Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2020

EIT-MESHER - Segmented FEM Mesh generation and refinement

Paper Authors

1. Dowrick, Thomas?;
2. Avery, James?;

3. Faulkner, Mayo3;
4. Holder, David3;

5. Aristovich, Kirill®

Paper Author Roles and Affiliations

1. Wellcome/EPSRC Centre for Surgical and Interventional Sciences, University
College London, UK

2. Department of Surgery and Cancer, Imperial College London, London, UK

3. Medical Physics and Biomedical Engineering, University College London, UK

Abstract

EIT-MESHER (https://github.com/EIT-team/Mesher) is C++ software, based on the
CGAL library, which generates high quality Finite Element Model tetrahedral
meshes from binary masks of 3D volume segmentations. Originally developed
for biomedical applications in Electrical Impedance Tomography (EIT) to
address the need for custom, non-linear refinement in certain areas (e.g.
around electrodes), EIT-MESHER can also be used in other fields where
custom FEM refinement is required, such as Diffuse Optical Tomography
(DOT).

Keywords
Finite Element Models, C++, Electrical Impedance Tomography, Diffuse Optical
Tomography, Mesh Generation

Introduction

The EIT-MESHER (https://github.com/EIT-team/Mesher) is a C++ based open
source software which generates stable, good quality meshes (Figure 1) for
solving the EIT forward solution. The software is based on the CGAL geometry
processing kernel (https://www.cgal.org/) and utilises the extended Delaunay
triangulation over binary domains in combination with a number of flexible
post-triangulation optimisers [1]. In addition, the software performs user-
defined mesh refinement, specific to the requirements of Electrical Impedance
Tomography. The input to the software is a binary 3D mask (or segmentation)
of the desired object, and the output is the fully optimised mesh ready for
calculation of the forward problem. The mesh refinement process includes
mesh optimisation near the electrodes, planar, gradient, cuboid or spherical
sizing field refinement as well as ensuring the mesh quality [2] to be greater

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202005.0351.v1

https://github.com/EIT-team/Mesher
https://github.com/EIT-team/Mesher
https://www.cgal.org/
https://doi.org/10.20944/preprints202005.0351.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2020 doi:10.20944/preprints202005.0351.v1

than 0.5 for every element, with an average 0.95 as standard. The combination
of the above techniques makes EIT-MESHER it the best available tool for EIT-
specific forward problems [3].

Comparable software for FEM generation include the MATLAB package -
iso2mesh [4], which also includes a wrapper for a CGAL executable. However,
at present this does not allow for the custom mesh refinement needed for
EIT/DOT applications. Software suites EIDORS [5] for EIT and TOAST++ [6] for
DOT both implement basic meshing capabilities, either through the gmesh or
tetgen libraries, however it is not possible to mesh from binary volume data
directly.

AP

Figure 1 - Example generated meshes for A) neonate skull and B) rat brain with electrode refinement

Implementation and architecture

The main EIT-MESHER source code is organised into several source files in the
src/ directory:

Mesher _plus.cpp - Top level code

input_paremeters.cop/h — Load input parameters from configuration file.
mesh_operations.cpp/h — Common mesh operations used by other files.
save_dgf.cpp/h — Output mesh in Dune Grid Format (used for EIT forward
solver).

Sizing_fields.cpp/h —implements custom mesh refinement (spherical, elliptic,
linear, cube)

mesh_stretcher.cop/h - Implements mesh stretching.

deform_volume.cpp/h — Implements mesh deformation.

The EIT-MESHER executable takes three input files, a 3D binary volume in .inr
format, a list of x,y,z electrode locations in CSV format, and a parameter file. A
basic functional test is given in the input/ directory, with realistic use cases
given in examples/, which demonstrate the process of editing the parameter
file, and the effects on the subsequent output mesh. Upon calling EIT-
MESHER, the input volume is loaded using CGAL Image 10, and an element
size value assigned to every point in the volume (the sizing field), as specified

https://doi.org/10.20944/preprints202005.0351.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2020

by the parameter file. Delaunay Triangulation, using the CGAL C3T3 class
modified to return additional point data, is then performed to create the
initial tetrahedral mesh. Optimisations of the triangulation
(ODT/Llyod/Perturb/Exude) are then performed to improve mesh quality,
particularly in regions with large sizing field gradients. Finally, the output
tetrahedral mesh and saved in formats required for EIT or DOT solvers.

To integrate with existing EIT workflows, code for interfacing with EIT-MESHER
from MATLAB is contained in the MATLAB/ folder. This folder also contains
functions to convert CAD files into the required .inr format, to enable meshing
of 3D printable phantoms [7].

Features

Variable mesh refinement

CGAL Sizing Fields are used to specify the size of elements within the FEM in
different areas. Typically, this is used to specify a smaller element size around
the surface electrodes in EIT or the sources and detectors in DOT applications,
where the forward solutions are most sensitive. Element size within Regions
of Interest (ROIs) internal to the volume can also be specified. These are
commonly used either to create high density regions surrounding depth
electrodes [8] or low density where the sensitivity is known to be negligible a
priori [3] . Analytical functions for defining sizing fields are defined in
sizing_fields.cpp, and the user can select which sizing field(s) to use in the
parameter file.

Electrode refinement — Set a separate (usually smaller) element size around
the electrodes.

Sphere refinement — a sphere, with specified coordinates, radius and cell size
is placed within the mesh.

Cuboid refinement — a cuboid, with specified coordinates, dimensions and cell
size is placed within the mesh.

Planar refinement — Create a linear gradient of cell size along a given
dimension.

Depth refinement - The mesh size is based on the cartesian distance from the
centre of the mesh. Elements at the centre have largest cell size, elements at

d0i:10.20944/preprints202005.0351.v1

https://doi.org/10.20944/preprints202005.0351.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2020

the boundary have the smallest. User specifies a linear gradient between the
two sizes from the centre.

Mesh deformation/stretching

EIT-MESHER can randomly deform an input volume to generate unique output
meshes. This allows for multiple output models to be generated from a single
input segmentation. The motivation behind this approach was to provide
sufficient variety in input meshes to generate a dataset suitable for deep
learning applications of EIT. Due to the mathematical complexity of the EIT
problem, 1000s of segmented CT/MRI scans would be required to provide
enough training data, which is impractical to collect. By deforming existing
meshes, the required number can be obtained from a much smaller input set.
The use of HPC resources to rapidly generate multiple meshes has been
investigated, with EIT-MESHER successfully deployed on UCL’s Myriad HPC
service.

Two types of deformation are implemented:

Layer dilation — Where a segmented input has been provided, EIT-MESHER can
dilate layer(s) within the mesh.

Mesh stretching — EIT-MESHER can apply one (or more) linear stretches, either
along a single axis or some combination of x/y/z directions.

Output data

The output mesh contains the coordinates of each node and each tetrahedral
element is assigned both the constituent nodes and a material index based on
the value in the input volume domain. This index is used to assign layers of the
mesh e.qg. scalp, skull, white and grey matter different conductivity values
during subsequent calculations. The primary output format is the Dune Grid
Format (DGF) which is required for the EIT solver PEITS [9] along with
accompanying parameter files. The mesh can also be written to .vtu for quick
visualisation in paraview (Kitware Inc. USA) and to .csv files to read into
MATLAB for use with EIDORS or TOAST++.

Quality control

Unit tests are included in the tests/ folder and are built by default when
compiling the code. The full range of tests is run on each update to the GitHub
repository via a Travis Cl script. The travis.yml script also runs a series of
examples, using data in examples/, which are fully documented in the
examples/ folder with sample input and output data.

d0i:10.20944/preprints202005.0351.v1

https://doi.org/10.20944/preprints202005.0351.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2020 doi:10.20944/preprints202005.0351.v1

This software has been tested in Linux, both natively and under Windows
Subsystem for Linux. It has also been deployed on the UCL Myriad HPC
service. By running the tests and examples, as detailed in travis.yml/ and in the
examples/ folder, a user will be able to confirm that their build is functioning
correctly and understand how to adapt the parameter files to their own
application.

Each of the following examples demonstrates how to call EIT-MESHER through
the Linux command line and through the relevant MATLAB functions.
Examples on how to use the outputs with common forward solvers are also
given where relevant.

Unit Cube — A simple demonstration with a known target volume to
demonstrate basic functionality

Brain — Rat brain from MRI segmentation with white and grey matter layers
created using Seg3D (seg3d.org). This is a typical use case in brain
applications, demonstrating electrode and default refinement [8], [10].

Neonate scalp — A CAD model containing two layers — scalp and skull — each
requiring conversion to .inr format before use. This is a typical use case to
create meshes for 3D printable tanks or phantoms [7].

PEITS — Workflow example showing use of EIT-MESHER .dgf output in PEITS
EIT forward solver [9].

EIDORS — Common MATLAB EIT solver, requires loading of .csv files and
storing in specific structure.

TOAST++— DOT software suite requires mesh in specific format and creation
of grid basis function from input .inr file

(2) Availability

Operating system
Linux — tested on Ubuntu 14, 16, 18; Red Hat Enterprise Server 7.4 (UCL
Myriad HPC); Windows Subsystem for Linux 1 & 2

Programming language
C++ 11
MATLAB Runtime v8.3 or later

https://doi.org/10.20944/preprints202005.0351.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2020 doi:10.20944/preprints202005.0351.v1

Additional system requirements
None

Dependencies

C++: CGAL

MATLAB: iso2mesh and MATLAB Image Processing Toolbox (For .st/ to .inr
conversion only)

List of contributors

Software location:
Name: EIT-MESHER
Persistent identifier: https://github.com/EIT-team/Mesher
Licence: BSD 3
Date published: 31/01/2020
Code repository: GitHub

Language
C++, MATLAB

(3) Reuse potential

The EIT-MESHER software can be used to create high quality tetrahedral
meshes for solving EIT and DOT forward problems. Primarily targeting
biomedical applications, the software requires inputs of the form of 3D
volume data such as those obtained from CT or MRI segmentations. However,
conversion software from CAD format is included, thus enabling a much
broader range of applications such as those from the robotics or tactile
sensing fields [11]-[13]. The wrapper functions detailed in the provided
examples demonstrate how the software can integrate into common EIT
(PEITS, EIDORS) and DOT (TOAST++) workflows.

Potential extensions to this software are to defining specific element sizes per
input layer, which would enable arbitrary sizing fields to be defined. This
would be beneficial in applications with either a combination of depth and
surface electrodes, or with an internal volume with much higher conductivity
such as bone. Finally, CGAL also permits meshing from polyhedral surfaces, so
a logical extension would be to mesh the CAD files directly instead of
converting to volume data.

https://doi.org/10.20944/preprints202005.0351.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2020

Support for using this software is obtained by raising an issue through GitHub
or by contacting the authors via email.

Acknowledgements

Funding statement
This work was supported by an ARCHER eCSE grant (eCSE13-11). James Avery
was supported by the NIHR Imperial BRC.

Competing interests
The authors declare that they have no competing interests.

References

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

B. Gartner, R. Veltkamp, L. Rineau, and M. Yvinec, “A generic software
design for Delaunay refinement meshing,” Comput. Geom., vol. 38, no.
1, pp. 100-110, 2007.

A. Liu and B. Joe, “Relationship between tetrahedron shape measures,”
BIT, vol. 34, no. 2, pp. 268—-287, Jun. 1994.

K. Y. Aristovich, G. S. dos Santos, B. C. Packham, and D. S. Holder, “A
method for reconstructing tomographic images of evoked neural
activity with electrical impedance tomography using intracranial planar
arrays.,” Physiol. Meas., vol. 35, no. 6, pp. 1095-109, Jun. 2014.

Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric
binary and grayscale images,” in Proceedings - 2009 IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009,
2009, pp. 1142-1145.

A. Adler and W. R. B. Lionheart, “Uses and abuses of EIDORS: an
extensible software base for EIT.,” Physiol. Meas., vol. 27, no. 5, pp. S25-
42, May 2006.

M. Schweiger and S. Arridge, “The Toast++ software suite for forward
and inverse modeling in optical tomography,” J. Biomed. Opt., vol. 19,
no. 4, p. 040801, 2014.

J. Avery, K. Aristovich, B. Low, and D. Holder, “Reproducible 3D printed
head tanks for electrical impedance tomography with realistic shape
and conductivity distribution,” Physiol. Meas., vol. 38, no. 6, pp. 1116—
1131, Jun. 2017.

A. Witkowska-Wrobel, K. Aristovich, M. Faulkner, J. Avery, and D.
Holder, “Feasibility of imaging epileptic seizure onset with EIT and depth
electrodes,” Neuroimage, vol. 173, no. February, pp. 311-321, Jun.
2018.

d0i:10.20944/preprints202005.0351.v1

https://doi.org/10.20944/preprints202005.0351.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 May 2020 doi:10.20944/preprints202005.0351.v1

[9] M. Jehl, A. Dedner, T. Betcke, K. Aristovich, R. Klofkorn, and D. Holder,
“A Fast Parallel Solver for the Forward Problem in Electrical Impedance
Tomography,” IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 126-137, Jan.
2015.

[10] M. Faulkner, S. Hannan, K. Aristovich, J. Avery, and D. Holder,
“Feasibility of imaging evoked activity throughout the rat brain using
electrical impedance tomography,” Neuroimage, vol. 178, no. February,
pp. 1-10, Sep. 2018.

[11] J. Avery, M. Runciman, A. Darzi, and G. P. Mylonas, “Shape Sensing of
Variable Stiffness Soft Robots using Electrical Impedance Tomography,”
in IEEE International Conference on Robotics and Automation, 2019.

[12] D. Silvera-Tawil, D. Rye, M. Soleimani, and M. Velonaki, “Electrical
impedance tomography for artificial sensitive robotic skin: A review,”
IEEE Sens. J., vol. 15, no. 4, pp. 2001-2016, 2015.

[13] E. Coevoet, A. Escande, and C. Duriez, “Optimization-Based Inverse
Model of Soft Robots With Contact Handling,” IEEE Robot. Autom. Lett.,
vol. 2, no. 3, pp. 1413-1419, Jul. 2017.

https://doi.org/10.20944/preprints202005.0351.v1

