different partitioning techniques. Partitions are highlighted
in different colors.

15

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

Table 9: Categorization of centralized RDF Engines.
Storage (T = Triple Table, P = Property Table, V = Vertical Partitioning, G = Graph-based, M = Miscellaneous)
Indexing (P = Predicate-based, T = Triple-permutation, B = Backend Database, N = No-indexing, M = Miscellaneous)
Language (S = SPARQL, T = SPARQL Translation, O = Others Languages)
Query Processing (S = Statistics-based, T = Translation-based, A = API-based, G = Subgraph Matching-based, M =
Miscellaneous)

Storage Indexing Language Query Processing

Engine T P V G M P T B N M S T O S T A G M
RedLand [12] 3 3 3 3 3
Jena1 [72] 3 3 3 3
TDB18 3 3 3 3
Sesame [16] 3 3 3 3
3store [42] 3 3 3 3
Jena2 [121] 3 3 3 3 3
Mulgara19 3 3 3 3
RStar [69] 3 3 3 3
BRAHMS [53] 3 3 3 3
YARS [45] 3 3 3 3
Kowari [122] 3 3 3 3
RDF-Match [20] 3 3 3 3
SW-Store [2] 3 3 3 3
Hexastore [118] 3 3 3 3
RDFJoin20 3 3 3 3
Parliament [64] 3 3 3 3
DOGMA [15] 3 3 3 3
TurboHOM++ [63] 3 3 3 3
RDF-3X [78] 3 3 3 3
RIQ [61] 3 3 3 3
Stardog21 3 3 3 3
gStore [133] 3 3 3 3
Strabon [66] 3 3 3 3
BitMat [10] 3 3 3 3
Triplebit [129] 3 3 3 3
DB2RDF [14] 3 3 3 3
RDFox [76] 3 3 3 3
AMBER [51] 3 3 3 3

the OpExecutor extension point of the Jena ARQ25. TDB
provides low level optimization of the SPARQL BGPs using
a statistics based optimizer. FUSEKI26 component of the
Jena can be used to provide a public http SPARQL endpoint
on top of TDB data storage.
Sesame [16] is an architecture that allows persistent stor-

age and querying of RDF data. Sesame provides storage-
independent solutions and hence it can be deployed on top
of a variety of storage devices such as relational DBMS and
Object-oriented databases. The querying is based on RQL
language. The storage, indexing, and query processing is
based on the underlying DBMS used by the Sesame. Sesame
has been renamed as Eclipse RDF4J27 with an improved
functionalities such as both in-memory and persistence data
storage, SPARQL and SeRQL support etc.
3store [42] uses MySQL28 as its back end and arranges

its data in MySQL database schema in four tables namely

25Jena ARQ: https://jena.apache.org/documentation/
query/

26FUSEKI: https://jena.apache.org/documentation/
fuseki2/

27RDF4J: https://en.wikipedia.org/wiki/RDF4J
28https://www.mysql.com/

triples table, models table, resource table, and literal table.
The triples table stores RDF triples (one per row) with
additional information: (1)the model this triple belongs, (2)
the Boolean value if a literal is used in the triple, and (3)
and the Boolean value if this triple is inferred. The models,
resource, and literal are two columns tables to map hash IDs
to models, resources, and literals, respectively. As 3store
uses MySQL as its backend, it depends upon the MySQL
built-in query optimizer to effectively use its native indexes.
The query processing is based on the translating RDQL to
SQL.
Jena2 [121] is an improved version of the Jena1. It has

support both for statement and property tables. Unlike
Jena1, the schema is denormalized and URIs, simple literals
are directly stored within the the statement table. Jena2
also makes use of the dictionary tables only for strings whose
lengths exceed a threshold. The advantage of directly storing
URIs and literals into TT is that the filters operation can
be directly performed on TT, thus avoiding extra dictionary
lookups. The disadvantage is that it also results in higher
storage consumption, since string values are stored multiple
times. The use of property tables for most frequently used
predicates can avoid the multiple self joins in statement
tables.

16

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://jena.apache.org/documentation/query/
https://jena.apache.org/documentation/query/
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/
https://en.wikipedia.org/wiki/RDF4J
https://doi.org/10.20944/preprints202005.0360.v3

Mulgara29 uses transactional triple store XA30 as its
storage engine. It stores metadata in the form of subject-
predicate-object. It makes use of the triple-permutation
indexing based on Subject, Predicate, Object and Meta or
Model. A total of six indexes31 – SPOM, POSM, OSPM,
MSPO, MPOS, MOSP – are used in Mulgara which are
stored in AVL (Adelson-Velskii and Landis) (AVL) trees.
iTQL is the language used for querying. The query planning
is based on cardinality estimations.
RStar [69] was designed to store ontology information

and instance data. The storage is based on multiple rela-
tions, stored in relational IBM DB2 DBMS. Five two-column
tables were used to store Ontology-related data. Similarly,
another five two-columns tables were used to store instance-
related data. RStar Query Language (RSQL) was defined
for resource retrieval. RStar performs translation of RSQL
into the SQL of an underlying database. Query engine of
RSQL pushes many tasks to the underlying database to take
advantage of built in query evaluation.
BRAHMS [53] main memory-based RDF engine. The

RDF data is store in three hash tables s-op, o-sp, p-so. This
RDF engines was designed to find semantic associations
in large RDF datasets. This was done by leveraging the
depth-first search and breath-first search algorithms.
Yet Another RDF Store (YARS) [45] stores RDF

data in the form of quads having four columns in the disk.
In addition to subject, predicate, object, it also stores the
context of the triple. YARS implements two kinds of indexes:
(1) Lexicons indexes, which operate on the string representa-
tions of RDF graph nodes to enable fast retrieval of object
identifiers, (2) Quad indexes, which are a set of permutation
indexes applied on quad (subject s, predicate p, object o
and context c). The are six – SPOC, POC, OCS, CSP, CP,
OS – quad indexes used in the YARS. YARS uses Notation3
(N3) to query RDF data. The query processing is based on
index lookups and join operations. The join ordering (lowest
cardinality join should be executed first) is based on getting
the actual cardinalities using getCountQ query.
Kowari [122] is a metastore built to provide scalable,

secure transactions, and storage infrastructure for RDF data.
Kowari makes use of the persistent quad–storage by using
XA Statement Store. Along with subject, predicate, object,
it also stores additional meta node with each triple. The
meta node illustrates in which model this statement occurs.
Multiple quad-permutation indexes are implemented. Same
like Mulgara, Kowari also implements six indexes which
are stored as an AVL tree and B-Trees. This combination
enables fast, simple searching and modification. The query
processing is based on iTQL. Kowari query execution plan
is also based on cardinality estimations. Once the initial
execution plan is complete, the query engine starts to merge
the results using join operations. During this process, the
query engine may find a more efficient alternate execution
plan from the sizes of intermediate results. If this happens,
the query engine will further optimize the execution plan,
and complete results are returned to a client after the final
join operation.
RDF-Match [20] is implemented on top of Oracle RDBMS

using Oracle’s table function infrastructure. It stores RDF
29http://mulgara.org/
30XA1: https://code.mulgara.org/projects/mulgara/
wiki/XA1Structure

31https://code.mulgara.org/projects/mulgara/wiki/Indexing

data in two different tables: (1) IdTriples table consisting
of columns ModelID, SubjectID, PropertyID, ObjectID, and
(2) UriMap table consisting of UriID, UriValue. It translates
the query into a self-join query on IdTriples table. It de-
fines B-tree indexes and materialized views on both tables.
SQL is used as a query language to perform queries. For effi-
cient query processing, materialized join views and indexes
are used. RDF-MATCH also uses a Kernel enhancement to
eliminate runtime overheads.
SW-Store [2] is the example of vertical partitioning: the

data is divided into n two columns (subject, object) tables,
where n is the number of distinct predicates in the dataset.
In addition to natural indexing by predicate, each of the n
tables is indexed by subject so that particular subjects can
be retrieved quickly from the tables. The implementation
of SW-Store relies on a column-oriented database system C-
store [111]. SW-Store uses Jena ARQ to translate SPARQL
queries into SQL. For triple patterns with bound predicates,
only one table is consulted to get the required results. A fast
merge-join operations are exploited to collect information
about multiple properties for subsets of subjects.
Hexastore [118] proposes an RDF storage scheme that

uses the triple nature of RDF as an asset. In this approach,
a single giant TT is indexed in six possible ways – SPO, sop,
pso, pos, osp, ops. In this storage technique, two vectors
are associated (ref. Figure 8) with each distinct instance of
the subject, predicate or object. This format of extensive
indexing allows fast query execution at the price of a worst-
case five-fold increase in index space as compared to single
TT. Hexastore uses SPARQL as its query language. The
query processing is based on using the appreciate index for
the different types of triple patterns (ref. Figure 6). Since,
all vectors store elements in sorted order, a fast merge-joins
can be used to integrate the results of the different triple
patterns.
RDFJoin32 contains three types of tables namely the URI

conversion tables, TT, and join table. The URI conversion
tables are just like dictionary encoded values of the URIs.
RDFJoin stores triple in three TTs namely PSTable, POTable,
and SOTable. The PSTable consists of columns for Proper-
tyID, SubjectID and ObjectBitVector. The PropertyID and
SubjectID represent the property resp. subject of a triple and
ObjectBitVector is a bit vector of all objects that are associ-
ated with given property and subject instances. The same
explanation goes for POTable and SOTable. The PSTable is
naturally ordered by the property and secondary indexed by
the subject. Both property and subject make the primary key
of the table which enables to find out Object by the primary
key lookups. The same explanation goes for POTable that
facilitates the merge joins in the case of Subject-Subject and
Object-Object joins. The Join tables store the results of
subject-subject joins, object-object joins, and subject-object
joins in a bit vectors. Three separate join tables namely
SSJoinTable, SOJoinTable, and OOJoinTable are used to
store the subject-subjec, object-object, and subject-object
joins, respectively. Each of the three join tables has three
columns for Property1, Property2 and a BitVector. The first
two columns make the primary key upon which hash indexed
is applied to produce a corresponding BitVector. The query
execution is based on SPARQL query processing with index
lookups and different join implementations such as merge

32http://www.utdallas.edu/ jpm083000/rdfjoin.pdf.

17

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://code.mulgara.org/projects/mulgara/wiki/XA1Structure
https://code.mulgara.org/projects/mulgara/wiki/XA1Structure
https://doi.org/10.20944/preprints202005.0360.v3

joins.
Parliament [64] contains three types of tables, i.e. re-

source table, statement table, and resource dictionary. These
tables are stored as linked lists. Most important is the
statement table, which stores records pertaining to the RDF
triples. Records are stored sequentially with a number as IDs.
Each record has seven components: three IDs representing
Subject, Predicate, and Object, three IDs for the other triples
which are re-using the same Subject, Predicate, and Object
instances. The seventh component is a bit field for encoding
attributes of a statement. The index structure of Parliament
revolves around the Resource table and a memory-mapped
file containing the string representations of Resources ID.
Records or instances can be accessed through a simple array
indexing technique by giving its ID. Parliament is an embed-
ded triple store, so directly querying through SPARQL or
any other query language is not possible. Rather, it allows
search, insert, and delete operations. However, querying can
be indirectly made possible while accessing it through some
SPARQL API like Jena and Sesame. For example, the given
SPARQL SELECT query needs to be converted in the format
of Parlimaent’s supported find query (or set of queries) to
be executed.
DOGMA [15] presents a graph-based RDF data storage

solution. In this model, RDF graph is represented as bal-
anced binary tree and store it on disk. There is no specific
index needed for query processing as subgraph matching; the
tree itself can be regarded as index. However, author have
proposed two additional indexes for fast subgraph matching.
DOGMA develops algorithms to answer only graph match-
ing queries expressible in SPARQL, and hence it was not
supporting all SPARQL queries.
TurboHOM++ [63] is another graph-based solution for

running SPARQL queries. However, unlike DOGMA, it
is an in-memory solution in which both RDF graph and
SPARQL query is represented as specialized graphs by using
type-aware transformation, i.e., it makes use of the type
information specified by the rdf:type predicate. The sub-
graph matching is performed for SPARQL query execution.
This approach also makes use of the predicate index where a
key is a predicate, and a value is a pair of a list of subject
IDs and a list of object IDs.
RDF-3X [78] is an example of exhaustive indexing over a

single giant TT by using optimized data structures. Triples
are stored in a clustered B+ trees in lexicographic order.
The values inside the B+ tree are delta encoded [78] to
further reduce the space required for storing these indexes.
A triple < S,P,O > is indexed in six possible ways – spo,
sop, pso, pos, osp, ops –, one for each possible ordering of the
subject s, predicate p, and object o. These indexes are called
compressed indexes in RDF-3X. In addition, RDF-3X makes
use of the six aggregated indexes – (sp, ps, so, os, po, op –
each of which stores only two out of the three components of
a triple along with an aggregated count which is the number
of occurrences of this pair in the full set of triples. The
aggregated indexes (value1, value2, count) are helpful for
answering SPARQL query of type "select?a?cwhere?a?b?c
". Finally, three one value indexes (value1, count) are also
maintained for storing the count of the s, p, and o. Thus, all
together 15 indexes are created in RDF-3X. SPARQL query
processing and the selection of optimized query execution
plan is based on a cost model which calculates the cost of
the different plans and select the plan with minimum cost.

RIQ [61] is based on the storage of RDF data as new
vector representation. This is achieved by applying different
transformations related to a triple in RDF graph and a triple
pattern in a BGP. RIQ also maps a graph with context
c to pattern vector (PV). This is done by hash function
based on a Rabin finger printing technique [88]. New vector
representation helps to groups same RDF graph. Inspite
of whole RDF graph, these similar groups are indexed in
RIQ. A novel filtering index called PV-Index is used for this
purpose. This index is used to identify candidate RDF graph
early. It is a combination of a Bloom filter and a Counting
Bloom Filter for compact storage. RIQ employs a divide
and conquer approach for SPARQL query processing. This
approach works on the identification of early groups by PV-
Index. After the identification different optimizations are
applied and SPARQL query is rewritten and executed on the
SPARQL processor which support quads to represent final
output.
Stardog33 storage is based on the RocksDb34, a persis-

tant key-value store for fast storage. It supports the triple-
permutation indexes where triples are represented as quads,
thus the fourth element of the quad (i.e, the context) is also
indexed. It supports SPARQL 1.1, full-text search through
Lucene and ACID transactions. The query planning is based
on index search with support for different types of joins such
as hash join, bind join, merge join etc.
gStore [133] is a graph-based engine that stores RDF

triples in the form of directed, multi-edge graph. The subject
and object of a triple is represented by graph nodes and
the corresponding predicate represents a directed link from
subject node to object node. Multi edges between two nodes
can be formed if there exist more than one property relation
between the subject and object. The RDF graph is stored
in an adjacency list table and encoded into a bitstring, also
called vertex signature. The bitstring encoding of the graph
is been done by using different hash functions [23]. gStore
uses two trees for indexing: (1) a height-balanced S-tree [26],
and (2) VS-tree (vertex signature tree). The S-tree index can
be used to find attribute values in the adjacency list specified
in a query. But it is not able to support multi-way joins
over attribute values. To solve this problem, gStore makes
use of the VS-tree. Same like graph encoding, a SPARQL
query is also represented as signature graph called query
signature. Consequently, query execution problem is reduce
to the sub-graph matching problem where query signature
graph is matched against the graph signature.
Strabon [66] is used for storing and querying geospatial

data, which exists in the form of stRDF, originally presented
in [65]. Strabon is built upon Sesame also known as RDF4J.
Sesame is chosen because it is an open-source nature, consists
of layered architecture, offers a wide range of functionalities
and it has the ability to have PostGIS, which is a database
management system with spatial features. Strabon has three
components which consists of the storage manager, the query
engine and PostGIS. The storage manager of Strabon makes
use of a bulk loader to store stRDF triples. These triple
are stored in a storage scheme of Sesame, "one table per
predicate" and dictionary encoding. For each of predicate
and dictionary tables, Strabon creates a two B+ tree two-
column indexes and a B+ tree index on the id column re-

33https://www.stardog.com/docs/7.0.0/
34RocksDB: https://rocksdb.org/

18

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://rocksdb.org/
https://doi.org/10.20944/preprints202005.0360.v3

spectively. Strabon has new extension of SPARQL query
language, stSPARQL [65] to query stRDF based datasets.
The query engine of Strabon performs the query execution.

It consists of a parser, an optimizer, an evaluator and a trans-
action manager. The parser and the transaction manager
are same like in a Sesame. An optimizer and an elevator
are modified in Strabon. The parser generates an abstract
syntax tree, which becomes a query tree by mapping into
the Sesame’s algebra. The the optimizer takes the query tree
and applies different optimizations and then an evaluator
produces the corresponding SQL query. This SQL query will
be executed on PostgreSQL.
BitMat [10] as in example of binary data storage which

makes use of the three-dimensional (subject, predicate, ob-
ject) bit matrix which is flattened to two dimensions for
representing RDF triples. In this matrix, all the values used
are either 0 or 1, representing the absence or presence of that
triple. BitMat further compress the data on each row level.
In particular, BitMat creates three auxiliary tables to get
mappings of all distinct subjects, predicates, and objects to
the sequence-based identifiers. Bitwise AND/OR operators
are used to process join queries.
Triplebit [129] stores RDF data in the form of bit matrix

storage structure [10] and applies an encoding mechanism to
compress huge RDF graphs. The RDF triples are represented
as a two-dimensional bit matrix. The columns of the matrix
represents triples, with only bit value entries for subject
and object of the triple. Each row is defined by a distinct
entity value which represents set of triples which contain
this entity. TripleBit vertically partitions the matrix into
multiple disjoint buckets, one bucket per predicate. Two
indexes are used in TripleBit namely ID-Chunk bit matrix
and ID-predicate bit matrix. The former supports a fast
search for finding the relevant chunks for given subject or
object. The later provides a mapping of a subject or an
object to the list of corresponding predicates to which it
relates. A dynamic query planning algorithm is used to
generate the optimized SPARQL query execution plans, with
the aim of minimizing the size of intermediate results as
early as possible. Merge joins are used extensively in the
generated optimized query execution plans.
DB2RDF [14] uses a relational schema consisting prop-

erty tables to store RDF data. The storage is based on the
encoding scheme which encodes a list of properties for each
subject in a single row. DB2RDF does not create any specific
index over triple < s, p, o >. However, the property tables
can be naturally regarded as subject based index to quickly
locate all the properties and the corresponding objects for the
given subject instance. DB2RDF performs query optimiza-
tion in two steps. In the first step SPARQL is optimized, and
in the second step SPARQL to SQL translation is optimized.
RDFox [76] is an in-memory RDF engine that supports

materialisation-based parallel datalog reasoning and SPARQL
query processing. The RDF triples are stored in TT. Three
different types of indexes are created over the TT namely
ThreeKeysIndex, TwoKeysIndex, and OneKeyIndex. These
indexes are used to efficiently answer the different types of
triple patterns (ref. Figure 6). For example, the ThreeKeysIndex
can be used for answering triple patterns containing bound
subjects, predicates, and objects (i.e., variable-free patterns).
The TwoKeysIndex can be used for answering triple patterns
containing one or two variable. Each TwoKeysIndex con-
tains a OneKeyIndex that is used to locates the first triple

in the relevant list with the given resource ID. RDFox an-
swers SPARQL queries by using its querying package, which
first parse the SPARQL query int a query object. Then,
the SPARQL compiler converts the query object into a
TupleIterator that provides iteration over the answers. RD-
Fox contains many different TupleIterator variants such
TableIterator supports iteration over SPARQL triple pat-
terns, DistinctIterator implements the “DISTINCT” con-
struct of SPARQL etc.
AMBER (Attributed Multigraph Based Engine for RDF

querying) [51] stores all of its RDF data in the form of multi-
graph. It creates three different dictionaries of key value
pairs namely a vertex dictionary, an edge-type dictionary and
attribute dictionary. Same like three dictionaries, AMBER
creates three indexes: first is an inverted list to store the set
of data vertex for each attribute, second is a trie index for
storing features of the data vertices, and third is also a trie
index structure for storing information of neighbours of the
data vertices. SPARQL query in AMBER is transformed
into a query mutligraph and then applied on the data multi-
graph. Results are obtained by using the subgraph matching
mechanism of the query and data multigraphs.

9.2 Distributed RDF Engines
The distributed RDF engines can be divided into four

broader categories : (1) No-SQL-based, (2) Hadoop/Spark-
based, (3) Distributed memory-based, and (4) others, e.g.,
MPI-based, Graph-based. Our discussion is focused towards
the storage, indexing, query processing, and partitioning in
state-of-the-art distributed RDF engines.
AllegroGraph40 can be used to store and query both

documents (e.g. JSON) and graph data (e.g. RDF). The
data is horizontally distributed also called shards. It uses
efficient memory management in combination with disk-based
storage, enabling it to scale up to billions of quads. For RDF
data, it makes use of the triple-permutation indexes along
with named graph and triple id. The default indexes are:
are: spogi, posgi, ospgi, gspoi, gposi, gospi and i, where s
is the subject, p is the predicate, o is the object of a triple
pattern, g is the named graph and i is the unique ID of the
triple. Query processing is based on two components 41. The
first is a simple static query analyzer, which indicates the
best indexes to be used during query processing. The second
one is a dynamic query analyzer, which processes the query
and determines which indexes are actually used. There is
a trade-off in the use of the dynamic query analyzer: by
providing better information, it takes a much longer time
processing the query.
Blazegraph42, formerly known as BigData, is an open-

source graph database system which supports both RDF and
SPARQL. Blazegraph supports both row and column data
storage models, which can be saved both in-memory or on a
disk. Indexing is dependent on the triples or quads or triples
with provenance. Based on the type of triple Bigdata creates
three or six key-range partitioned B+ tree indexes. Indexing
in Bigdata is like in YARS. Dictionary encoding with 64bit
integers is used for compressed representation of RDF triples.
The query optimizer of Bigdata generates optimized query
execution plans according to two different approaches: the

40https://franz.com/agraph/allegrograph/
41https://franz.com/agraph/support/documentation/current/query-
analysis.html

42https://blazegraph.com/

19

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

Table 10: Categorization of distributed RDF Engines.
Storage (T = Triple Table, P = Property Table, V = Vertical Partitioning, G = Graph-based, M = Miscellaneous)
Indexing (P = Predicate-based, T = Triple-permutation, B = Backend Database, N = No-indexing, M = Miscellaneous)
Language (S = SPARQL, T = SPARQL Translation, O = Others Languages)
Query Processing (S = Statistics-based, T = Translation-based, A = API-Based, G = Subgraph Matching-based, M =
Miscellaneous)
Partitioning (W = Workload-based, H = Hash-based, G = Graph-based, V = Vertical, M = Miscellaneous, N = No
partitioning, R= Range Partitioning)

Storage Indexing Language Query Processing Partitioning

Engine T P V G M P T B N M S T O S T A G M W H G V M N R
Allegrograph35 3 3 3 3 3
Blazegraph 36 3 3 3 3 3
YARS2 [46] 3 3 3 3 3 3
SHARD [90] 3 3 3 3 3
4store [43] 3 3 3 3 3
Virtuoso [30] 3 3 3 3 3
HDT [32] 3 3 3 3 3
H-RDF-3X [50] 3 3 3 3 3 3
GraphDB 37 3 3 3 3 3
CumulusRDF [44] 3 3 3 3 3
Rapid+ [89] 3 3 3 3 3
Jena-HBase [62] 3 3 3 3 3 3 3 3 3
Rya [86] 3 3 3 3 3 3
AMADA [9] 3 3 3 3 3 3
H2RDF [83] 3 3 3 3 3
SHAPE [67] 3 3 3 3 3 3
WARP [49] 3 3 3 3 3
PigSPARQL [102] 3 3 3 3 3
EAGRE [132] 3 3 3 3 3
H2RDF+ [82] 3 3 3 3 3
Trinity.RDF [131] 3 3 3 3 3
D-SPARQ [75] 3 3 3 3 3
CliqueSquare [34] 3 3 3 3 3 3
TripleRush [113] 3 3 3 3 3
chameleon-db [8] 3 3 3 3 3
Partout [33] 3 3 3 3 3
Sempala [103] 3 3 3 3 3
TriAD [39] 3 3 3 3 3
SparkRDF [19] 3 3 3 3 3 3
SemStore [123] 3 3 3 3 3 3
DREAM [40] 3 3 3 3 3
DiploCloud [125] 3 3 3 3 3
SPARQLGX [102] 3 3 3 3 3
S2RDF [104] 3 3 3 3 3
AdPart [41] 3 3 3 3 3
S2X [101] 3 3 3 3 3
gStoreD [85] 3 3 3 3 3
Wukong [108] 3 3 3 3 3
SANSA [68] 3 3 3 3 3
Stylus [48] 3 3 3 3 3
Koral [55] 3 3 3 3 3 3
PRoST [24] 3 3 3 3 3
WORQ [71] 3 3 3 3 3
Anzograph38 3 3 3 3 3
Neptune39 3 3 3 3 3 3
HF,VF,MF [84] 3 3 3 3 3
DiStRDF [119] 3 3 3 3 3 3
Leon [38] 3 3 3 3 3
DISE [52] 3 3 3 3 3

default approach uses static analysis and fast cardinality
estimation of access paths, the second approach uses runtime
sampling of join graphs. In remove the scaling limit, the
Blazegraph employs a dynamically partitioned key-range
shards.
YARS2 (Yet Another RDF Store, Version 2) [46] data

storage is based on RDF quads (subject, predicate, object,
context). The main focus of YARS2 is on the distributed

indexing. The index manager in YARS2 uses three indexes
namely keyword index, quad index and join index for evaluat-
ing queries. The keyword index is used for keyword lookups.
The quad indexes are the triple permutation indexes, applied
on YARS2 RDF quads. The join index helps speeding up
query execution, containing certain combinations of values,
or paths in the graph. YARS2 also uses SPARQL as its query
language. YARS2 performs the distributed query execution

20

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

by using optimized methods for handling the network traffic
and avoiding memory overheads, index loop joins, and dy-
namic programming for joins ordering. Finally, a hash-based
data placement used for quads indexing.
SHARD [90] is Hadoop-based distributed RDF engine,

which employs hash-based data distribution. It stores RDF
data in flat files on HDFS in a way that each line presents
all the triples associated with a subject resource of the RDF
triple. Input dataset is hash partitioned, so that every parti-
tion contains the distinct set of triples. There is no specific
indexing employed in SHARD. Query execution is performed
through MapReduce iterations: first, it collects the results
for the sub-queries, following by the joins, and finally filter-
ing is performed for bounded variable and to remove the
redundant results.
4store [43] stores data in quad (model, subject, predicate,

object), where model represents the graph in which triples
are saved. The partitioning of data among n partitions is
exactly same like subject-based-hashed partition. However,
RIDs (Resource IDentifiers) [120] values of the triple sub-
jects are used instead of using hashing function over the
subject component of the triple. The allocation of triples
to a specific partition is based on the formula defined as:
n = RID(subject)modn. Three different types of indexes
are used in 4Store namely R , M, and P indexes. RDF Re-
sources, i.e. URIs, Literals, and Blank Nodes are represented
as triple (rid, attr, lexical value), and stored in a bucketed,
power-of-two sized hash table, known as the R Index. The M
index is created over named graphs or model. It is basically
a hash table which maps named graphs to the corresponding
triples in the named graph. The P Indexes (two for each
predicate) corresponds to the predicates and consist of a set
of radix tries [73], using a 4-bit radix. The query engine is
largely based on Relational Algebra. The join ordering is
based on the cardinality estimations.
Virtuoso [30] stores RDF data as single table with four

columns: Subject (s), Predicate (p), Object (o), and Graph
(g), where s, p and g are IRIs, and o may be of any data
type. The Virtuoso makes use of the dictionary encoding
for IRI’s and literals used in the triples. It creates a fewer
number of indexes. The gspo is the default index used in
the Virtuoso. In addition, it creates an auxiliary bitmap
index opgs. Query execution is based on the translation of
SPARQL queries into SQL to be executed on the underlying
database backend. The optimized query plan generation is
based on the cost estimations functions. Virtuoso partitions
data using subject-hash-based partitioning.
The Header Dictionary Triples HDT [32] is a compressed

representation of RDF data, which consists of three com-
ponents : (1) a Header which contains metadata about the
dataset, (2) a Dictionary which encodes strings into integers,
and (3) Triples which are encoded in a binary format. For
each distinct subject in the dataset, a binary tree is created,
which consists of three levels. The subject is the root of the
tree, followed by the list of predicates and objects containing
the given subject. Thus, HDT data structure is naturally
indexed by subject. The triple patterns with bound subjects
can be directly answered from the binary tree corresponding
to the given bound subjects. Additionally, an object-based
index is created to facilitate executing triple patterns with
bound objects. The join between triple patterns is performed
by using merge and index joins. The HDT framework in-
cludes distributed query processing tools using Hadoop as

well.
H-RDF-3X [50] is a Hadoop-based distributed RDF en-

gine that uses RDF-3X on a cluster of machines. To reduce
the communication cost and speedup the query processing, it
also leverages n-hop guarantees data replication at workers
nodes. A graph-based partitioning (based on METIS) is used
to distribute triples among multiple worker nodes. The query
execution is based on the RDF-3X and/or Hadoop, which
utilizes the RDF-3X’s internal statistics to generate efficient
query plans. Please note that the presented architecture is
flexible and can be replaced with any other centralized RDF
engine.
GraphDB storage43 is packaged as Storage and Inference

Layer (SAIL) component for the RDF4J framework44. The
Sail API is a set of Java interfaces that support RDF storing
in different mechanism, e.g., using relational databases, file
systems, in-memory storage etc. GraphDB contains many
automatic indexes apply to implicit or explicit triples. Two
main triple-permutation indexes namely Predicate, Object,
Subject (POS) and Predicate, Subject, Object (PSO) are
created in GraphDB. Furthermore, it also creates an optional
PSCO and POCS indexes, where C stands for the context.
Finally, it also creates literal index for efficient data storage
and lookup. The SPARQL query execution is based on
RDF4J framework. The GraphDB EE is a master-slave-
based distributed RDF engine, where each cluster has at
least one master node that manages one or more worker
nodes, each hosting the full database copy.
CumulusRDF [44] works on top of the Apache Cassan-

dra, an open-source nested key-value store. Two data storage
layouts namely hierarchical layout and flat layout are imple-
mented in CumulusRDF. The hierarchical layout is based
on Cassandra’s supercolumns. The flat layout is based on
a standard key-value storage model. Three indexes namely
SPO, POS, OSP are created to satisfy all six RDF triple
patterns.CumulusRDF also supports a new index CSPO,
for RDF named graphs by storing quads [1]. There are no
dictionaries created in CumulusRDF. The distribution of
data among multiple hash tables is based on hashing RDF
triples. For query processing, Sesame processor translates
the queries into index lookups of Cassandra.
Rapid+ [89] is a Pig-based system that uses a Vertical

Partitioning (VP) strategy for storing RDF data. The SPLIT
command of Pig is used to store data in VP tables. The
main goal of the presented approach is to minimize the com-
munication and I/O costs during the map-reduce operations
while processing SPARQL queries on top of RDF in the Map
Reduce frameworks. To achieve this goal, an intermediate
algebra called the Nested TripleGroup Algebra (NTGA) was
introduced in combination with predicate-based indexing
structure. The NTGA is used for efficient translation of
SPARQL queries into PigLatin operations.
Jena-HBase [62] is an HBase backed RDF engine that can

be used with the Jena framework. The Jena-HBase supports
a variety of custom-built RDF data storage layouts for HBase
namely namely Simple, Vertical Partitioned, Indexed, Hybrid
and Hash over several HBase tables. The indexes used in
Jena-HBase depend on the storage layout. Experimental
evaluation shows the superiority of Hybrid layout, which
leverages the advantages of multiple layouts. For querying,

43http://graphdb.ontotext.com/
44https://rdf4j.org/

21

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

Jena-HBase has query runner block that provides APIs for
different storage layouts.
Rya [86] employs Accumulo, a key-value and column-

oriented store as its storage backend. However, it can also
uses any other NoSQL database as its storage component.
Rya stores three index permutations namely SPO, POS,
and OSP. The query processing is based on the OpenRDF
Sesame SAIL API. In particular, index nested loop joins are
used for SPARQL query execution using MapReduce fashion.
The count of the distinct subjects, predicates, and objects
is maintained and used during joins reordering and query
optimization. These counts are only updated in case of data
distribution changes significantly.
AMADA [9] is implemented on Amazon Web Services

(AWS) cloud infrastructure. This infrastructure supports
storage, indexing and querying as software as a service
(SAAS). The indexes are built using using SimpleDB, and
key-value storage solution which supports SQL queries. Sim-
pleDB supports several indexing strategies. One in them
is attribute indexing which creates three indexes for three
elements of a triple. In AMADA, query is submitted to a
query processor module running on EC2. After that, indexes
are lookup in SimpleDB to find the answers related to a
query. Results are written in a file stored in S3, whose URI
is sent back to the user to retrieve the query answers.
H2RDF [83] stores data as multiple indexes over HBase,

in combination with Hadoop framework. In H2RDF, three
permutations of S,P,O (SPO, POS, and OSP) are created
over the HBase tables in the form of key-value pairs. The
query planning is based on the selectivity information and
cost estimation of joins.
The Semantic Hash Partitioning-Enabled distributed RDF

data management system (SHAPE) [67] uses RDF-3X to
store RDF triples across nodes of a cluster. Distribution of
triples is done by using semantic hash partitioning based
on the URI hierarchy: triples with the same Subject or
Object are identified and are placed in the same partition.
Same like RDF-3X, it creates an indexes covering all possible
permutations of Subject, Predicate, and Object, which are
stored as clustered B+ trees. Distributed query execution
planner coordinates the intermediate results from different
client machines, which are loaded into HDFS and joined
using MapReduce Hadoop joins.
Workload-Aware Replication and Partitioning (WARP)

[49] also uses RDF-3X to store triples in partitions among
a cluster of machines. The distribution of triples among
clusters is based on given query workload containing a set of
SPARQL queries. To reduce the inter-cluster communication
cost, WARP supports n-hop guarantee replication. WARP
also uses the underlying RDF-3X indexes. Multi-pass queries
(MPQ) consisting of many triple patterns are converted into
one pass queries (OPQ). This conversion is based on the
replication of triples at the border of partition. For each of
one pass queries, query optimizer creates an execution plan
made up of left deep joins tree. One pass query is executed in
parallel by all the slave machines, and results are combined
using merge joins.
PigSPARQL [102] uses VP for storing triples. Due to

no indexing, PigSPARQL is well suited for "Extract, Trans-
form, Load" like scenarios. The main component of the
PigSPARQL is a translation of SPARQL queries into Pig
Latin [79] scripts on Apache Pig. The translation is based on
the algebraic representation of SPARQL query expressions.

In the first step, an abstract syntax tree is generated from
the SPARQL query using the Jena ARQ framework. The
abstract syntax tree is then translated into the SPARQL
algebra tree. At this point, based on selectivity information,
optimization for filters and rearrangement of triple patterns
are applied. Then this optimized algebra tree is traversed bot-
tom up to generate PigLatin expressions for every SPARQL
algebra operator. After this, these PigLatin expressions are
mapped into MapReduce iterations.

Entity Aware Graph compREssion technique (EAGRE)
[132] stores RDF data in HDFS in a (key, value) fashion that
preserves both semantic and structural information of the
RDF graphs. It employs a graph-based data partitioning
using Metis [59]. EAGRE adopts a space-filling curve
technique, an in-memory index structure which is used to
index high dimensional data to efficiently accelerate the
evaluation of range and order-sensitive queries. The SPARQL
query processing in EAGRE is completed using worker nodes.
The I/O cost is minimized by using efficient distributed
scheduling approaches.
H2RDF+ [82] uses HBase45 tables to store RDF data,

dictionaries, and indexes. It makes use of the distributed
MapReduce processing and HBase indexes. The cost of the
different query joins is estimated by using the stored statistics
in the indexes. H2RDF+ adaptively chooses for either single-
or multi-machine execution based on the estimated join
costs. It makes use of the distributed MapReduce based
implementations of the multi-way Merge and SortMerge join
algorithms.
Trinity.RDF [131] has been implemented on top of Trin-

ity [106], a distributed memory-based key-value storage sys-
tem. It stores RDF data in native graph from which is
partitioned across multiple clusters by applying hashing on
nodes. The distributed SPARQL query processing is man-
aged by using graph exploration, assisted by predicates and
triple permutation indexes (which are like PSO or POS).
D-SPARQ [75] is a distributed RDF engine implemented

on top of MongoDB, a NoSQL document database. D-
SPARQ takes RDF triples as an input and makes a graph.
The graph is then partitioned among nodes of a cluster such
that triples with the same subject are placed in the same
partition. In addition, a partial data replication is then
applied where some of the triples are replicated across dif-
ferent partitions for parallel execution of queries. Grouping
the triples based on the same subject enables D-SPARQ to
efficiently execute star patterns queries (i.e., subject-subject
joins). D-SPARQ indexes involve subject-predicate (sp) and
predicate-object (po) permutations. For query execution,
D-SPARQ employs a selectivity of each triple pattern to
reorder individual triple pattern in star pattern queries.
CliqueSquare [34] is a Hadoop-based RDF engine used

to store and process massive RDF graphs. It stores RDF
data in VP tables fashion using semantic hash partitioning.
The goal is to minimize the number of MapReduce jobs and
the amount of data transfer. In CliqueSquare, the objective
of the partitioning is to enable co-located or partitioned
joins. In these joins, RDF data is placed in such a manner
that the maximum number of joins are evaluated in a map
phase of the map-reduce system. In addition, CliqueSquare
also maintains three replicas for fast query processing and
increased data locality. In order to apply SPARQL queries on

45https://hbase.apache.org/

22

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

RDF dataset, the CliqueSquare uses a clique-based algorithm,
which divides a query variable graph into clique sub-graphs.
This algorithm works in an iterative way to identify cliques
and to collapse them by evaluating the joins on the common
variables of each clique. The process ends when the variable
graph consists of only one node.
TripleRush [113] is based on the Signal/Collect [112],

a parallel and distributed graph processing framework. In
TripleRush, three types of vertices exit namely the triple
vertices, the index vertices, and the query vertices. The triple
vertices correspond the RDF triples with each vertex contains
subject, predicate, and object of the RDF triple. The index
vertices correspond to the SPARQL triple patterns and used
for matching triple patterns against the RDF triples. The
query vertices coordinate the query execution. In TripleRush,
index graph is formed by index and triple vertices. A query
execution is initialized when a query vertex is added to
a TripleRush graph. Then a query vertex emits a query
particle which is routed by the Signal/Collect to index vertex
for matching. There is no partitioning performed in this
framework.
chameleon-db [8] an example of workload-aware RDF

graph partitioning and distributed RDF engine. It stores
RDF data as graph and SPARQL query is represented as
graph as well, thus the query execution is reduced to sub-
graph matching problem. The query execution is optimized
using workload-aware partitioning indexing technique, which
an incremental indexing technique using a decision tree to
keep track of the relevant segments of the queries. It also
uses a vertex index which is a kind of hash table containing
URIs of vertices in a subset of partitions. It also maintains
a range index to keep track of the minimum and maximum
literal values.
Partout [33] also uses RDF-3X for storing RDF triples

which are partitioned by using Workload-aware partitioning
technique. The goal of the partitioning to group all RDF
triples in a same partition which are likely to be queried
together in SPARQL queries. RDF-3X in Partout creates
indexes covering all possible permutations of Subject, Pred-
icate, and Object, which are stored as clustered B+ trees.
The SPARQL query is issued at a server which generates a
suitable query plan according to RDF-3X execution model
by utilizes a global statistics file, which contains information
about partitions definition, size, and mapping to a client.
The centralized execution plan of RDF-3X is transformed
into a distributed plan, which is then refined by a distributed
cost model to resolve the triples locations in a cluster. The
refined query plan is executed by client machines in paral-
lel, and the final results are joined by Binary Merge Union
(BMU) operation.
Sempala [103] uses Parquet46 (a columnar storage format

for Hadoop) for storing RDF triples. The Parquet is designed
for supporting a single wide table and thus Sempala uses
a single Unified Property Table (UPT) for string complete
RDF triples. Sempala does not maintain any additional
index. The query execution is performed by translating
SPARQL queries into SQL which is executed on top of UPT
by using Apache Impala.
Triple Asynchronous and Distributed (TriAD) [39]

implements a main memory, master-slave, and shared-nothing
architecture based on asynchronous Message Passing pro-

46http://parquet.apache.org

tocol. It is based on classical master-slave architecture in
which query processing is performed by the slave nodes using
autonomous and asynchronous messages exchange. It im-
plements a graph summarization approach for data storage
and to facilitate join-ahead pruning in a distributed envi-
ronment. It creates indexes both at master and slave nodes.
The summary graph is indexed in the adjacency list format
in large in-memory vectors. A hash partitioning on PSO
and POS permutations is applied to distribute data among
slave nodes. The slave nodes create six in-memory vectors of
triples received from the master node. These are divided into
two parts namely Subject-based and Object-based. Subject-
based are SPO, SOP, PSO while object-based are OSP, OPS,
POS. The SPARQL query execution is based on the stored
indexes, dynamic programming, and distributed cost model.
SparkRDF [19] is a Spark-based RDF engine which dis-

tributes the graph into multi-layer elastic subgraphs (MESG)
by extending vertical partitioning. MESGs are based on the
classes and relations to reduce search space and memory
overhead. SparkRDF creates five indexes, i.e., C, R, CR,
RC and CRC, where C stands for Class subgraphs and R
denotes Relation subgraphs. These indexes are modeled
as Resilient Discreted SubGraphs (RDSGs). For SPARQL
query processing, SparkRDF employs Spark APIs and an
iterative join operation to minimize the intermediate results
during subgraph matching.
SemStore [123] follows a master-slave architecture having

one master node and many slave nodes. It uses a centralized
RDF engine Triplebit as its storage component. The par-
titioning of data in SemStore is based on creating Rooted
Sub-Graphs (RSGs) to effectively localize SPARQL queries
in particular shapes, e.g., star, chain, tree, or a cycle that
captures the most frequent SPARQL queries. It implements
hash function to assign RSGs to slave nodes. In order to
reduce redundancy and localize more query types, a k-mean
partitioning algorithm is used to assign RSGs to a cluster
nodes. After partition, the data partitioner creates a global
bitmap index over the vertices and collect the global statis-
tics. The slave nodes builds local indexes and statistics to
be used during local join processing. The SPARQL query
is submitted to a master node which parses the query and
decides the query as local or distributed. In case of a dis-
tributed query, query is distributed among slave nodes as
subqueries and executed on the bases of local indexes and
statistics.
DREAM [40] uses RDF-3X single node RDF engine as its

storage component. It replicates an entire dataset on every
node with RDF-3X installed. This replication causes storage
overhead but avoids inter partition communication among
cluster nodes. DREAM creates indexes covering all possible
permutations of Subject, Predicate, and Object, stored as
clustered B+ trees. In the query execution phase, the given
SPARQL query is first represented as directed graph, which
is divided into multiple sub-graphs to be distributed among
the compute nodes. The results of the query sub-graphs are
combined by using hash-based algorithm.
DiploCloud [125] makes use of three data structures

namely the the molecule clusters, template lists, and a
molecule index. The molecule clusters create RDF subgraphs,
co-locating semantically related data to minimize inter-node
operations. The template lists are used to store RDF literals
in lists. The molecule index is used to index URIs in the
molecule clusters. The storage is based on a single node

23

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

system called dipLODocus [127]. DiploCloud is based on
the master slave architecture. The master node contains the
key index encoding of URIs into IDs, a partition manager
and distributed query executor. The worker node contains
a type index, local molecule cluster and a molecule index.
In SPARQL query execution, the master node distributes
the subqueries among slave nodes, which run subqueries and
return intermediate results to a master node. It makes use
of the different partitioning strategies like Scope-k Molecules,
Manual Partitioning and Adaptive Partitioning to distribute
data among cluster.
SPARQLGX [36] vertically partitioned RDF triples by

predicates and stores in Hadoop Distributed File System
(HDFS) [109]. A seperate file is created for each unique
predicate in the RDF, thus each file contains only subject
and object. It translates SPARQL queries into Scala code
which is then directly executed by using Spark.
S2RDF [104] translates SPARQL queries into SQL which

is run on of Spark [130]. The storage is based on an extended
version of the vertical partitioning with special cares for
tuples that do not find a join partner when performing a
join between SPARQL triple patterns. It makes use of the
selectivity information for query planning and join ordering.
AdPart [41] is a distributed RDF engine that follows

a typical Master-Slave architecture and is deployed on a
shared-nothing cluster of machines. The master initially
partitioned the data by using by hashing on the subjects of
triples. The slave stores the corresponding triples using an
in-memory data structure. Within the worker node, AdPart
primarily hash triples by predicate, leading to a natural
predicate-based index (P-index). In addition, each worker
maintain predicate-subject index (PS-index) and predicate-
object index (PO-index). The SPARQL query processing is
done by using cost estimations using stored statistics.
S2X [101] processes SPARQL queries on the top of the

Spark component called GraphX [35]. The triples stored
among different worker machines after applying hash-based
encoding on Subject and Objects through GraphX default
partitioner. It converts the RDF graph into a property
graph, which is the data model used by GraphX. S2X does
not maintain any indexing. For SPARQL query processing,
it combines matching of graph patterns with relational style
operators to produce solution mappings. Relational operators
of SPARQL are implemented through Spark API.
gStoreD [85] is based on the strategy of partitioning the

data graph but not decomposing the query. It stores triples
by modifying the centralized RDF engine gStore [133], which
stores RDF triples in an adjacency list table and encodes
them into a bitstring also known as vertex signature. There
is no indexing mechanism used in gStoreD. The SPARQL
query processing is based on sub-graph matching.
Wukong [108] stores RDF data in a form a directed graph

on a distributed key-value store. It maintains two kinds of
indexes: a normal vertex index which refers to a subject
or object of a triple; and a predicate index which store all
subjects and objects labeled with the particular predicate. In
order to distribute SPARQL queries among cluster machines,
Wukong makes use of the Remote Direct Memory Access
(RDMA). Each query is divided into multiple subqueries
on the basis of the selectivity and complexity of queries.
Wukong employs a graph exploration mechanism with Full
History Pruning to remove intermediate results during query
execution.

Semantic Analytics Stack(Sansa) [68] is a SPARK-
based distributed RDF data management system. It makes
use of the extended Vertical partitioning (VP) of RDF data
stored in HDFS. Since the data is vertical partitioned by using
predicates of the triples, SANSA stack maintains a natural
predicate-based index. Sparklify [110] is used as default
query engine for SPARQL-to-SQL translation of SPARQL
queries into Spark SQL to be executed on top of Apache
Spark SQL engine.
Stylus [48] exploits a strongly-typed key-value storage

scheme called Microsoft Trinity Graph Engine [107]47. It
makes use of a data structure called xUDT for storing group
of predicates identified by a unique id. An index which maps
a given predicate to the unique id is maintained within Stylus.
Another index is used to retrieve entities within triples. A
random hashing is used to distribute RDF dataset over
cluster of servers. In Stylus, the SPARQL query processing
is reduced to sub-graph matching problem.
Koral [55] is a distributed system which offers the facility

of alternate approaches for each component in distributed
query processing. It is also based on the classic master-slave
architecture. It implements various RDF graph partition-
ing strategies (hash-based and graph-based) for distributing
data among computing nodes. SPARQL is used as a default
query language in Koral. It is an extension of asynchronous
execution mechanisms such as realised in TriAD. The query
execution mechanism is independent from the underlying
graph cover and can easily be replaced with another mecha-
nism.
PRoST [24] stores RDF data both as VP and PT and

hence take the advantages of both storage techniques with
the cost of additional storage overhead. It does not maintain
any additional indexes. SPARQL queries are translated into
Join Tree format in which every node represents the VP table
or PT’s subquery’s patterns. It makes use of the statistics-
based query optimizer. The data is distributed using vertical
partitioning.
WORQ [71] uses a query workload driven approach to

partition the given RDF data among multiple data nodes
which stores data in a Vertical partitioning manner. It uses
Bloom Filters as indexes over the Vertically partitioned tables.
The online reductions of RDF joins are performed by using
bloom filters. In addition, caching of RDF joins reductions
is performed to boost the query performance.
Anzograph48 stores data in a graph form and entirely

in memory. It can be installed on single or multiple nodes.
It does not require an explcit index created by the user.
SPARQL 1.1 queries are sent and received to different nodes
over HTTP. Query processing follows a master-slave architec-
ture. The query is issued at a master node which parse the
query and assign to the query planner. The query planner
decides the type of join or an aggregation needed for a query.
Then the code generator unites the different steps into seg-
ments, after that all the segments are packaged for query into
a stream. The master sends this stream to corresponding
nodes in parallel. The results are then sent back to master
and integrated into final query resultset.
Neptune49 works as graph database service to work with

highly connected datasets. Neptune stores RDF graph in

47https://github.com/Microsoft/GraphEngine.
48https://docs.cambridgesemantics.com/anzograph/userdoc/features.htm
49https://aws.amazon.com/neptune/

24

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

the form of a quad in Amazon S3. It implements three
index permutations, SPOG, POGS and GPSO. In addition
to three index permutations, each index permutation has
16 access patterns. Neptune stores all of its indexes in a
Hash tables. Datasets in Neptune can be queried through
SPARQL, Apache TinkerPop and Gremlin 50. Neptune
makes use of cardinality estimations and static analysis to
rewrite queries, which will be executed through the pipeline
of physical operators. In Neptune, there is no partitioning
of graphs, instead it stores 15 replicas at its master node.
HF, VF, MF [84] (Adaptive Distributed RDF Graph

Fragmentation and Allocation based on Query Workload)
stores RDF data in three types of fragmentation: Horizon-
tal Fragmentation (HF), Vertical Fragmentation (VF), and
Mixed Fragmentation (MF). The data fragmentation is per-
formed on the basis of frequently accessed patterns from
the query workload. It implements no indexing mechanism.
SPARQL query processing is based on the efficient fragmen-
tation across different partitions. It implements a cost-based
query planner.
DiStRDF [119] stores RDF data in an encoded form

using unique integer identifiers. It employs a special purpose
encoding scheme [117] for the encoding of RDF data stored
in CSV or Parquet. DiStRDF can handle data stored both
in TT or PT. It exploits range partitioning to distribute
data. For indexing, DiStRDF makes use of the predicate
pushdown mechanism offered by Spark with the combination
of Parquet. This mechanism helps to select the required
data by exploiting filters in the query. The query processing
is based on Spark. Query processing exploits the encoding
scheme to choose between different query execution plans.
The physical implementation of logical plans is selected on
the basis of static set of rules (rule-based optimization).
Leon [38] stores RDF data in a heuristics-based partition-

ing based on the characteristics set [77]. After encoding,
Leon evenly distributes the triples across different partitions.
It implements a bi-directional dictionary between id’s in
characteristics set and subjects. This dictionary is used as
an index. Leon follows a master-slave architecture for query
processing. By exploiting the characteristics set based par-
titioning, Leon minimizes the communication cost during
query evaluation.
DISE [52] stores RDF data as 3D tensors, a multidimen-

sional array of ordered columns . It performs the translation
of SPARQL queries into Spark tensor operation through
Spark-Scala compliant code.

10. SPARQL BENCHMARKS FOR RDF EN-
GINES

This discussion is adapted from [99] which analyzed dif-
ferent SPARQL benchmarks used to evaluate RDF engines.
The discussion is divided into two sections: first, we explain
the SPARQL benchmarks key design features, and then we
present an analysis of the existing SPARQL benchmarks.
The overall goal facilitates the development of benchmarks
for high performance in the future, and help RDF engines
developers/users to select the best SPARQL benchmark for
the given scenario and RDF engine.

10.1 Benchmarks Design Features
50https://dbdb.io/db/neptune

SPARQL query benchmarks are comprised of three ele-
ments i.e., RDF datasets, SPARQL queries, and performance
measures.
We first discussed the key features related to these elements

that are vital to take in account in the development of
RDF engine benchmarks. Then a high level analysis of the
datasets and queries used in latest RDF engines benchmarks
is presented.
Datasets. The datasets used in RDF engine benchmarks are
of two types namely synthetic and real-world RDF datasets [97].
Real-world RDF datasets are very useful as they contain
real world information [74]. On the other hand, synthetic
datasets are helpful to test the scalability under varying size
of datasets. Synthetic datasets of varying sizes are gener-
ated by different generators, which are tuned to reflect the
features of real datasets [27]. In order to select a datasets
for benchmarking RDF engines, two measures are proposed
by [99]. These two measures are (1) Dataset Structuredness,
(2) Relationship Speciality. The structuredness or coherence
measures how well a instances of different dataset covers
classes i.e., rdf:type. The value of structuredness of given
dataset lies between 0 which stands for lowest possible struc-
ture and 1 points to a highest possible structured dataset.
In RDF datasets, some resources are more distinguishable
from others, and more attributes are more commonly associ-
ated with these resources. The count of different predicates
related to each and every resource present in the dataset pro-
vides valuable insights about the graph structure of an RDF
dataset and makes some resources distinguishable from oth-
ers [87]. This type of relationship speciality is normal in real
datasets. The relationship speciality of RDF datasets can
be any positive natural number: the higher the number, the
higher the relationship speciality. The value of both struc-
turedness and relationship speciality of different datasets
directly affect the result size, the number of intermediate
results, and the selectivity values of the triple patterns in the
SPARQL query [99]. The formal definitions of these datasets
measures can be found in [99]. It is essential to mention that
besides the dataset structuredness and relationship speciality,
observations from the literature [94, 27] suggest that different
features of RDF datasets should be considered during selec-
tion of datasets for SPARQL benchmarking. These feature
for consideration are different number of triples, number of
resources, number of properties, number of objects etc.
SPARQL Queries. Saleem et al. [99] suggests that a
SPARQL querying benchmark should change queries in terms
of different query characteristics i.e., the number of projection
variables, number of triple patterns, result set sizes, query
execution time, number of Basic Graph Patterns, number of
join vertices, mean join vertex degree, mean triple pattern
selectivities, join vertex types, and highly used SPARQL
clauses etc. All of these characteristics impact on the runtime
performance of RDF engines. Saleem et al. [99] proposed a
composite measure containing these query features called the
Diversity Score of the benchmark queries. The higher the
diversity score, the more diverse the queries of the benchmark.
The Diversity score is defined as follows.

Definition 9 (Queries Diversity Score). Let µi presents
the mean and σi is the standard deviation of a given distri-
bution w.r.t. the ith feature of the given distribution. Then
the overall diversity score DS of the queries is calculated as
the average coefficient of variation of all the features k in a

25

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

query analyzed in the queries of benchmark B:

DS =
1

k

k∑
i=1

σi(B)

µi(B)

Performance Mesures. Saleem et al. [99] divided the
performance metrics for RDF engines comparison into four
broader categories:

� Query Processing Related: These measures are
related to query processing of the RDF engines, for
which query execution time is the most important.
However, since a benchmark usually contains many
queries, reporting of the execution time for each and
every query is not possible. For this problem, the
combined results are presented in terms of measures
like Query Mix per Hour (QMpH) and Queries per
Second (QpS) [99]. Overheads like intermediate results,
disk/memory swaps are important to measure during
the query executions [105].

� Data Storage Related: This category includes the
important performance measures like data loading time,
acquired storage space, and size of index. [99].

� Result Set Related: A fair comparison between two
RDF engines is only possible in case of production of
same results. In this regard measures of correctness
and completeness are considered [99].

� Parallelism with/without Updates: IGUANA, bench-
marks execution framework [22] is used to measure
triplestores capability of parallel query processing.

We now present a broader analysis of the different existing
RDF engines benchmarks containing the above-mentioned
features.

10.2 RDF Engines Benchmarks Analysis
Saleem et al. [99] considered the benchmarks according

to the inclusion criteria. The criteria include things like the
benchmark is used to evaluate query runtime performance
evaluation of triplestores. The criteria also includes that both
RDF data and SPARQL queries of the different benchmarks
are publicly available or can be generated (3) the queries must
not require reasoning to retrieve the complete results. RDF
engines benchmarks are divided into two main categories of
synthetic and real-data benchmarks.

10.2.0.1 Synthetic Benchmarks..
Synthetic benchmarks make use of the data (and/or query)

generators to generate datasets and/or queries for bench-
marking. Synthetic benchmarks are useful in testing the
scalability of RDF engines with varying dataset sizes and
querying workloads. However, such benchmarks can fail to
show the features of real datasets or queries. The Train
Benchmark (TrainBench) [115] covers different railway net-
works in terms of increasing sizes, and serialization of them
in different formats including RDF. The Waterloo SPARQL
Diversity Test Suite (WatDiv) [7] comes with a synthetic
data generator which produces RDF data. It also produces
an adjustable value of structuredness and a query generator.
The queries are generated from different query templates.
SP2Bench [105] covers the power-law distributions or Gaus-
sian curves of the data present in the DBLP bibliographic

database. The Berlin SPARQL Benchmark (BSBM) [13]
makes use of different query templates to generate various
number of SPARQL queries for the purpose of benchmark-
ing related to multiple use cases such as explore, update,
and business intelligence. Bowlogna [25] is used to model a
real-world settings which are derived specifically from the
Bologna process. Bologna mostly covers user needs in terms
of analytic queries. The LDBC Social Network Benchmark
(SNB) defines the Interactive workload (SNB-INT) to mea-
sure the evaluation of different graph patterns in a localized
manner. This happens when the graph is being continuously
updated [29]. LDBC also defines the Business Intelligence
workload (SNB-BI), this workload cover a queries that mix
aggregations with complex graph pattern matching with ,
covering a significant part of the graph [116], without any
updates.

10.2.0.2 Real-Data Benchmarks..
Real-data benchmarks make use of real-world datasets and

queries from real user query logs for benchmarking. Real-
data benchmarks are useful in testing RDF engines more
closely in real-world settings. However, such benchmarks
may fail to test the scalability of RDF engines with varying
dataset sizes and query workloads. FEASIBLE [97] is used
as a cluster-based SPARQL benchmark generator and uses
different SPARQL query logs. DBpedia SPARQL Benchmark
(DBPSB) [74] is an another cluster based approach based on
the generation of queries from logs of DBpedia, but it has
a separate techniques used for clustering. Another dataset
FishMark [11] dataset is obtained from FishBase51 and pro-
vided in variant of both RDF and SQL. In FishBase, the
log if web-based FishBase application provides the SPARQL
queries. The performance of biological datasets are evaluated
in BioBench [124]. It also evaluates the queries from five
different real-world RDF datasets52, i.e., Cell, Allie, PDBJ,
DDBJ, and UniProt.
Basic Statistics. Table 11 shows high-level statistics of the
selected datasets and queries of the benchmarks. In case
of the synthetic benchmarks, data generators, the datasets
chosen were also used in the original paper. In case of WatDiv,
DBPSB, SNB, being a template-based query generators, one
query per available template was selected. For FEASIBLE (a
benchmark generation framework from query logs), 50 queries
from DBpedia log was selected, for comparison with a WatDiv
benchmark which comes with 20 basic query templates and
30 extensions for testing.53

Structuredness and Relationship Speciality. Figure 13a
contains the structuredness values of the different bench-
marks. Duan et al. [27] first proposed this measure and
propose that the real-world datasets are low valued than syn-
thetic benchmarks in structuredness. The results show that
most of the synthetic benchmarks contain the structured-
ness feature. Even there are data generators, e.g WatDiv
generator, allow the users to generate a benchmark dataset
of according to their need of structuredness.

Figure 13b shows the relationship speciality values of
different benchmarks. According to [87], it is evident that
the values of relationship speciality shown by real world

51FishBase: http://fishbase.org/search.php
52BioBench: http://kiban.dbcls.jp/togordf/wiki/
survey#data

53WatDiv query templates: http://dsg.uwaterloo.ca/
watdiv/

26

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

http://fishbase.org/search.php
http://kiban.dbcls.jp/togordf/wiki/survey#data
http://kiban.dbcls.jp/togordf/wiki/survey#data
http://dsg.uwaterloo.ca/watdiv/
http://dsg.uwaterloo.ca/watdiv/
https://doi.org/10.20944/preprints202005.0360.v3

Table 11: Various high level statistics related to the data and queries used in the benchmarks. SNB represent SNB-BI and
SNB-INT because of using the same dataset.

Benchmark Subjects Predicates Objects Triples Queries

S
yn

th
et
ic

Bowlogna [25] 2,151k 39 260k 12M 16
TrainB. [115] 3,355k 16 3,357k 41M 11
BSBM [13] 9,039k 40 14,966k 100M 20
SP2Bench [105] 7,002k 5,718 19,347k 49M 14
WatDiv [7] 5,212k 86 9,753k 108M 50
SNB [29, 116] 7,193k 40 17,544k 46M 21

R
ea
l

FishMark [11] 395k 878 1,148k 10M 22
BioBench [124] 278,007k 299 232,041k 1,451M 39
FEASIBLE [97] 18,425k 39,672 65,184k 232M 50
DBPSB [74] 18,425k 39,672 65,184k 232M 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Da
ta

se
t s

tr
uc

tu
re

dn
es

s

Synthetic benchmark

Real data benchmark

(a) Structuredness

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

Da
ta

se
t r

el
at

io
ns

hi
p s

pe
cia

lty

(lo
g s

ca
le

)

Synthetic benchmark

Real data benchmark

(b) Relationship Specialty

Figure 13: Analysis of the different datasets used for RDF engines benchmarks.

datasets are higher than that of synthetic ones as shown
in Figure 13b. This is also presented by average figures of
(11098 vs 744). The relationship speciality values of real-
world datasets are much higher than that synthetic ones like
Bowlogna (8.7), BSBM (2.2), and WatDiv (22.0).
Diversity Score and Coverage. Figure 14 shows the
overall diversity counts of the benchmarks. In real-data
benchmarks, FEASIBLE generated benchmarks is the most
diverse. While in synthetic benchmarks, WatDiv is the most
diverse benchmark.

0

0.5

1

1.5

2

2.5

Q
ue

ri
es

 d
iv

er
si
ty

 s
co

re

Synthetic benchmark

Real data benchmark

Figure 14: Benchmarks with diversity counts

Table 12 shows each benchmark with its coverage percent-
age of SPARQL clauses and join vertices [93]. The table also
highlights the benchmarks with missing SPARQL constructs
and types of overused join vertices. A lot of vital SPARQL
constructs are missing from TrainBench and WatDiv queries.

Every query of FishMark contains at least one Star join
node.
Performance Measures Table 13 presents different bench-
marks with performance measures to compare triplestores.

Which RDF engine is the fastest?. One of the critical
questions is to know which RDF engine is the fastest in terms
of query runtimes? According to our analysis, no other study
compares both centralized and distributed RDF engines for
their query runtime performances. The performance evalua-
tions presented in the two most diverse SPARQL benchmarks,
i.e. FEASIBLE[97] and WatDiv[6], showed that Virtuoso
version 7.X is the fastest RDF engine. However, recently
there are more RDF engines developed, and even existing
engines are more improved in their new versions. As such,
it would be interesting to perform a combined performance
evaluation of both centralized and RDF engines.

11. RESEARCH PROBLEMS
This section illustrates the different research problems

found during the study. Both centralized and distributed
RDF engines lack the support for the update operation. Al-
though in some setups it is implemented in a batch-wise
manner, overall, it is immature. Indexing in RDF engines
also has a lot of research potential. A number of indexes
and the storage overhead caused by them require dedicated
research efforts. To execute complex queries containing mul-
tiple triple patterns results in large intermediate results.
These intermediate results cause network delay and I/O com-
munications. This problem requires efficient storage and

27

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

Table 12: Percentages of different SPARQL clauses and types of join vertices in different benchmark. SPARQL clauses:
DIST[INCT], FILT[ER], REG[EX], OPT[IONAL], UN[ION], LIM[IT], ORD[ER BY]. Join vertex types: Star, Path, Sink, Hyb[rid],
N[o] J[oin]. Zeros and Hundreds represent the missing and overused features respectively.

SPARQL Clauses Types of Join vertices
Benchmark DIST FILT REG OPT UN LIM ORD Star Path Sink Hyb. N.J.

S
yn

th
et
ic

Bowlogna 6.2 37.5 6.2 0.0 0.0 6.2 6.2 93.7 37.5 62.5 25.0 6.2
TrainB. 0.0 45.4 0.0 0.0 0.0 0.0 0.0 81.8 27.2 72.7 45.4 18.1
BSBM 30.0 65.0 0.0 65.0 10.0 45.0 45.0 95.0 60.0 75.0 60.0 5.0
SP2Bench 42.8 57.1 0.0 21.4 14.2 7.1 14.2 78.5 35.7 50.0 28.5 14.2
Watdiv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 64.0 26.0 20.0 0.0
SNB-BI 0.0 61.9 4.7 52.3 14.2 80.9 100.0 90.4 38.1 80.9 52.3 0.0
SNB-INT 0.0 47.3 0.0 31.5 15.7 63.15 78.9 94.7 42.1 94.7 84.2 0.0

R
ea
l FEASIBLE 56.0 58.0 22.0 28.0 40.0 42.0 32.0 58.0 18.0 36.0 16.0 30.0

Fishmark 0.0 0.0 0.0 9.0 0.0 0.0 0.0 100.0 81.8 9.0 72.7 0.0
DBPSB 100.0 48.0 8.0 32.0 36.0 0.0 0.0 68.0 20.0 32.0 20.0 24.0
BioBench 28.2 25.6 15.3 7.6 7.6 20.5 10.2 71.7 53.8 43.5 38.4 15.3

Table 13: Measures related to a query processing, data storage, result set, simultaneous multiple client requests, and dataset
updates in different benchmarks. QpS: Queries per Second, QMpH: Queries Mix per Hour, PO: Processing Overhead, LT:
Load Time, SS: Storage Space, IS: Index Sizes, RCm: Result Set Completeness, RCr: Result Set Correctness, MC: Multiple
Clients, DU: Dataset Updates.

Processing Storage Result Set Additional

Benchmark QpS QMpHPO LT SS IS RCm RCr MC DU

S
yn

th
et
ic

Bowlogna 7 7 7 3 7 3 7 7 7 7
TrainBench 7 7 7 3 7 7 3 3 7 3
BSBM 3 3 7 3 7 7 3 3 3 3
SP2Bench 7 7 3 3 3 7 3 3 7 7
WatDiv 7 7 7 7 7 7 7 7 7 7
SNB-BI 3 3 7 7 7 7 3 3 7 7
SNB-INT 3 3 7 7 7 7 3 3 7 3

R
ea
l

FEASIBLE 3 3 7 7 7 7 3 3 7 7
Fishmark 3 7 7 7 7 7 7 7 7 7
DBPSB 3 3 7 7 7 7 7 7 7 7
BioBench 7 7 7 3 3 7 3 7 3 7

partitioning mechanism to distribute datasets in a way to
avoid inter partition communication. It is also found dur-
ing the study that upcoming distributed RDF engines use
different prebuilt repositories with SQL interface to store
RDF data. These systems perform translation of SPARQL or
other domain query language into SQL for applying queries
on the repositories. This translation is the main component
in their operation, but SPARQL query optimization was not
their core aspect. The translation process does not take
into account the different features related to the distribution
of datasets among a cluster of machines. The translation
process also does not take into account the other Semantic
Web concepts of Ontologies and Inference etc.

12. CONCLUSION
This paper reviews centralized and distributed RDF en-

gines. We review both categories in terms of their storage,
indexing, language, and query execution. Due to an ever
increasing size of RDF based data, centralized RDF engines
are becoming ineffective for interactive query processing. For
the problems of effective query processing, distributed RDF
engines are in use. Rather than relying on the specialized
storage mechanism, some distributed RDF engines rely on

existing single-node systems to take advantage of the un-
derlying infrastructure. SQL is a choice for query language
in most of the repositories. Rather than making capable
SQL for RDF data, RDF engines translate SPARQL into
other languages like SQL, PigLatin etc. This translation is
an integral step in distributed setups.

13. ADDITIONAL AUTHORS

14. REFERENCES
[1] Chapter five - storage and indexing of rdf data. In

O. CurÃ c and G. Blin, editors, RDF Database
Systems, pages 105 – 144. Morgan Kaufmann, Boston,
2015.

[2] D. J. Abadi, A. Marcus, S. R. Madden, and
K. Hollenbach. Scalable semantic web data
management using vertical partitioning. In 33rd
International Conference on Very Large Data Bases,
VLDB 2007 - Conference Proceedings, VLDB ’07,
pages 411–422. VLDB Endowment, 2007.

[3] I. Abdelaziz, R. Harbi, Z. Khayyat, and P. Kalnis. A
survey and experimental comparison of distributed

28

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

SPARQL engines for very large RDF data. Proceedings
of the VLDB Endowment, 10(13):2049–2060, 2017.

[4] A. Akhter, A.-C. N. Ngonga, and M. Saleem. An
empirical evaluation of rdf graph partitioning
techniques. In European Knowledge Acquisition
Workshop, pages 3–18. Springer, 2018.

[5] K. Alaoui. A categorization of rdf triplestores. In
Proceedings of the 4th International Conference on
Smart City Applications, SCA ’19, New York, NY,
USA, 2019. Association for Computing Machinery.

[6] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee.
Diversified stress testing of rdf data management
systems. In International Semantic Web Conference,
pages 197–212. Springer, 2014.

[7] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee.
Diversified stress testing of RDF data management
systems. In ISWC, pages 197–212. 2014.

[8] G. Aluç, M. T. Özsu, K. Daudjee, and O. Hartig.
chameleon-db: a workload-aware robust rdf data
management system. 2013.

[9] A. Aranda-Andújar, F. Bugiotti,
J. Camacho-Rodríguez, D. Colazzo, F. Goasdoué,
Z. Kaoudi, and I. Manolescu. Amada: Web data
repositories in the amazon cloud. In Proceedings of the
21st ACM International Conference on Information
and Knowledge Management, CIKM ’12, page
2749–2751, New York, NY, USA, 2012. Association for
Computing Machinery.

[10] M. Atre and J. A. Hendler. Bitmat: A main memory
bit-matrix of rdf triples. In The 5th International
Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS2009), page 33, 2009.

[11] S. Bail, S. Alkiviadous, B. Parsia, D. Workman,
M. van Harmelen, R. S. Gonçalves, and C. Garilao.
FishMark: A linked data application benchmark. In
Proceedings of the Joint Workshop on Scalable and
High-Performance Semantic Web Systems, pages 1–15,
2012.

[12] D. Beckett. The design and implementation of the
redland RDF application framework. In Proceedings of
the 10th International Conference on World Wide
Web, WWW 2001, WWW ’01, pages 449–456, New
York, NY, USA, 2001. ACM.

[13] C. Bizer and A. Schultz. The Berlin SPARQL
benchmark. Int. J. Semantic Web Inf. Syst., 5(2):1–24,
2009.

[14] M. A. Bornea, J. Dolby, A. Kementsietsidis,
K. Srinivas, P. Dantressangle, O. Udrea, and
B. Bhattacharjee. Building an efficient rdf store over a
relational database. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’13, page 121–132, New York, NY,
USA, 2013. Association for Computing Machinery.

[15] M. Bröcheler, A. Pugliese, and V. S. Subrahmanian.
Dogma: A disk-oriented graph matching algorithm for
rdf databases. In A. Bernstein, D. R. Karger,
T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and
K. Thirunarayan, editors, The Semantic Web - ISWC
2009, pages 97–113, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[16] J. Broekstra, A. Kampman, and F. Van Harmelen.
Sesame: A generic architecture for storing and

querying RDF and RDF Schema. In I. Horrocks and
J. Hendler, editors, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
volume 2342 LNCS, pages 54–68, Berlin, Heidelberg,
2002. Springer Berlin Heidelberg.

[17] A. Buluc, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent advances in graph partitioning,
2013.

[18] D. Calvanese, B. Cogrel, S. Komla-Ebri,
R. Kontchakov, D. Lanti, M. Rezk,
M. Rodriguez-Muro, and G. Xiao. Ontop: Answering
sparql queries over relational databases. Semantic
Web, 8(3):471–487, 2017.

[19] X. Chen, H. Chen, N. Zhang, and S. Zhang. Sparkrdf:
Elastic discreted rdf graph processing engine with
distributed memory. In Proceedings of the 2014
International Conference on Posters and
Demonstrations Track - Volume 1272, ISWC-PD’14,
page 261–264, Aachen, DEU, 2014. CEUR-WS.org.

[20] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
efficient sql-based rdf querying scheme. In Proceedings
of the 31st International Conference on Very Large
Data Bases, VLDB ’05, page 1216–1227. VLDB
Endowment, 2005.

[21] F. Conrads, J. Lehmann, M. Saleem, M. Morsey, and
A.-C. N. Ngomo. I guana: a generic framework for
benchmarking the read-write performance of triple
stores. In International Semantic Web Conference,
pages 48–65. Springer, 2017.

[22] F. Conrads, J. Lehmann, M. Saleem, M. Morsey, and
A. N. Ngomo. IGUANA: A generic framework for
benchmarking the read-write performance of triple
stores. In ISWC, pages 48–65. Springer, 2017.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[24] M. Cossu, M. Färber, and G. Lausen. Prost:
Distributed execution of SpaRQL queries using mixed
partitioning strategies. In Advances in Database
Technology - EDBT, volume 2018-March, pages
469–472, 2018.

[25] G. Demartini, I. Enchev, M. Wylot, J. Gapany, and
P. Cudré-Mauroux. BowlognaBench - benchmarking
RDF analytics. In Data-Driven Process Discovery and
Analysis SIMPDA, pages 82–102. Springer, 2011.

[26] U. Deppisch. S-tree: A dynamic balanced signature
index for office retrieval. In Proceedings of the 9th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’86, page 77–87, New York, NY, USA, 1986.
Association for Computing Machinery.

[27] S. Duan, A. Kementsietsidis, K. Srinivas, and
O. Udrea. Apples and oranges: A comparison of RDF
benchmarks and real RDF datasets. In SIGMOD,
pages 145–156. ACM, 2011.

[28] N. M. Elzein, M. A. Majid, I. A. T. Hashem,
I. Yaqoob, F. A. Alaba, and M. Imran. Managing big
rdf data in clouds: Challenges, opportunities, and
solutions. Sustainable Cities and Society, 39:375 – 386,
2018.

[29] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi,

29

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

A. Gubichev, A. Prat-Pérez, M. Pham, and P. A.
Boncz. The LDBC Social Network Benchmark:
Interactive workload. In SIGMOD, pages 619–630.
ACM, 2015.

[30] O. Erling and I. Mikhailov. Virtuoso: RDF Support in
a Native RDBMS, pages 501–519. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[31] D. C. Faye, O. Curé, and G. Blin. A survey of RDF
storage approaches. In Revue Africaine de la
Recherche en Informatique et Math{é}matiques
Appliqu{é}es, volume 15, page pp. 25, 2012.

[32] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez,
A. Polleres, and M. Arias. Binary rdf representation
for publication and exchange (hdt). Web Semantics:
Science, Services and Agents on the World Wide Web,
19:22–41, 2013.

[33] L. Galárraga, K. Hose, and R. Schenkel. Partout: A
distributed engine for efficient RDF processing. In
WWW 2014 Companion - Proceedings of the 23rd
International Conference on World Wide Web, WWW
’14 Companion, pages 267–268, New York, NY, USA,
2014. ACM.

[34] F. Goasdoué, Z. Kaoudi, I. Manolescu,
J. Quiané-Ruiz, and S. Zampetakis. Cliquesquare:
Flat plans for massively parallel rdf queries. In 2015
IEEE 31st International Conference on Data
Engineering, pages 771–782, 2015.

[35] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. Graphx: Graph
processing in a distributed dataflow framework. In
Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’14, pages 599–613, Berkeley, CA, USA, 2014.
USENIX Association.

[36] D. Graux, L. Jachiet, P. Genevès, and N. Layaïda.
SPARQLGX: Efficient distributed evaluation of
SPARQL with apache spark. In P. Groth, E. Simperl,
A. Gray, M. Sabou, M. Krötzsch, F. Lecue, F. Flöck,
and Y. Gil, editors, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
volume 9982 LNCS, pages 80–87, Cham, 2016.
Springer International Publishing.

[37] J. Groff and P. Weinberg. SQL The Complete
Reference, 3rd Edition. McGraw-Hill, Inc., USA, 3
edition, 2009.

[38] X. Guo, H. Gao, and Z. Zou. Leon: A distributed rdf
engine for multi-query processing. In G. Li, J. Yang,
J. Gama, J. Natwichai, and Y. Tong, editors, Database
Systems for Advanced Applications, pages 742–759,
Cham, 2019. Springer International Publishing.

[39] S. Gurajada, S. Seufert, I. Miliaraki, and
M. Theobald. TriAD: A distributed shared-nothing
RDF engine based on asynchronous message passing.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
pages 289–300, New York, NY, USA, 2014. ACM.

[40] M. Hammoud, D. A. Rabbou, R. Nouri, S. M. R.
Beheshti, and S. Sakr. DREAM: Distributed RDF
engine with adaptive query planner and minimal
communication. Proceedings of the VLDB Endowment,
8(6):654–665, feb 2015.

[41] R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis,
Y. Ebrahim, and M. Sahli. Accelerating SPARQL
queries by exploiting hash-based locality and adaptive
partitioning. VLDB Journal, 25(3):355–380, jun 2016.

[42] S. Harris and N. Gibbins. 3store: Efficient Bulk RDF
Storage. In Proceedings of the 1st International
Workshop on Practical and Scalable Semantic Systems
(PSSS’03), pages 1–20, 2003.

[43] S. Harris, N. Lamb, and N. Shadbolt. 4store: The
design and implementation of a clustered RDF store.
In CEUR Workshop Proceedings, volume 517, pages
94–109, 2009.

[44] A. Harth. Cumulusrdf: Linked data management on
nested key-value stores. 2011.

[45] A. Harth and S. Decker. Optimized index structures
for querying RDF from the Web. In Proceedings -
Third Latin American Web Congress, LA-WEB 2005,
volume 2005 of LA-WEB ’05, pages 71–80,
Washington, DC, USA, 2005. IEEE Computer Society.

[46] A. Harth, J. Umbrich, A. Hogan, and S. Decker.
Yars2: A federated repository for querying graph
structured data from the web. In Proceedings of the
6th International The Semantic Web and 2nd Asian
Conference on Asian Semantic Web Conference,
ISWC’07/ASWC’07, page 211–224, Berlin, Heidelberg,
2007. Springer-Verlag.

[47] O. Hartig and M. T. Özsu. Linked Data query
processing. In Proceedings - International Conference
on Data Engineering, pages 1286–1289, mar 2014.

[48] L. He, B. Shao, Y. Li, H. Xia, Y. Xiao, E. Chen, and
L. J. Chen. Stylus: A strongly-typed store for serving
massive rdf data. Proc. VLDB Endow., 11(2):203–216,
Oct. 2017.

[49] K. Hose and R. Schenkel. WARP: Workload-aware
replication and partitioning for RDF. In Proceedings -
International Conference on Data Engineering, pages
1–6, apr 2013.

[50] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. Proceedings of the
VLDB Endowment, 4(11):1123–1134, 2011.

[51] V. Ingalalli, D. Ienco, and P. Poncelet. Querying RDF
Data: a Multigraph-based Approach, chapter 5, pages
135–165. John Wiley Sons, Ltd, 2018.

[52] H. Jabeen, E. Haziiev, G. Sejdiu, and J. Lehmann.
Dise: A distributed in-memory sparql processing
engine over tensor data. In 2020 IEEE 14th
International Conference on Semantic Computing
(ICSC), pages 400–407, 2020.

[53] M. Janik and K. Kochut. Brahms: a workbench rdf
store and high performance memory system for
semantic association discovery. In International
Semantic Web Conference, pages 431–445. Springer,
2005.

[54] D. Janke and S. Staab. Storing and querying semantic
data in the cloud. In Reasoning Web International
Summer School, pages 173–222. Springer, 2018.

[55] D. Janke, S. Staab, and M. Thimm. Koral: A glass
box profiling system for individual components of
distributed rdf stores. In BLINK/NLIWoD3@ISWC,
2017.

[56] D. Janke, S. Staab, and M. Thimm. On data
placement strategies in distributed rdf stores. In

30

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

Proceedings of The International Workshop on
Semantic Big Data, SBD ’17, New York, NY, USA,
2017. Association for Computing Machinery.

[57] D. D. Janke. Study on Data Placement Strategies in
Distributed RDF Stores, volume 46. IOS Press, 2020.

[58] Z. Kaoudi and I. Manolescu. Rdf in the clouds: a
survey. The VLDB Journal, 24(1):67–91, 2015.

[59] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM Journal of Scientific Computing, 20(1):359–392,
dec 1998.

[60] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1):359–392, Dec. 1998.

[61] A. Katib, V. Slavov, and P. Rao. Riq: Fast processing
of sparql queries on rdf quadruples. Journal of Web
Semantics, 37:90–111, 2016.

[62] V. Khadilkar, M. Kantarcioglu, B. Thuraisingham,
and P. Castagna. Jena-hbase: A distributed, scalable
and efficient rdf triple store. In Proceedings of the
2012th International Conference on Posters and
Demonstrations Track - Volume 914, ISWC-PD’12,
page 85–88, Aachen, DEU, 2012. CEUR-WS.org.

[63] J. Kim, H. Shin, W.-S. Han, S. Hong, and H. Chafi.
Taming subgraph isomorphism for rdf query
processing. Proceedings of the VLDB Endowment,
8(11), 2015.

[64] D. Kolas, I. Emmons, and M. Dean. Efficient
linked-list RDF indexing in Parliament. CEUR
Workshop Proceedings, 517:17–32, 2009.

[65] M. Koubarakis and K. Kyzirakos. Modeling and
querying metadata in the semantic sensor web: The
model strdf and the query language stsparql. In
Proceedings of the 7th International Conference on
The Semantic Web: Research and Applications -
Volume Part I, ESWC’10, page 425–439, Berlin,
Heidelberg, 2010. Springer-Verlag.

[66] K. Kyzirakos, M. Karpathiotakis, and M. Koubarakis.
Strabon: A semantic geospatial dbms. In
P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache,
J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler,
G. Schreiber, A. Bernstein, and E. Blomqvist, editors,
The Semantic Web – ISWC 2012, pages 295–311,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[67] K. Lee and L. Liu. Scaling queries over big RDF
graphs with semantic hash partitioning. Proceedings
of the VLDB Endowment, 6(14):1894–1905, sep 2013.

[68] J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal,
C. Stadler, I. Ermilov, S. Bin, N. Chakraborty,
M. Saleem, A.-C. Ngonga Ngomo, and H. Jabeen.
Distributed semantic analytics using the sansa stack.
In C. d’Amato, M. Fernandez, V. Tamma, F. Lecue,
P. Cudré-Mauroux, J. Sequeda, C. Lange, and
J. Heflin, editors, The Semantic Web – ISWC 2017,
pages 147–155, Cham, 2017. Springer International
Publishing.

[69] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. Rstar: an
rdf storage and query system for enterprise resource
management. In Proceedings of the thirteenth ACM
international conference on Information and
knowledge management, pages 484–491, 2004.

[70] Z. Ma, M. A. Capretz, and L. Yan. Storing massive

Resource Description Framework (RDF) data: A
survey. Knowledge Engineering Review, 31(4):391–413,
2016.

[71] A. Madkour, A. M. Aly, and W. G. Aref. Worq:
Workload-driven rdf query processing. In
D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa,
V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, and
E. Simperl, editors, The Semantic Web – ISWC 2018,
pages 583–599, Cham, 2018. Springer International
Publishing.

[72] B. McBride. Jena: A semantic web toolkit. IEEE
Internet Computing, 6(6):55–58, nov 2002.

[73] D. R. Morrison. Patricia—practical algorithm to
retrieve information coded in alphanumeric. Journal
of the ACM (JACM), 15(4):514–534, 1968.

[74] M. Morsey, J. Lehmann, S. Auer, and A. N. Ngomo.
DBpedia SPARQL benchmark - performance
assessment with real queries on real data. In ISWC,
pages 454–469. Springer, 2011.

[75] R. Mutharaju, S. Sakr, A. Sala, and P. Hitzler.
D-sparq: Distributed, scalable and efficient rdf query
engine. In Proceedings of the 12th International
Semantic Web Conference (Posters and
Demonstrations Track) - Volume 1035, ISWC-PD ’13,
page 261–264, Aachen, DEU, 2013. CEUR-WS.org.

[76] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu, and
J. Banerjee. Rdfox: A highly-scalable rdf store. In
M. Arenas, O. Corcho, E. Simperl, M. Strohmaier,
M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier,
J. Heflin, K. Thirunarayan, and S. Staab, editors, The
Semantic Web - ISWC 2015, pages 3–20, Cham, 2015.
Springer International Publishing.

[77] T. Neumann and G. Moerkotte. Characteristic sets:
Accurate cardinality estimation for rdf queries with
multiple joins. In 2011 IEEE 27th International
Conference on Data Engineering, pages 984–994, 2011.

[78] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB Journal,
19(1):91–113, feb 2010.

[79] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’08, pages 1099–1110, New York, NY, USA,
2008. ACM.

[80] M. T. Özsu. A survey of RDF data management
systems. Frontiers of Computer Science,
10(3):418–432, 2016.

[81] Z. Pan, T. Zhu, H. Liu, and H. Ning. A survey of
RDF management technologies and benchmark
datasets. Journal of Ambient Intelligence and
Humanized Computing, 9(5):1693–1704, oct 2018.

[82] N. Papailiou, I. Konstantinou, D. Tsoumakos,
P. Karras, and N. Koziris. H2RDF+:
High-performance distributed joins over large-scale
RDF graphs. Proceedings - 2013 IEEE International
Conference on Big Data, Big Data 2013, pages
255–263, 2013.

[83] N. Papailiou, I. Konstantinou, D. Tsoumakos, and
N. Koziris. H2rdf: Adaptive query processing on rdf
data in the cloud. In Proceedings of the 21st
International Conference on World Wide Web, WWW

31

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

’12 Companion, page 397–400, New York, NY, USA,
2012. Association for Computing Machinery.

[84] P. Peng, L. Zou, L. Chen, and D. Zhao. Adaptive
distributed rdf graph fragmentation and allocation
based on query workload. IEEE Transactions on
Knowledge and Data Engineering, 31(4):670–685,
2019.

[85] P. Peng, L. Zou, M. T. Özsu, L. Chen, and D. Zhao.
Processing sparql queries over distributed rdf graphs.
The VLDB Journal, 25(2):243–268, Apr. 2016.

[86] R. Punnoose, A. Crainiceanu, and D. Rapp. Rya: A
scalable rdf triple store for the clouds. In Proceedings
of the 1st International Workshop on Cloud
Intelligence, Cloud-I ’12, New York, NY, USA, 2012.
Association for Computing Machinery.

[87] S. Qiao and Z. M. Özsoyoglu. RBench:
Application-specific RDF benchmarking. In SIGMOD,
pages 1825–1838. ACM, 2015.

[88] M. O. RABIN. Fingerprinting by random polynomials.
Technical Report, 1981.

[89] P. Ravindra, H. Kim, and K. Anyanwu. An
intermediate algebra for optimizing rdf graph pattern
matching on mapreduce. In G. Antoniou,
M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis,
P. De Leenheer, and J. Pan, editors, The Semanic
Web: Research and Applications, pages 46–61, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[90] K. Rohloff and R. E. Schantz. High-performance,
massively scalable distributed systems using the
mapreduce software framework: The shard triple-store.
In Programming Support Innovations for Emerging
Distributed Applications, PSI EtA ’10, New York, NY,
USA, 2010. Association for Computing Machinery.

[91] S. Sakr and G. Al-Naymat. Relational processing of
rdf queries: a survey. ACM SIGMOD Record,
38(4):23–28, 2010.

[92] S. Sakr, M. Wylot, R. Mutharaju, D. Le Phuoc, and
I. Fundulaki. Linked Data: Storing, Querying, and
Reasoning. Springer, 2018.

[93] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and
A. N. Ngomo. LSQ: the linked SPARQL queries
dataset. In ISWC, pages 261–269. Springer, 2015.

[94] M. Saleem, A. Hasnain, and A. N. Ngomo.
LargeRDFBench: A billion triples benchmark for
SPARQL endpoint federation. J. Web Sem.,
48:85–125, 2018.

[95] M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, and
A.-C. Ngonga Ngomo. A fine-grained evaluation of
sparql endpoint federation systems. Semantic Web,
7(5):493–518, 2016.

[96] M. Saleem, Q. Mehmood, and A.-C. N. Ngomo.
Feasible: A feature-based sparql benchmark
generation framework. In International Semantic Web
Conference, pages 52–69. Springer, 2015.

[97] M. Saleem, Q. Mehmood, and A. N. Ngomo.
FEASIBLE: a feature-based SPARQL benchmark
generation framework. In ISWC, pages 52–69.
Springer, 2015.

[98] M. Saleem, A. Potocki, T. Soru, O. Hartig, and A. N.
Ngomo. CostFed: Cost-based query optimization for
SPARQL endpoint federation. In SEMANTICS,
volume 137 of Procedia Computer Science, pages

163–174. Elsevier, 2018.
[99] M. Saleem, G. Szárnyas, F. Conrads, S. A. C.

Bukhari, Q. Mehmood, and A.-C. Ngonga Ngomo.
How representative is a sparql benchmark? an
analysis of rdf triplestore benchmarks. In The World
Wide Web Conference, WWW ’19, page 1623–1633,
New York, NY, USA, 2019. Association for
Computing Machinery.

[100] L. H. Z. Santana and R. d. S. Mello. An analysis of
mapping strategies for storing rdf data into nosql
databases. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing, SAC ’20, page
386–392, New York, NY, USA, 2020. Association for
Computing Machinery.

[101] A. Schätzle, M. Przyjaciel-Zablocki, T. Berberich, and
G. Lausen. In F. Wang, G. Luo, C. Weng, A. Khan,
P. Mitra, and C. Yu, editors, Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 9579, pages 155–168, Cham,
2016. Springer International Publishing.

[102] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen.
PigSPARQL: Mapping SPARQL to Pig Latin. In
Proceedings of the International Workshop on
Semantic Web Information Management, SWIM 2011,
2011.

[103] A. Schätzle, M. Przyjaciel-Zablocki, A. Neu, and
G. Lausen. Sempala: Interactive SPARQL query
processing on Hadoop. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
volume 8796, pages 164–179, 2014.

[104] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and
G. Lausen. S2RDF: RDF querying with SPARQL on
Spark. Proceedings of the VLDB Endowment,
9(10):804–815, 2016.

[105] M. Schmidt et al. SP2Bench: A SPARQL performance
benchmark. In Semantic Web Information
Management - A Model-Based Perspective, pages
371–393. 2009.

[106] B. Shao, H. Wang, and Y. Li. Trinity: A distributed
graph engine on a memory cloud. In Proceedings of
the 2013 ACM SIGMOD International Conference on
Management of Data, pages 505–516, 2013.

[107] B. Shao, H. Wang, and Y. Li. Trinity: A distributed
graph engine on a memory cloud. In Proceedings of
the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, page 505–516,
New York, NY, USA, 2013. Association for
Computing Machinery.

[108] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and
concurrent rdf queries with rdma-based distributed
graph exploration. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’16, page 317–332, USA, 2016.
USENIX Association.

[109] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Proceedings of
the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer
Society.

32

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

[110] C. Stadler, G. Sejdiu, D. Graux, and J. Lehmann.
Sparklify: A scalable software component for efficient
evaluation of sparql queries over distributed rdf
datasets. In C. Ghidini, O. Hartig, M. Maleshkova,
V. Svátek, I. Cruz, A. Hogan, J. Song, M. Lefrançois,
and F. Gandon, editors, The Semantic Web – ISWC
2019, pages 293–308, Cham, 2019. Springer
International Publishing.

[111] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: A column-oriented dbms. In
Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, page 553–564.
VLDB Endowment, 2005.

[112] P. Stutz, A. Bernstein, and W. Cohen. Signal/collect:
Graph algorithms for the (semantic) web. In P. F.
Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang,
J. Z. Pan, I. Horrocks, and B. Glimm, editors, The
Semantic Web – ISWC 2010, pages 764–780, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[113] P. Stutz, M. Verman, L. Fischer, and A. Bernstein.
Triplerush: A fast and scalable triple store. In
Proceedings of the 9th International Conference on
Scalable Semantic Web Knowledge Base Systems -
Volume 1046, SSWS’13, page 50–65, Aachen, DEU,
2013. CEUR-WS.org.

[114] M. Svoboda and I. Mlỳnková. Linked data indexing
methods: A survey. In OTM Confederated
International Conferences" On the Move to
Meaningful Internet Systems", pages 474–483.
Springer, 2011.

[115] G. Szárnyas, B. Izsó, I. Ráth, and D. Varró. The
Train Benchmark: Cross-technology performance
evaluation of continuous model queries. Softw. Syst.
Model., 17(4):1365–1393, 2018.

[116] G. Szárnyas, A. Prat-Pérez, A. Averbuch, J. Marton,
M. Paradies, M. Kaufmann, O. Erling, P. A. Boncz,
V. Haprian, and J. B. Antal. An early look at the
LDBC Social Network Benchmark’s Business
Intelligence workload. In GRADES-NDA at SIGMOD,
pages 9:1–9:11. ACM, 2018.

[117] A. Vlachou, C. Doulkeridis, A. Glenis, G. M.
Santipantakis, and G. A. Vouros. Efficient
spatio-temporal rdf query processing in large dynamic
knowledge bases. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing,
SAC ’19, page 439–447, New York, NY, USA, 2019.
Association for Computing Machinery.

[118] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
Sextuple indexing for semantic web data management.
Proceedings of the VLDB Endowment, 1(1):1008–1019,
2008.

[119] R. T. Whitman, B. G. Marsh, M. B. Park, and E. G.
Hoel. Distributed spatial and spatio-temporal join on
apache spark. ACM Trans. Spatial Algorithms Syst.,
5(1), June 2019.

[120] K. Wilkinson. Jena property table implementation,
2006.

[121] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds.
Efficient RDF storage and retrieval in jena2. In
Proceedings of the 1st International Conference on

Semantic Web and Databases, SWDB 2003, SWDB’03,
pages 120–139, Aachen, Germany, Germany, 2003.
CEUR-WS.org.

[122] D. Wood, P. Gearon, and T. Adams. Kowari: A
platform for semantic web storage and analysis. In
XTech 2005 Conference, pages 5–402, 2005.

[123] B. Wu, Y. Zhou, P. Yuan, H. Jin, and L. Liu.
Semstore: A semantic-preserving distributed rdf triple
store. In Proceedings of the 23rd ACM International
Conference on Conference on Information and
Knowledge Management, CIKM ’14, page 509–518,
New York, NY, USA, 2014. Association for
Computing Machinery.

[124] H. Wu et al. BioBenchmark Toyama 2012: An
evaluation of the performance of triple stores on
biological data. J. Biomedical Semantics, 5:32, 2014.

[125] M. Wylot and P. Cudré-Mauroux. Diplocloud:
Efficient and scalable management of rdf data in the
cloud. IEEE Transactions on Knowledge and Data
Engineering, 28(3):659–674, 2016.

[126] M. Wylot, M. Hauswirth, P. Cudré-Mauroux, and
S. Sakr. Rdf data storage and query processing
schemes: A survey. ACM Comput. Surv.,
51(4):84:1–84:36, Sept. 2018.

[127] M. Wylot, J. Pont, M. Wisniewski, and
P. Cudré-Mauroux. Diplodocus[rdf]: Short and
long-tail rdf analytics for massive webs of data. In
Proceedings of the 10th International Conference on
The Semantic Web - Volume Part I, ISWC’11, page
778–793, Berlin, Heidelberg, 2011. Springer-Verlag.

[128] M. Q. Yasin, X. Zhang, R. Haq, Z. Feng, and
S. Yitagesu. A comprehensive study for essentiality of
graph based distributed sparql query processing. In
International Conference on Database Systems for
Advanced Applications, pages 156–170. Springer, 2018.

[129] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.
Triplebit: A fast and compact system for large scale
rdf data. Proc. VLDB Endow., 6(7):517–528, May
2013.

[130] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing,
HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association.

[131] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A
distributed graph engine for web scale RDF data. In
Proceedings of the VLDB Endowment, volume 6 of
PVLDB’13, pages 265–276. VLDB Endowment, 2013.

[132] X. Zhang, L. Chen, Y. Tong, and M. Wang. EAGRE:
Towards scalable I/O efficient SPARQL query
evaluation on the cloud. In Proceedings - International
Conference on Data Engineering, pages 565–576, apr
2013.

[133] L. Zou, J. Mo, L. Chen, M. Tamer Özsu, and D. Zhao.
gStore: Answering SPARQL queries via subgraph
matching. Proceedings of the VLDB Endowment,
4(8):482–493, 2011.

33

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2020 doi:10.20944/preprints202005.0360.v3

https://doi.org/10.20944/preprints202005.0360.v3

	Introduction
	Basic Concepts and Definitions
	RDF
	SPARQL

	Literature Review
	Storage
	Triple Table
	Property Table
	Vertical Partitioning
	 Graph Based Storage
	

	
	
	
	
	
	
	

	
	
	

	
	
	
	

