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Abstract—In this paper, we focus on developing a novel 

method to extract sea ice cover (i.e., 
discrimination/classification of sea ice and open water) 
using Sentinel-1 (S1) cross-polarization (vertical-horizontal, 
VH or horizontal-vertical, HV) data in extra wide (EW) swath 
mode based on the machine learning algorithm support 
vector machine (SVM). The classification basis includes the 
S1 radar backscatter coefficients and texture features that 
are calculated from S1 data using the gray level co-
occurrence matrix (GLCM). Different from previous 
methods where appropriate samples are manually selected 
to train the SVM to classify sea ice and open water, we 
proposed a method of unsupervised generation of the 
training samples based on two GLCM texture features, i.e. 
entropy and homogeneity, that have contrasting 
characteristics on sea ice and open water. We eliminate the 
most uncertainty of selecting training samples in machine 
learning and achieve automatic classification of sea ice and 
open water by using S1 EW data. The comparison shows 
good agreement between the SAR-derived sea ice cover 
using the proposed method and a visual inspection, of which 
the accuracy reaches approximately 90% - 95% based on a 
few cases. Besides this, compared with the analyzed sea ice 
cover data Ice Mapping System (IMS) based on 728 S1 EW 
images, the accuracy of extracted sea ice cover by using S1 
data is more than 80%. 
 

Index Terms—Cross polarization, Machine learning, SAR, Sea 
ice cover 

I. INTRODUCTION 

ATELLITE remote sensing is among the primary tools used 
to monitor polar regions where severe weather conditions 

present great obstacles to field research. Sea ice, as one of the 
most important indicators of climate change in polar regions, 
has major impacts on the atmosphere, oceans, and terrestrial-
marine ecosystem. Thus, numerous attempts have been made to 
monitor sea ice in polar regions. 

The spaceborne radiometer (passive sensor) and 
scatterometer (active sensor) are two major techniques used for 
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monitoring sea ice in polar regions. Observations have been 
widely explored to derive sea ice extent, concentration, and 
motion for operational service [1] – [4]. In particular, the 
spaceborne microwave radiometer yields the longest time-
series of sea ice cover in the polar regions since 1979, showing 
that the average Arctic Sea ice extent is declining at a rate of 
0.53  106 km2 . decade-1 [5]. 

Sea ice cover is a fundamental factor indicating Arctic 
changes. Along with the accelerating decline of sea ice and 
reduced ice thickness in the Arctic, sea ice cover presents more 
significant spatial and temporal variations in the marginal ice 
zone (MIZ), indicating that the satellite observations of ice 
cover at a higher spatial resolution than operational radiometer 
and scatterometer products is essential. Due to the significant 
advantages of high spatial resolution, polarimetric capability, 
and flexible imaging modes, spaceborne synthetic aperture 
radar (SAR) is a better solution for sea ice monitoring from a 
more detailed perspective. The radiometer and scatterometer 
can yield sea ice concentration observations across large areas 
with spatial resolutions of 6.25 km - 12.5 km (e.g., [6]), while 
spaceborne SAR can provide sea ice cover information with 
spatial resolutions at the scale of 1 km and up to dozens of 
meters. Spaceborne SARs, including Seasat, ERS-1/2, 
ENVISAT/ASAR, RADARSAT-1/2, TerraSAR-X/TanDEM-
X and Sentinel-1, have shown good capabilities for monitoring 
sea ice information [7], [8], e.g., ice cover/extent [8], [9], ice 
classification (including ice floes, leads, polynyas) [10] – [14], 
ice motion/drift [15], [16], icebergs [17] – [19], and ice-wave 
interactions [20]. Although the methods of mapping sea ice 
cover or discriminating sea ice and open water from spaceborne 
SAR data have been proposed for a long time, such information 
has not been routinely used for Arctic Sea ice monitoring. 

Focusing on sea ice-open water (hereafter shortened to ice-
water) classification from spaceborne SAR data, the Support 
Vector Machine (SVM) is a popular two-class classification 
machine learning algorithm. SVM-based ice-water 
classification methods, including pixel-based and region-based 
methods, have been developed for various spaceborne SAR 
data [8], [9], [11], [21], [22]. As the SVM is a supervised 
machine learning method, the most challenging task is to obtain 
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well-labeled training samples, which can highlight the 
differences in sea ice and open water in SAR images. The 
training samples should be informative [23], including different 
sea ice types of multiyear ice, level and deformed first-year ice, 
new ice and many others, and different open water types, such 
as calm and rough sea surfaces. The acquisition of training 
samples, which are usually selected manually by experts, is 
tedious and time consuming. On the other hand, when a certain 
developed machine learning algorithm is adapted to other SAR 
data for classification of sea ice, procedures of training samples 
selection and re-train of the algorithm have to be repeated. 
Therefore, a more intelligent method of training sample 
generation is highly needed to develop a robust machine 
learning method of classifying sea ice by spaceborne SAR 
images.  

For the ice-water classification by spaceborne SAR data, 
naturally, the radar backscatter intensity could be the 
determination basis, as the backscatter of sea ice is generally 
higher than that of open water, which is particularly evident in 
the cross-polarization channel as it is sensitive to the volume 
scattering while sea surface generally presents surface 
scattering. On the other hand, the radar backscatter of co-
polarization (vertical-vertical, VV or horizontal-horizontal, HH) 
changes rapidly along with variation in incidence angles [8], 
[21], [24]. However, the radar backscatter of the sea surface in 
cross-polarization is slightly dependent on incidence angles and 
sea surface wind speed [25]; Thus, SAR cross-polarization data 
are proven to be more effective for ice-water classification than 
co-polarization SAR data [7]. Therefore, some recently 
proposed ice-water classification methods are based on the 
dual-polarization (HH and HV) SAR data of RADARSAT-2 [8], 
[9], [11], Sentinel-1 [21], [26], [27] and Gaofen-3 [22]. 

Although the SAR radar backscatter of sea ice and open 
water may have similar characteristics under some conditions, 
their texture features calculated based on the intensity can have 
differences. Therefore, instead of using only radar backscatter 
intensity, texture features are additionally used for classifying 
sea ice and open water. Various studies on texture analyses of 
SAR images have demonstrated that the gray-level co-
occurrence matrix GLCM texture features can effectively 
reflect specific backscatter (or intensity) patterns that are 
different between ice types and open water [28] – [30]. Previous 
studies [10], [12], [28] suggest that the texture features of 
energy, contrast, correlation, homogeneity, entropy, and 
moment are informative for ice classification. 

In this study, an SVM-based classification algorithm is 
proposed for ice-water classification in the Arctic. By 
introducing the GLCM texture features into the step of 
extracting and classifying training samples, the unsupervised 
generated training samples take the place of costly, manually 
labeled training samples. Moreover, different from previous 
relevant studies, the training samples generated by the proposed 
method are variable from one case to another one, to better be 
suitable for significant variations of sea ice conditions in the 
marginal ice zone (MIZ) of the Arctic. This idea has been 
preliminarily tested in a few Chinese C-band SAR Gaofen-3 
cross-polarization images [22]. In this study, the algorithm is 

further improved and applied to the S1 extra-wide (EW) swath 
data in HV polarization, and extensive validation is conducted 
for the EW data acquired in the Arctic. 

II. DATASETS 

A. Sentinel-1 Extra-Wide Swath Data 

For the algorithm development and validation, 728 scenes of 
S1A and S1B EW data in HV polarization acquired in the Arctic 
during the melting season from July 1 to September 30, 2018, 
were used. Prior to using these data to derive sea ice cover 
information, all these HV-polarized EW data are denoised using 
the method proposed in [31]. 

The EW data have dimensions of approximately 10000pixels 
in both azimuth and range directions. Although we have 
achieved parallel computation of GLCM to derive texture 
features (which is described in detail in Section III), the EW 
HV-polarized data are resampled by spatially averaging to half 
the size of its original dimension, leading to the pixel size being 
changed from 40 by 40 m to 80 by 80 m, which significantly 
improves the efficiency of GLCM textures computation. 

B. IMS Data 

The Multi-sensor Snow and Ice Mapping System (IMS, 
https://nsidc.org/data/G02156/versions/1) sea ice extent data 
produced by the National Snow and Ice Data Center (NSIDC) 
are used for comparison with the S1-derived sea ice cover 
results. The sea ice information derived from the passive 
microwave (radiometer), active microwave (SAR) and optical 
(multiple spectra) remote sensing sensors, as well as in situ data, 
are used to produce the IMS sea ice product. These data are 
considered valid at 0:00 UTC each day. The analysts compile 
the sea ice cover map based on the collected satellite imagery 
and other data acquired over different times within a day [32]. 
In this study, the IMS data at a spatial resolution of 1 km by 1 
km are used for comparison. 

C. GSHHS Data 

The Global Self-consistent Hierarchical High-resolution 
Geography Database (GSHHG, 
https://www.ngdc.noaa.gov/mg 
g/shorelines/gshhs.html) is used for masking land presented in 
S1 EW images. The full resolution product in a 1 1  arc-
minute grid of version 2.3.7 was released in 2017. 

III. METHODOLOGY 

In this section, a detailed description of the proposed method 
for deriving sea ice cover from S1 EW HV-polarized data is 
presented. First, the EW data are preprocessed using the 
denoising method proposed by us in [31]. Then, the process of 
ice cover extraction is described in four major steps: 1) 
calculation of texture features using GLCM, 2) automatic 
extraction and classification of training samples, 3) training of 
the SVM and 4) application of the trained SVM  on the S1 EW 
image. The flowchart of the algorithm is shown in Fig. 1. 
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Fig. 1. Flowchart of the proposed method for deriving sea ice cover from S1 
EW data in HV polarization. 
 

A.  Calculation of texture feature using GLCM 

 GLCM, which was first proposed by Haralick et al. [33], is 
a widely applied method for texture feature extraction. The 
GLCM represents the distance and angular spatial relationship 
over an image subregion of a specific window. The GLCM 
calculates how often a pixel with gray level (also called gray 
tone) value 𝑖  occurs either horizontally, vertically, or 
diagonally to adjacent pixels with value 𝑗.  

Four key parameters that need to be set in the GLCM 
calculation, i.e., number of gray levels b, window size 
(dimension) w, direction θ, and distance d. Based on the GLCM 
in one sliding window, one value per pixel position of each 
texture feature (introduced below) can be acquired. Then, the 
step size s of the sliding window that determines the spacing 
resolution of the texture features can be selectively set 
according to the research demands. 

In this study, the number of gray levels 64, the orientation of 
0°, 45°, 90°, and 135° are chosen based on previous studies, e.g., 
[10], [28]. We conducted a series of experiments with the S1 
EW data to test the parameters of window size varying from 16 
to 64 pixels and the distance varying from 4 to 16 and verify 
which setting of the parameters can highlight the discrimination 
between sea ice and open water. Finally, we decided to set the 
window size to 24×24 pixels, the distance to 6 pixels. The step 
size was set to be 12 pixels, i.e. the pixel size of the SAR-
derived sea ice cover data is 960 m (12 pixels*80 m/pixel), 
which is convenient for comparing the SAR-derived sea ice 
cover with the IMS data with a grid size of 1000 m. In principle, 
one can reduce the step size to obtain sea ice cover information 
in higher spatial resolution. 

Texture features reflect the visually changing features in the 
image. Numbers of textures can be extracted using GLCM [28], 
[30], [33], while some of them are highly correlated and 
therefore do not need to be used repetitively in the classification. 
Based on other studies (e.g., [10], [12], [30]) and our previous 
work on X-band [11] and C-band [22] SAR data, the mean 
intensity and other five textures, i.e., energy (also known as 
angular second moment [33]), entropy, contrast, correlation, 

and homogeneity, are determined to be more useful for ice-
water classification. These six parameters are defined in the 
following: 
 

I̅ ∑ ∑
  (1) 

 
𝑒𝑛𝑒𝑟𝑔𝑦 ∑ ∑ 𝑠 𝑖, 𝑗  (2) 

 
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ∑ ∑ 𝑠 𝑖, 𝑗 𝑙𝑜𝑔 𝑠 𝑖, 𝑗  (3) 

 
𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ∑ ∑ 𝑖 𝑗 𝑠 𝑖, 𝑗  (4) 

 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
∑ ∑ ,

 (5) 

 

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 ∑ ∑ ,
 (6) 

 
I ̅is the mean intensity values of pixels in a window 𝒘 with 

dimensions of 𝑚 columns and 𝑛 rows. 𝑖, 𝑗  is the pixel pairs of 
grayscale, and s i, j  is the frequency value of the pixel pairs 
𝑖, 𝑗  in the GLCM. 𝑢 , 𝑢  are the mean frequency values of 

rows and columns, respectively, and 𝜎  , 𝜎  are standard 
deviations, which are computed as follows: 

 
𝑢 ∑ ∑ 𝑖 ∗ 𝑠 𝑖, 𝑗  (7) 

 
𝑢 ∑ ∑ 𝑗 ∗ 𝑠 𝑖, 𝑗  (8) 

 
𝜎 ∑ ∑ 𝑖 𝑢 𝑠 𝑖, 𝑗  (9) 

 

𝜎 ∑ ∑ 𝑗 𝑢 𝑠 𝑖, 𝑗  (10) 
 
Fig. 2 shows the six texture images derived from a denoised 

S1 EW HV-polarized image using the method proposed in [31]. 
As expected, these texture features show distinguishable 
differences between sea ice and open water that sea ice usually 
presents more randomness and complexity variations in the 
SAR images. Therefore, it has larger values of contrast and 
entropy textures than those of open water. In contrast, as the 
open water is rather smooth with more regular and stable 
textures, higher values of correlation, energy, and homogeneity 
are presented. These opposing trends in sea ice and open water 
textures, particularly the most distinct ones of energy, entropy 
and homogeneity, yield the possibility of sample classification. 
In Fig. 2, there is a region close to the distinct sea ice boundary 
appearing extremely low backscatter values, which might be 
frazil or grease ice. Frazil or grease ice has different thicknesses 
and radar backscatter characteristics of different phases during 
forming [34]. This area presents high values of correlation, 
energy and homogeneity textures, similar to those of open water.   

In the following section, the texture-based training sample 
extraction using entropy and homogeneity textures is described. 
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(a) Mean intensity (b) Contrast (c) Correlation 

 

(d) Energy (e) Entropy (f) Homogeneity 

Fig. 2.  Image textures of an S1 EW image in HV polarization acquired on September 26, 2018 over the Beaufort Sea. (a) - (f) are the corresponding nomalized 
mean intensity value, contrast, correlation, energy, entropy, and homogeneity, respectively. Image ID: 
S1A_EW_GRDM_1SDH_20180926T164932_20180926T165032_023872_029AF3_4D04.SAFE  

B. Extraction of Training Samples  

The core idea of extracting samples is to use the watershed 
transformation to segment the homogeneity and entropy texture 
images independently based on their gradient magnitudes to 
polygons (i.e. the so-called “catchments”) of “pure” sea ice and 
open water samples. The watershed transformation is a region-
based segmentation approach. Sea ice and open water presented 
in S1 images often are widely connected with no obvious 
watershed ridges existing (leading to under-segmentation), and 
the watershed transformation is sensitive to details and noise 
(leading to over-segmentation) in the image. Therefore, the 
marker-controlled watershed image segmentation (e.g., [35]) is 
applied in this study, which is accomplished based on the 
MATLAB tools in our study. 

The watershed transformation is applied twice in the sample 
segmentation processing. The first transformation is conducted 
on the local gradient minima of several sub-regions to extract 
the edges of the Euclidean distance transform. Then, the 
morphological reconstruction of the gradient magnitude is 
conducted by using the first watershed ridges as foreground 
markers and the local minima as background markers. After all 
these, the second transformation is conducted on the marker-
controlled gradient magnitude to obtain the resulted sample 
segmentation. Fig. 3 shows the step-by-step breakdown process 
of sample segmentation in a texture image of homogeneity. 

Step Ⅰ: The Sobel operator is used to calculate gradient 
magnitude of the homogeneity texture, as shown in Fig. 3(a). 

We can see that there are no obvious edges in the large areas of 
ice and water covered in Fig. 3(a). Therefore, in the following 
steps, we need background and foreground markers to obtain 
the catchments that are desired for extracting training samples 
by the watershed transformation. To evenly obtain training 
samples over the whole EW images, we divided the whole Fig. 
3(a) into 10×10 segmented subregions (i.e. sub-images) to find 

the local minima of the gradient magnitude. Each subregion 
generates at least one minimum gradient (green dots in Fig. 
3(b)), and then a binary matrix is built with values of 1 in the 
minima pixels and 0 in other pixels. These minimum points are 
used as background markers in step III.  

Step Ⅱ: Based on the binary matrix (minima or not) obtained 
in the first step, we get the Euclidean distance transform, as 
shown in Fig.3(b). In the figure, the white edges are the 
boundaries in which the pixels have the same distances to every 
two adjacent minima (the green dots). The gradient gray 
represents the increased Euclidean distance from the minima to 
the edges. We accomplished this process in MATLAB by using 
the function called “bwdist”. 

 Then, the watershed transformation (using the MATLAB 
function ‘watershed’) is applied to the Euclidean distance 
transform and the segmented polygons are extracted, i.e. the 
gray polygons presented in Fig.3(c). Note that the different gray 
tones in 3(c) are used only for distinguishing the segmented 
polygons. Consequently, a binary matrix is obtained with 
values of 1 in the edges of polygons and 0 in other pixels.  The 
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edges of these polygons are used as foreground markers in Step 
III.  

 

 
(a) Gradient magnitude (b) Euclidean distance transform 

(c) Polygons achieved after the first watershed 
transformation 

 
(d) Morphology reconstruction of gradient 

magnitude 
(e) Polygons after the second watershed 

transformation
(f)Obtained training samples in homogeneity 

image 

Fig. 3.  Intermediate results of extracting samples using the marker-controlled watershed transform method for the case presented in Fig.2. The processing 
details are presented in the main text. 

Step Ⅲ: The morphology reconstruction of the gradient 
magnitude is accomplished by using the minima as background 
markers and the edges of polygons as foreground markers. The 
principle is to modify the gradient magnitude image so that its 
only regional minima occur at the binary marker pixels. 
Comparing to Fig. 3(a), the gradients after the morphology 
reconstruction shown in Fig. 3(d) are smoothed and highlighted, 
while the black dots and watershed ridges replaced the darkest 
areas in the gradient image. This process was accomplished by 
using the MATLAB function imimposemin. 

Step IV: The second watershed transformation is applied to 
the marker-controlled gradient magnitude, and the extracted 
polygons are shown in Fig. 3(e), i.e., the polygons filled in light 
gray tones. Fig. 3(f) shows the final extracted sample polygons 
superimposed in the homogeneity texture image, where the 
training samples are evenly distributed throughout the whole 
image. Most of these samples are pure sea ice or open water, 
though there are few polygons (4 ones among the extracted 100 
polygons of this case) include mixture samples.   

Similarly, the above described processing is also applied to 
the entropy texture image to extract the respective training 
samples. 

C. Classification of Training Samples 

Following the extraction of training samples, the 
classification of these samples is conducted by choosing the 
thresholds of entropy and homogeneity textures. The general 
rationale for determining a threshold is that the average 
homogeneity values of sea ice samples are smaller than the 
homogeneity threshold, and the average entropy of sea ice 
samples is greater than the entropy threshold. As presented in 
the texture images (Fig. 2), the entropy and homogeneity 
textures of sea ice and open water generally have a distinct 
contrast, which is usually shown as a bimodal histogram of 
probability distribution. The Otsu's method [36], as an adaptive 
method, chooses a threshold that can minimize the interclass 
variance of the black and white samples. 
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Fig. 4.  Type Ⅰ: the typical bimodal histograms of homogeneity (upper) and 
entropy (lower) texture features. The thresholds exist between the two peaks.

 Fig. 5.  Type Ⅱ: the typical “large homogeneity” histograms of 
homogeneity (upper) and entropy (lower) texture features.  

Fig. 6. Type Ⅲ: the typical “small homogeneity” histograms of homogeneity 
and entropy texture features.  

 Fig. 7. Type Ⅳ: the typical other multimodal histograms of homogeneity 
and entropy texture features. 

Fig. 4 shows the bimodal probability distribution histograms 
of the two textures of entropy and homogeneity that presented 
in Fig. 2. By applying Otsu's method to the histogram of 
homogeneity texture, the threshold of 0.24164 is determined, 
and the same is done for the histogram of entropy texture with 
a threshold of 2.2812.  

Although Otsu's method performs well in cases with bimodal 
histograms, the histograms of textures are often multimodal due 
to complicated sea ice and open water conditions. In our 

experiments, we utilized the major thought of Otsu's method 
that using a histogram to find the valley value between two 
classes. We conclude with nearly all possible conditions into 
four typical cases to build the criterion of threshold 
computations. The four group histograms of Fig. 4 to Fig.7 are 
acquired from four single images that belong to the four cases 
respectively, in which the thresholds are obtained 
independently in each image.  

Fig. 5 shows the histograms of homogeneity and entropy 
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texture of the image that is dominated by a large area of open 
water (the case presented later in Section IV, Fig. 11(a)). In this 
case, the lesser amount of sea ice has the lowest homogeneity 
values and the highest entropy values, whereas the open water 
has a large range and densely distributed texture values that 
present as the high peaks in Fig. 5(a) and (b). According to the 
contrasting characteristics of the two textures, we use the 
homogeneity histograms for explanation hereafter. Different to 
Fig. 4(a), the major peaks corresponding to open water in Fig. 
5(a) exist in the last half of the histogram. Thus, instead of the 
valley values between the two large peaks, the threshold is 
selected at the front of the major peaks. 

Conversely, Fig. 6 shows the two texture histograms of the 
image dominated by a large area of sea ice (the case presented 
in Fig. 12(a)). In this image, the lesser amount of water has the 
highest homogeneity values and the lowest entropy values, 
whereas the sea ice has a large range and densely distributed 
texture values that present as the high peaks in Fig. 7. The 
determined homogeneity threshold is selected following the 
high peaks, and the entropy threshold is selected close ahead of 
the high peaks. 

Generally, in the homogeneity texture histogram, the 
stronger the sea ice radar backscattering is, the lower the texture 
values of the first peak (corresponding to sea ice) will be; and 
the more concentrated the sea ice radar backscattering is, the 
higher the first peak probability will be. No matter the size of 
the first peak, it most likely represents sea ice. As shown in Fig. 
7, in the fourth type with multimodal histograms, the thresholds 
can be selected at the tail behind the first peak, while the 
thresholds of the corresponding entropy histograms can be 
selected at the front of the last peak. 

After acquiring the thresholds from the homogeneity and 
entropy texture histograms, the samples are classified. Taking 
Fig. 4 as an example, once the average homogeneity value of 
one sample polygon is lower than the determined threshold with 
a value of 0.24164 or the average entropy value is higher than 
the threshold of 2.2812, the sample is classified as sea ice 
( white polygons in Fig. 8(a)). Otherwise, it is classified as open 
water (blue polygons in Fig. 8(b)). Note that we used the 
unnormalized texture values to compute the thresholds. 

During our studies on determining thresholds to classify 
training samples following the steps described in Part B, it is 
found that the Otsu method does not perform accurately for 
many cases. Therefore, we tried to adjust and optimize the pre-
determined thresholds (using the Otsu method) based on visual 
interpretation of SAR texture images and their corresponding 
histograms. The threshold is optimized by comparing the peaks 
and troughs in the histograms with the observed sea ice and 
open water in texture images. By processing numbers of SAR 
images, we can get a general rule of determining the threshold 
and apply to other cases.  

 
(a) 

 
(b) 

Fig. 8.  The classified sea ice samples (white polygons) and open water 
samples (blue ones) in the homogeneity (a) and entropy (b) texture images. 
Mean radar backscatter and all the texture features of these samples are used 
to train the SVM.

D. Application of SVM 

In addition to the homogeneity and entropy textures of the 
selected training samples, we add other four textures of these 
samples to train the SVM. The LibSVM (developed in [37]) is 
used for the training and implementation of the SVM, where the 
Gaussian kernel function is applied. For the demonstration case, 
an image size of 9992 by 10320 pixels was first resampled to 
half size, with the pixel size reduced to 80 m by 80 m. The 
GLCM is calculated in a 24×24 pixel sliding window with a 
sliding step of 12 pixels. Therefore, the final SAR-derived sea 
ice cover data have a pixel size of 960 m.  

Fig. 9(b) shows the extracted sea ice cover in this case using 
the processed method, where the sea ice is white and open water 
is cyan. We also derived the sea ice boundary by visual 
inspection, shown as red lines in Fig. 9(a), to evaluate the 
comparison result using the parameter accuracy. The correctly 
classified sea ice and open water pixels are recorded as True 
Positive (TP) and True Negative (TN), respectively [13]. Then 
the accuracy is defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  ∙ 100% (11) 

 
where 𝑛  denotes the total pixels of the derived result. For 
the presented case, compared with visual inspection, the 
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accuracy of the SAR-derived result using the proposed method 
is 96.30%, suggesting a good consistency with the visual 
inspection result.  The particularly dark spot was interpreted as 
grease ice (refer to the main text of Fig.2), which has similar 
texture pattern with the calm water. Thus, the proposed method 
does not discriminate it from open water. And due to the 
uncertainty of identifying this region to be grease ice or open 
water, it is not confirmed as sea ice cover in the visual 
inspection result.  

For each S1 EW image in HV-polarization, the above 
described steps, i.e. selecting training samples based on 
watershed transformation, classifying these samples based on 
contrast texture of homogeneity and entropy and the subsequent 
training and application of SVM, are conducted independently. 
In the following Section, more cases of extracting sea ice cover 
information based on the proposed method and their 
comparisons with other products are presented. 

 

 
(a) (b) (c) 

Fig. 9. (a) Visual interpretation of sea ice cover (the boundary is marked by the red line), (b) extracted sea ice cover (white) 
using the S1 EW image, and (c) the comparison of the SAR result with visual interpretation. The accuracy of sea ice cover in 
this case is 95.6%. Taking the visual interpretation as the actual ice cover, the white and blue indicate the correctly classified 
sea ice (TP) and open water (TN) pixels, and the pink and green indicate the wrongly classified sea ice (FP) and open water 
(FN) pixels. The same colors used in the following comparisons. 

IV. RESULTS AND VALIDATION 

In this section, we present the comparisons of the SAR-
derived sea ice cover results with visual inspection results based 
on a few cases, and with the IMS data based on a large amount 
of EW data（728 scenes）acquired over the MIZ in Arctic ocean. 

Further, we presented a few cases in winter season to 
demonstrate that the proposed method has good applicability to 
classify sea ice in different seasons.  

 

A. Comparison with the visual inspection results 

Fig. 10 presents four images (two cases in the summer of 
2017 and another two ones are in the summer of 2018) of 
derived sea ice cover by S1 EW data and their comparisons with 
the visual interpretation results. The accuracies of the four cases 
are 95.6%, 96.1%, 89.2% and 97.3%, which suggests that the 
sea ice and open water were overall well classified based on the 
proposed method. The proportions of TP, TN, FP, and FN to 
the number of the total pixels of the four cases are listed in 
Table. 1. The values in Table 1 generally indicate that the 
fraction of mismatched open water pixels is higher than that of 
sea ice. The MIZ is generally defined as the transition between 
the open ocean and sea ice, where the mixture of sea ice and 
open water is complicated. The case shown in (c) and (g) have 

compact edges of sea ice, therefore, the comparisons show good 
consistency between the detection and the visual inspection 
results. The case shown in (e) presents the situation of both 
dense pack ice and thin ice existing. While the later has low 
radar backscatter, close to that of open water, a large fraction of 
FN (the mismatch of open water pixels) is found in this case. 
On the other hand, even visual inspection of discriminating thin 
ice and open water in this case becomes difficult, which can 
cause bias of drawing the sea ice boundaries.   

Because it is not possible to evaluate the SAR-derived sea ice 
cover for a large amount of data compared with visual 
interpretation, we choose the IMS sea ice cover data for further 
comparison.  

 
 

TABLE I  
The proportions of TP, FP, TN and FN in the full S1 image pixels of the four 
cases presented in Fig. 10.  

Image ID TP  FP  TN  FN  

8ADD 27.9% 2.2% 67.8% 2.2% 

F320 43.7% 0.50% 52.40% 3.40% 

1CC3 19.8% 0.6% 69.4% 10.2% 

ECC0 66.8% 1.5% 30.5% 1.3% 
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(a) (b) (c) (d) 

Image ID: S1A_EW_GRDM_1SDH_20170831T201512_20170831T 
201612_018172_01E88B_8ADD.SAFE 

 

Image ID: S1B_EW_GRDM_1SDH_20180815T051524_20180815T 
051628_012269_0169B4_F320.SAFE 

(e) (f) (g) (h) 
Image ID: S1A_EW_GRDM_1SDH_20170815T073700_20170815T 

073804_017931_01E13A_1CC3.SAFE 
 

Image ID: S1B_EW_GRDM_1SDH_20180815T015800_20180815T 
015900_012267_0169A7_ECC0.SAFE 

 
Fig 10. Four cases of S1 EW images (a, c, e, and g) in cross-polarization where the sea ice boundaries are interpreted by visual inspection. Their corresponding 
extracted sea ice cover results  using the proposed algorithm are shown in (b), (d), (f), and (h), respectively.  The accuracies of the four cases are 95.6%, 96.1%, 
89.2% and 97.3%. The land is masked by brown in the images, which is the same for other images. 

 

B. Comparison with the IMS data 

To evaluate the overall accuracy of the proposed method, we 
derived sea ice cover from 728 scenes of S1 EW data, which 
was acquired during the summer season (July to September) of 
2018 in the Arctic. For better validation of the ice-water 
classification results, the EW data acquired during this period 
with sea ice coverage of the entire image not in the range of 10% 
to 90% (using the IMS product as a reference) are not included 
in the validation dataset. The reason for data screening is that 
both the threshold determination with the Otsu’s method and 
the SVM training would simply fail if there are not two distinct 
classes in one single image. Besides this, we also discarded 
those data with a land proportion of more than 90% to reduce 
instability that may be caused by the inaccuracy of land mask. 

The extracted sea ice cover data have a pixel size of 960 m, 
which is close to the resolution of the IMS sea ice data (1 km); 
therefore, these data are matched with the IMS data on a pixel-
by-pixel basis. We first present three examples of the S1-
derived sea ice cover with the IMS data, as shown in Fig. 11 to 
Fig. 13. The accuracies of the extracted sea ice cover in these 
three cases are 82.3%, 92.3% and 73.3%. These three cases 
highlight the advantages of sea ice detection using spaceborne 
SAR with a high spatial resolution to map sea ice cover in MIZ.  

 

 
Fig. 11. A case of S1-derived sea ice cover and its comparison with the IMS 
data: (a) the denoised S1 image in HV polarization, (b) the extracted sea ice 
cover using the proposed method, (c) the IMS sea ice chart, and (d) the 
match-up between (b) and (c). (ID: 
S1A_EW_GRDM_1SDH_20180818T180432_20180818T180532_023304
_0288CE_3630.SAFE) 
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Fig. 12. The same as Fig. 11 but for the case acquired on Aug. 22, 2018 (ID:  
S1B_EW_GRDM_1SDH_20180822T132251_20180822T132351_012376
_016D10_A313.SAFE) 

 

 

 
Fig. 13. The same as Fig. 12, but for the case acquired on July 14, 2018 (ID: 
S1B_EW_GRDM_1SDH_20180714T030454_20180714T030554_011801
_015B6D_56DD.SAFE) 

 
Fig. 14 shows the comparison of the extracted sea ice cover 

derived from the 728 EW scenes with the IMS data, along with 
the sea ice proportion (i.e., the proportion of sea ice cover in the 
full coverage of S1 image) variation, and the corresponding 
statistical result of the accuracy is shown in Fig. 15. Note that 
we used the SAR-derived results to recalculate the proportions 
of sea ice and used them as the x-axis values in Figs. 14 and 15. 
The overall accuracy of the 728 cases is 80.3%. Forty-nine 
cases have accuracies below 60%. Many of the cases with low 
accuracy have the circumstances of the radar backscatter 
intensities of newly formed sea ice similar to those of open 
water, which breaks the principle that using a threshold to 
accurately segment the sea ice and open water samples, 
therefore leading to misclassifications. The mean accuracy of 
all cases along with sea ice proportion is rather stable, which 

varies between 77.5% and 88.1%, and the standard deviation 
varies from 10.4% to 15.2%. 

The accuracy of S1-derived sea ice cover compared with IMS 
data is relatively lower than the comparisons with the visual 
interpretation results. This should have two reasons. On the one 
hand, the IMS data are produced using various satellite data, 
which have different spatial resolutions and may lead to 
smoother results in the process of data fusion, while the SAR-
derived sea ice cover in this paper is pixel-based. On the other 
hand, multi-sensor satellite data used for generating the IMS 
daily products are acquired at different time, while the SAR-
derived results are snapshots of the sea ice conditions at the 
SAR data acquisitions. The temporal variation in sea ice can 
also lead to some differences between the SAR observation and 
the IMS data. 

 

Fig. 14. Variation in the accuracy of sea ice cover derived from the 728 S1 
EW images in HV polarization acquired during July 1 to September 30, 
2018 along with the sea ice proportion of the full image cover. 

 

Fig. 15. The average accuracy values (dots) and the standard deviation (error 
bar) for different proportions of sea ice cover of full SAR image covers. The 
accuracy is rather stable, with a variation between 77.5% and 88.1%, and 
the standard deviation varies from 10.4% to 15.2%. 

 
An important step of the proposed algorithm is to classify the 

selected training samples into sea ice and open water based on 
their contrasting textures of histograms of homogeneity and 
entropy. However, there are some exceptional cases in which 
thin ice presents similar texture features to those of rough sea 
surfaces. Fig. 16 shows such an example. The denoised S1 EW 
image in Fig. 16(a) reveals that sea ice in the upper-left region 
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has low radar backscatter. In the homogeneity texture image 
shown in Fig. 16(b), the values of the sea ice are very close to 
those of the windy sea surface, particularly in the lower right 
region. The algorithm finds the thresholds in the histograms of 
homogeneity (Fig. 16(c)) and entropy (Fig. 16(d)), and 
eventually, we obtain the extracted sea ice cover, as shown in 
Fig. 16(e). Obviously, the sea ice in the upper-left region is 
misclassified as open water. In this case, the two types of 
samples cannot be segmented automatically by only the 
homogeneity and entropy textures. This is also the main reason 
that the 49 scenes have low accuracies in terms of sea ice 
detection. Moreover, the validation dataset is taken in the 
melting season of Arctic, therefore, the surface of sea ice is wet, 
which may also cause their textures similar to those of open 
water and the consequent misclassification, particularly when 
the sea surface is rather rough. Thus far, this is a weakness in 
the proposed algorithm. Even by manually classifying the 
training samples by visual interpretation, the SVM cannot 
achieve a good ice-water classification result in this case. In 
further development, better characteristics are needed to 
distinguish between the two types. 

 

(a) (b) 

 

(c) (d) 

 

(e) 

Fig. 16. An example of an S1 EW image in cross-polarization presenting 
thin ice and windy sea surface that is not correctly classified when using the 
proposed method. (a) denoised S1 EW image, (b) its homogeneity texture 
image, and (e) extracted sea ice cover using the training samples determined 
by the histograms of (c) homogeneity and (d) entropy texture features. (ID: 
S1B_EW_GRDM_1SDH_20180711T073722_20180711T073822_011760
_015A2A_A0C7.SAFE) 

 

 Besides, in Fig. 17, we present a relatively large panorama 
of the Greenland Sea, the Barents Sea and the surrounding sea 
areas with a longitude range of 29°W to 90°E and latitude range 
of 79° N to 85°N, which was assembled from 13 S1 EW images 
obtained on August 15, 2018 between 03:53 and 12:04 UTC. 
This panorama highlights the advantages of spaceborne SAR in 
detecting sea ice in the MIZ, and it also illustrates that the 
proposed algorithm performs well in classifying sea ice and 
open water with good accuracy. 

(a) 

(b) 
Fig. 17. (a) The mosaic denoised S1 images and (b) the extracted sea ice 
cover based on 13 images acquired in the Arctic between 03:53 and 12:04 
UTC on August 25, 2018. The white regions in (a) represent the S1 data 
with full open water cover. 

C. Cases in the winter season 

All the cases and statistical analyses presented above are 
based on the S1 HV-polarized images acquired in the melting 
season. This is because in the melting season, sea ice at the MIZ 
in the Arctic present significant spatial and temporal variations, 
while we would like to highlight the advantages of mapping sea 
ice cover by spaceborne SAR in high spatial resolution. Early 
studies (e.g., [38]) have shown that sea ice in different seasons 
can present variable radar backscatter characteristics in SAR 
images. Therefore, in this section, we present two cases to 
demonstrate the application of the proposed method to S1 data 
acquired in the winter season to extract sea ice cover. Note that 
the proposed method is not intended to apply to extract sea ice 
cover from S1 HV-polarized data acquired in specific seasons. 
In other words, we expect that the method can perform well for 
sea ice in different seasons.  

The extracted sea ice by three S1 EW HV-polarized data 
acquired in the winter season using the proposed method is 
presented in Fig. 18. The denoised S1 EW images in HV 
polarization are presented in the left column and their 
corresponding detected sea ice cover results are shown in the 
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right column of the figure. The two cases were acquired in the 
Kara Sea, and the Greenland Sea, respectively. The extracted 
sea ice cover is in good agreement with visual inspection of the 
original S1 images. In the Kara Sea case, the sea ice closed to 
the southeast coast of the archipelago presents similar radar 
backscatter feature with that of the surrounding open water, 
which was not well classified by the proposed method. The sea 
ice was well classified in the Greenland Sea case, which 
presents highly spatial variations of sea ice. This is an 
interesting case as well, one can observe the runoff pattern (the 

bright linear feature elongating from land to open sea) of 
freshwater from the melting glacier to the open sea, which 
should contribute to the significant spatial variation of the sea 
ice over that region.  

While the two cases indicate that the proposed method 
generally can discriminate sea ice and open water in the winter 
season, more S1 data need to be analyzed to examine the 
discrepancy of performance of the proposed algorithm on data 
acquired in different seasons.   

  

(a)  
ID: S1A_EW_GRDM_1SDH_20190104T030737_20190104T030837_025322_02CD45_23FA.SAFE (Kara Sea) 

（b） 
ID: S1A_EW_GRDM_1SDH_20181202T083009_20181202T083109_024844_02BC4B_D07D.SAFE (Greenland Sea) 

Fig.18 Two cases to demonstrate the application of the proposed method to S1 data acquired in the winter season to extract sea ice cover. 

 

V. SUMMARY AND CONCLUSIONS 

The two SAR sensors carried by S1A and S1B have been 
acquiring images in wide swath (~ 400 km) HH and HV 
polarizations, and these sensors are dedicated to monitoring sea 
ice in the Arctic. The SAR data in cross-polarization are 
suitable for sea ice detection, mainly because these data are less 
sensitive to incidence angles and sea surface roughness 
compared with the co-polarization data. However, compared 
with spaceborne radiometers and scatterometers, the high 
spatial resolution of SAR is a unique advantage. While sea ice 
melting in the Arctic is accelerating, sea ice observations of fine 

features in MIZ has drawn more focus for investigations of 
interactions among ocean surface dynamics and sea ice, as well 
as for shipping safety in the Arctic. Therefore, we aim to 
develop an effective algorithm to derive sea ice cover using S1 
EW data. 

In [31], we solved the problem of denoising the S1 EW data 
in HV polarization. This is the basis of the proposed algorithm 
in this paper. The SVM is the core of this algorithm; however, 
to our knowledge, in previous studies, the sea ice and open 
water training samples input to SVM are manually selected 
from SAR data. As we have shown in this paper, the 
circumstances of sea ice and open water in MIZ are very 
complicated, and one can imagine the difficulties of manually 
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selecting these samples to cover as many conditions as one can. 
When analyzing the texture features of hundreds of EW 

images acquired in the Arctic MIZ, we found that sea ice and 
open water generally have contrasting GLCM textures because 
of their different polarimetric characteristics on the cross-
polarization data. Therefore, we expect to generate the ice and 
water training samples without supervise based on textures, 
specifically, homogeneity and entropy textures. Following the 
generation of training samples, the SVM training is conducted 
using all parameters, i.e., mean radar backscatter, and six 
textures of contrast, correlation, homogeneity, energy and 
entropy of these samples. Then, the trained SVM is applied to 
the full EW image and discriminate sea ice from open water. 
The key point is that we do not have a set of “fixed” training 
samples of sea ice and open water for a “fixed” SVM and then 
apply the model to all images; instead, the training samples vary 
along with sea ice and open water condition changes from 
image to image. Thus far, we had applied this method to the C-
band SAR data of S1 in EW mode and the Chinese GF-3 data 
in stripmap mode [22]. We had also tried the proposed method 
using the X-band TerraSAR-X and presented the result in the 
TerraSAR-X/TanDEM-X science meeting 2019. 

The algorithm is validated by comparing the SAR-derived 
sea ice cover (from 728 scenes of images) to the IMS data. The 
overall accuracy is 80.3%. As the daily IMS data are compiled 
based on various satellite observations within a day, we infer 
that it may not present spatial and temporal variations of sea ice 
due to the used data with different spatial resolutions and 
acquisition times. This can lead to discrepancies in sea ice cover 
between the SAR observations and the IMS data. Although the 
comparison with visual inspection were conducted in only four 
images, higher accuracy of approximately 90% are achieved. In 
addition to the validation was conducted for a dataset acquired 
in summer season, we present two cases of the S1 data acquired 
in winter season to demonstrate applicability of the proposed 
method. The results are also in good agreements with visual 
inspection, which are not surprising to us because the method is 
based on contrasting textures of sea ice and open water. 
Although melting of sea ice or snow accumulated on sea ice can 
change radar backscatter to some extent, it does not alter such 
contrasting trends.  

As noted in the Section IV discussion, a weakness of this 
algorithm is that it can misclassify sea ice (e.g., thin ice) that 
has very similar radar characteristics to that of open water, 
especially the rough sea surface. This limitation is because their 
texture features are quite similar and therefore the thresholds to 
classify training samples cannot be accurately determined. We 
have not yet found a reasonable solution to this 
misclassification.  

In the proposed algorithm, the EW data in HH polarization 
(acquired simultaneously with the HV polarization) is not used. 
We also attempted to add the HH-polarized data (as well as 
polarization ratio or polarization difference between HH and 
HV) to the SVM, but the result did not improve. 

Machine learning is certainly a good means of detecting sea 
ice by spaceborne SAR data. The SVM based methodology is a 
traditional way of classifying two types of objects, e.g., sea ice 

and open water. There are also other supervised algorithms 
available for the ice - water classification (e.g., presented in [26], 
[27]). However, we still face some challenges, e.g., our brains 
tell us what is sea ice and what is open water in the SAR images, 
whereas the detected results of some cases are not ideal. We are 
now moving to deep learning, e.g., using the good results 
achieved in the SVM classification as training for a deep 
learning network. 
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