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Abstract 

We have an unprecedented ability to analyze and map the Earth’s surface, as deep learning 

technologies are applied to an abundance of Earth observation systems collecting images of the 

planet daily. In order to realize the potential of these data to improve conservation outcomes, 

simple, free, and effective methods are needed to enable a wide variety of stakeholders to derive 

actionable insights from these tools. In this paper we demonstrate simple methods and workflows 

using free, open computing resources to train well-studied convolutional neural networks and use 

these to delineate objects of interest in publicly available Earth observation images. With limited 

training datasets (<1000 observations), we used Google Earth Engine and Tensorflow to process 

Sentinel-2 and National Agricultural Imaging Program data and use these to train U-Net and 

DeepLab models that delineate ground mounted solar arrays and parking lots in satellite imagery. 

The trained models achieved 81.5% intersection over union between predictions and ground-

truth observations in validation images. These images were generated at different times and from 

different places from those upon which they were trained, indicating the ability of models to 

generalize outside of data on which they were trained. The two case studies we present illustrate 

how these methods can be used to inform and improve the development of renewable energy in a 

manner that is consistent with wildlife conservation. 

Introduction 

The proliferation of Earth observation data has made possible the mapping of features on the 

Earth’s surface at an extraordinary frequency and level of detail. Publicly available images of the 

entire Earth are being collected as often as every 5 days and global images with ≤ 1 m resolution 

are collected daily by private companies. This availability of data has created an unprecedented 

ability to map the distribution and state of forest loss (Song et al. 2018), urban growth (Watson 

& Venter 2019), water resources (Pekel et al. 2016) and other changes to the Earth’s surface. 

These endeavors are critical to better understand and conserve natural resources. More recent 

advances in mapping capabilities are being made as researchers combine Earth observation data 

with powerful deep learning approaches (Lecun et al. 2015; Mahdianpari et al. 2018; Li et al. 

2019). Yet the ability to apply this work to conservation challenges remains out of reach for 

many conservationists, as early progress has largely focused on high-resolution imagery, large 

training datasets, and required substantial computing resources (Li et al. 2019). A transition is 

needed to unlock the insights and impacts possible from this synergy for the purposes of 

conservation.   
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The application of computer vision methods to Earth observation has transformed the types of 

features and precision with which researchers are able to map the Earth’s surface. Computer 

vision describes the automated identification of objects in images, traditionally using deep 

learning models to recognize, locate, and delineate objects like cats, cars, and faces in 

photographs (Simonyan & Zisserman 2015). More recently, these same models have been 

applied to satellite and aerial imagery to identify and classify land cover (Nogueira et al. 2017). 

The promising development is the application of convolutional neural networks (CNNs) – deep 

learning architectures that can take advantage of the shape and context of an object – marking a 

transition away from traditional pixel-based classification approaches like those used to create 

land cover maps (Jin et al. 2019). Incorporating information about spatial context can be critical 

for distinguishing features with similar spectral characteristics. For instance, an oil drilling pad 

may be spectrally like a large surface mine, but the two features are easily distinguishable based 

on shape, configuration, and context.  

A variety of CNN models have been applied to various Earth observation data sources to 

successfully delineate various features (Mahdianpari et al. 2018; Wiratama et al. 2020). Thus far, 

many of the advances have focused on model development, training feature engineering, often in 

specific use cases taken at a snapshot in time.  In this paper, we focus on the advancement of the 

breadth of applicability to conservation challenges. To be of maximal use to conservation, CNN 

models using Earth observation data need to: 

1. Use publicly available data 

2. Use data that is updated regularly 

3. Be free or of low cost to implement 

4. Work with limited training datasets 

5. Be generalizable 

Methods and models must meet these five criteria in order to enable conservationists to regularly 

use them to create actionable outputs. To address these needs, we sought to develop simple, 

replicable computer vision models that delineate features of interest using free, publicly available 

earth observation data. The launch of Google Earth Engine (Gorelick et al. 2017) and its recent 

integration with the Tensorflow deep learning library (Abadi et al. 2015) now make this possible. 

As a demonstration of concept, we focus on mapping two types of infrastructure related to 

renewable energy.  

As renewable energy proliferates, there is interest from conservationists in promoting the 

development of renewable energy facilities in a manner that is consistent with the goals of 

wildlife conservation.  A wildlife-friendly approach to renewable energy development involves 

both understanding the current extent of renewable energy and identifying sites for future 

facilities that minimize disturbance to wildlife and wildlife habitat. Solar energy production has 

grown rapidly in the United States over the past decade, experiencing a 35-fold increase from 

2008 to 2018 (Margolis et al. 2018). Conservationists are interested in mapping the spatial 

distribution of these sites to understand their potential impacts to habitat availability and 

fragmentation, and help determine the potential for these sites to be simultaneously used for 

habitat restoration benefiting native species (Beatty et al. 2017; Sinha et al. 2018). 
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Simultaneously, conservationists want to prioritize the development of future solar energy 

facilities at sites that minimize impacts to wildlife. This requires accurate, up-to-date maps of 

potential low-conflict sites in order to assess generation potential and prioritize siting in 

conjunction with other factors (e.g., distribution capacity, demand, zoning, etc.) 

In this paper, we apply two well-studied CNNs to delineate the footprints of large (> 2 ac) 

parking lots in Long Island, NY and ground-mounted solar arrays across North Carolina. These 

case studies are both part of ongoing conservation initiatives. The solar roadmap 

(http://solarroadmap.org/) seeks to help Long Island meet the goal of 70% renewable energy by 

2030 by identifying low-conflict sites for solar development. North Carolina produces the second 

most solar energy in the United States, generating more than 4% of its annual energy from solar 

arrays following substantial growth over the past decade (Margolis et al. 2018) – and there is 

interest from The Nature Conservancy in understanding the current configuration of arrays 

relative to wildlife habitat. Our goal was to demonstrate the ability to delineate features of 

interest at landscape scales using free resources by combining CNN models with publicly 

available earth observation data.  

Methods 

Training Data 

Our analyses focused on mapping parking lots greater than 2 ac in the town of Huntington, NY 

(located on Long Island), and ground mounted solar arrays in the state of North Carolina.  We 

hereafter refer to parking lots and solar arrays as target features. The Nature Conservancy’s 

North Carolina chapter provided us with a shapefile containing footprints of ground mounted 

solar arrays in North Carolina as of 2016.  The Nature Conservancy’s Long Island chapter 

provided a shapefile containing 645 hand-digitized boundaries of parking lots > 2ac in size in 

Suffolk County, NY. After ingesting these shapefiles into Google Earth Engine, we refined and 

updated the solar data to create 663 solar array polygons. Finally, we converted target feature 

polygons into single band label images with pixel values equal to 1 in areas covered by a target 

feature and 0 elsewhere.  

Earth Observation Data 

To delineate ground mounted solar arrays in North Carolina, we used top of atmosphere 

reflectance data collected by the Sentinel-2 imaging system (Drusch et al. 2012). Sentinel-2 data 

contain 13 multispectral bands collected at 10, 20, and 60 m resolution. We accessed all Sentinel 

2 images intersecting the boundary of North Carolina collected between 2016-01-01 to 2016-12-

31 in which less than 20 percent of pixels were labeled as cloudy, as recorded in the image 

metadata.  We then masked clouds from these images using the included quality assurance band, 

which flags cloudy pixels. Finally, we selected values from the three visible red, green, and blue 

(RGB), near infrared (NIR), and two short-wave infrared bands (SWIR1 & SWIR2) as training 

features for the CNN model used to delineate solar arrays. 

To make the model robust to phenological variability, we separated the 2016 collection of 

Sentinel-2 images into four seasonal collections: Spring (01Mar16 - 31May16); Summer 

(01Jun16 – 31Aug16); Fall (01Sep16 – 30Nov16); and Winter (01Dec16 – 28Feb16). Each of 

these four collections images were then reduced to a single image per season by taking the 
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median value at each pixel among all images in the collection.  Thus, we generated four six-band 

images containing Sentinel-2 reflectance data covering North Carolina. 

We used 1 m2 resolution National Agricultural Imaging Program (NAIP) imagery to precisely 

map parking lots across Long Island. The (sometimes) small size of parking lots necessitated 

higher resolution imagery to train a useful image segmentation model.  NAIP imagery is 

collected approximately once every two years per state, and the most recent images covering 

Long Island were from 2016. These images contained blue, green, red, and near-infrared 

reflectance values, and we used RGB bands as training features. NAIP images are collected from 

fixed-wing aircraft and are cloud free. Therefore, we did not apply any preprocessing to these 

data. We used Google Earth Engine to access and process all Earth observation data. 

We overlaid the respective solar array and parking lot label images with Sentinel-2 and NAIP 

images to create images with 7 and 4 bands, respectively (Fig. 1). We sampled image chips from 

each of these training images for model training and evaluation. Because solar arrays and 

parking lots can be relatively sparse features on a landscape, we took two steps to ensure our 

model had enough positive examples from which to learn to recognize these features.  First, we 

sampled image chips at the centroids of each digitized training feature. We then generated a 

random sample of 1000 points within 5km of these features and sampled image chips at each 

point. The resulting sets of image chips were then divided into 70% training and 30% evaluation 

sets. 

Model Training & Evaluation 

To delineate solar arrays in Sentinel-2 imagery, we trained a U-Net model (Ronneberger et al. 

2015) taking 256 x 256 x 6 pixel image chips as input. To map parking lots, we trained a 

DeepLab v3 model with a Resnet backbone (Chen et al. 2017) taking 512 x 512 x 3 pixel image 

chips as input. The spectral information contained in NAIP data is like that in photographs, for 

which pre-trained Resnet weights exist. We used weights previously trained the ImageNet 

collection (Russakovsky et al. 2015).  

During training we rescaled image chips to standardize model input. For Sentinel-2 data, we 

calculated per-band means and variances for each incoming chip and normalized each to have 

mean = 0 and standard deviation = 1. For NAIP data, we centered each image chip using pre 

calculated means per band from the ImageNet collection. ImageNet photographs contain red, 

green, and blue values on a 0-256 scale, which is the same as NAIP imagery, and this centering 

created input data consistent with that expected by the pretrained ResNet backbone. We 

additionally implemented morphological and spectral image augmentation to artificially increase 

the variability of training data. At training time, we randomly applied a rotation of 0, 90, 180, or 

270 degrees as well as random horizontal and vertical flips to image chips including 

multispectral training and label data (e.g., Peng et al. 2019). We then separated labels from 

multispectral bands and augmented the color of the latter.  

We trained the U-Net solar array model using Keras with Tensorflow as the backend using 

batches of 16 images per step for 50 epochs, optimizing a weighted binary cross entropy loss 

function using the Adam optimizer with initial learning rate of 1e-4 and a decay rate of beta1 = 
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0.9, beta 2 = 0.999. We evaluated model performance on the evaluation data set at each epoch in 

terms of intersection over union (IoU) between predictions and labels. We saved the weights 

maximizing the IoU metric during training using Keras callbacks.  We trained the DeepLab v3 

parking lot model with Tensorflow 2.0 using batches of 16 images per step for 50 epochs. We 

optimized weighted binary cross entropy loss using a momentum optimizer with initial learning 

rate 7e-3, final learning rate 1e-6, and a polynomial decay. We retained model weights from 

checkpoints at which IoU was maximized. For both models, we used Tensorboard to track model 

performance during training and evaluation.  

We tested the predictive performance of each model on test images that were used neither during 

training nor evaluation. Performance was measured in terms of commission rates and area (i.e., 

false positives), omission rates and area (i.e., false negatives), and intersection over union 

relative to ground truth features in validation images. Solar array ground truth features included 

126 arrays in four 1800 km2 images from North Carolina in 2018. These four validation areas 

were selected to capture a sample of solar arrays falling under each of the four Sentinel orbit 

paths covering the state. Parking lot ground truth features included 135 hand digitized parking 

lots in two 15 km2 images from Monroe county, NY in 2016. We calculated each metric using 

polygons generated by applying varying thresholds to output prediction probabilities and identify 

the optimal threshold as the probability that produced the greatest IoU. For parking lots, we 

provide a comparison of the number of parking lot polygons generated using the optimal 

threshold that overlap parking lot features in OpenStreetMap data (Contributors 2017). 

All data preparation and sampling, as well as model training and prediction were performed 

using Google Collaboratory notebooks with a Python 3 runtime. During Keras and Tensorflow 

model training and prediction we used the available graphical processing unit hardware 

accelerator.   

Results 

At the end of training, the U-Net solar array model had a mean IoU of 85.9% on evaluation data. 

Predictions made by the model improved in all metrics as the probability threshold delineating 

solar arrays from background was increased. The threshold resulting in polygons with the 

greatest IoU was 0.99 (Table 1). Using output polygons created with this threshold, we identified 

159 confirmed new solar arrays covering 119.25 km2 in North Carolina from between 2016 and 

2019. 

The DeepLab v3 parking lot model had a mean IoU of 72.3% on evaluation data at the end of 

training. The threshold resulting in polygons with the greatest IoU was 0.6 (Table 1). Using 

output polygons created using this threshold, we identified 148 parking lots > 2 ac in the town of 

Huntington, covering 2.81 km2 in 2016. Of these, 123 (81%) were absent from the Open Street 

Maps dataset. The output of both models can be interactively visualized through a Google Earth 

Engine app (Evans 2019).  

Discussion 

Free, simple, effective workflows are needed to leverage the available capacity to combine Earth 

observation imagery with deep learning methods to solve conservation challenges.  In this paper 
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we demonstrate the ability to delineate features of interest using public data, free computing 

resources, and limited training data sets. Our results indicate that the methods presented can 

achieve useful predictions and produce outputs that can be used in conservation research and 

planning. Importantly, the validation data on which we evaluate performance were generated 

from images that were spatially or temporally distinct from model training and evaluation data. 

Good performance on out-of-sample data suggest our models generalize reasonably well. Thus, 

this study addresses two of the major limitations in applying deep learning to Earth observation 

data – generalizability and limited training data (Li et al. 2019). The features we delineate can be 

used to better understand the current and potential impacts of solar energy development to 

wildlife habitat, as well as identify and prioritize sites for future development that are low 

impact. Furthermore, the trained models may be useful for delineating these features in other 

geographies or at future times. 

Our trained CNNs were effective at accurately delineating solar arrays and parking lots and were 

able to identify instances of each feature that had not previously been mapped. The U-Net model 

delineating solar arrays was more accurate and precise than the DeepLab v3 model delineating 

parking lots. Both models had low rates of omission, but the DeepLab v3 model had relatively 

high commission errors. These were due mostly to small false positives, as indicated by 

relatively small areas of commission. It is possible that solar arrays are inherently more easily 

distinguished from the surrounding landscape than parking lots. Solar arrays have both distinct 

reflectance characteristics and spatial configurations, whereas parking lots are spectrally similar 

to other impervious surfaces and can take a variety of forms. The U-Net model trained to identify 

solar panels also used more training features due to the greater spectral resolution of Sentinel-2 

data relative to NAIP data. It is also possible that the use of pre-trained weights with DeepLab v3 

affected model performance. Theoretically, transfer learning should improve model performance 

and training time by leveraging low-level features learned during training on similar, larger 

datasets (Huang et al. 2017). However, other research has found this strategy does not 

necessarily improve the final target task accuracy (He et al. 2019). Our results indicate that 

parking lots might be more effectively delineated by incorporating additional infrared reflectance 

data available in NAIP imagery, and training either a DeepLab v3 or U-Net model from scratch.  

It is critical that CNN models perform sufficiently well with relatively small training datasets to 

be of use to conservation. Limited training data has been a primary bottleneck in the 

advancement of applications of computer vision using Earth observation imagery. As such, 

conservationists often do not have access to large training datasets for a feature of interest 

(although more are becoming available e.g., (Dunnett et al. 2020; Rand et al. 2020)) and 

collecting these data can be cost-prohibitive. We trained models on less than 1,000 examples, 

and data augmentation methods were likely important to the success of models trained on such 

small datasets. Image augmentation, and label overloading (Robinson et al. 2019) - pairing label 

images with earth observation data taken at different times – increased the variability of 

examples seen by models within realistic bounds. We were unable to apply image overloading in 

training our DeepLab v3 model, due to the course temporal resolution of NAIP data, which may 

also have contributed to the decreased performance of this model relative to the U-Net model.  

The image augmentation procedures we used are commonly applied in the training of CNNs, and 
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should be implemented as standard practice when working with limited training data to help 

improve model generalizability.  

A complimentary solution to limited training data is a stable of pre-trained models that can be 

repurposed for other tasks. Because we use native Sentinel-2 and NAIP bands as training 

features, our models may be a useful starting point in training CNNs to perform similar tasks 

using either of these free sources of Earth observation data. The ability to delineate a variety of 

target features using Sentinel-2 imagery is particularly appealing because the system’s high 

revisit rate makes rapid updating of maps possible. Global datasets like OpenStreetMaps (OSM) 

are not always complete and rely on updates from a user community.  For instance, a recent 

inventory of OSM solar panel data revealed a 50% match with locations derived from renewable 

energy specific datasets (Dunnett et al. 2020). Most large parking lots delineated by our final 

DeepLab v3 model were not included in the OSM dataset. Thus, a relatively lightweight model 

that can be produce predictions at regular intervals could represent a substantial advance in the 

ability to track ever-changing conditions. Trained models that do not rely on engineered training 

features are a necessary first step in this direction. 

In application, practitioners may benefit from using ancillary datasets to perform simple, 

common sense corrections to CNN model outputs. Such adjustments can help improve the 

usefulness of outputs by eliminating unreasonable predictions. Both models had higher rates of 

commission errors than omission errors and were more likely to misidentify a non-target feature 

than miss a true instance of a solar array or parking lot. For example, large patches of clouds 

reflected in coastal waters were assigned a high probability of being solar arrays by our U-Net 

model. Occasionally, patches of forest were also identified as solar arrays. In a post-hoc analysis, 

we eliminated false positives over water using annual surface water data (Pekel et al. 2016), and 

those corresponding to forest patches by calculating the normalized difference vegetation index 

in the Sentinel-2 image on which predictions were made and masking pixels with and index over 

0.2. These two adjustments increased IoU to 0.97. Similarly, rectangular patches of bare ground 

were mis-identified as parking lots by the DeepLab v3 model, and a similar approach using a 

bare soil index might improve the final output. 

Finally, we provide annotation datasets that can be used for other training tasks as georeferenced 

polygons, with temporal metadata, and recommend that future training datasets be provided in a 

similar format. This format is important for three reasons. First, polygons can be used for both 

image segmentation and localization tasks, whereas labeled images or object locations can only 

be used for the latter (e.g. UC Merced dataset (Yang & Newsam 2010). Second, polygons that 

are georeferenced enable the introduction of temporal variability through label data overloading. 

Third, as opposed to a label image, polygons can be easily combined with any available imagery 

allowing for the training of models using different, or multiple Earth observation systems 

(Robinson et al. 2019).  

Data Availability 

Ground truth data and trained model weights are available in an Open Science Framework 

repository: osf.io/g463z 
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Code used to generate images, sample training data, train models, and run predictions is 

available in the GitHub repo: https://github.com/mjevans26/Satellite_ComputerVision/
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Tables 

Table 1. Performance metrics for convolutional neural networks used to delineate solar arrays 

from Sentinel-2 data and parking lots from National Agricultural Imagery Program data. Metrics 

were calculated between ground truth polygons and polygons produced using different 

probability thresholds on model predictions.  

  Commission  Omission  
Model Threshold Area (%) Rate  Area (%) Rate IoU 

D
ee

p
L

ab
 v

3
 p

ar
k
in

g
 l

o
ts

 0.50 0.142 0.592  0.007 0.025 0.523 

0.55 0.125 0.564  0.007 0.025 0.530 

0.60 0.112 0.535  0.010 0.030 0.530 

0.65 0.103 0.515  0.013 0.040 0.522 

0.70 0.088 0.450  0.021 0.061 0.503 

0.75 0.071 0.390  0.044 0.091 0.470 

0.80 0.050 0.325  0.049 0.112 0.419 

0.85 0.031 0.281  0.113 0.238 0.347 

0.90 0.024 0.184  0.182 0.355 0.254 

0.95 0.012 0.051  0.340 0.604 0.125 

        

U
-N

et
 s

o
la

r 
ar

ra
y
s 

0.50 0.110 0.484  0.014 0.023 0.793 

0.55 0.109 0.495  0.014 0.023 0.794 

0.60 0.108 0.489  0.014 0.023 0.795 

0.65 0.106 0.489  0.014 0.023 0.797 

0.70 0.105 0.473  0.014 0.023 0.798 

0.75 0.104 0.461  0.014 0.023 0.799 

0.80 0.102 0.478  0.014 0.023 0.800 

0.85 0.100 0.442  0.014 0.023 0.802 

0.90 0.097 0.415  0.014 0.023 0.805 

0.95 0.091 0.417  0.014 0.023 0.808 

0.99 0.078 0.366  0.014 0.023 0.815 
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Figures 

 

Figure 1. Flow-chart showing data collection process used to train deep learning models 

delineating solar arrays and parking lots. Steps contained within the dashed border are performed 

using Google Earth Engine, and consist of dividing imagery into seasonal collections (when 

available), creating median composites per collection, and sampling these composites at target 

feature centroids and random locations. 
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Figure 2. Predictions made by convolutional neural networks trained to delineating solar arrays 

from Sentinel-2 data (a, b, c) and parking lots using National Agricultural Imagery Program data 

(d, e, f). Panels flow from top to bottom showing the raw imagery used to generate training 

features (a, d), ground truth labels (b, e), and model output predictions (c, d).  
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