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ABSTRACT

COVID-19 is an infectious disease, growth of which depends upon the linked stages of the epidemic,
the average number of people one person can infect and the time it takes for those people to become
infectious themselves. We have studied the COVID-19 time series to understand the growth
behaviour of COVID-19 cases series. A structural break occurs in the COVID-19 series at the change
time form one stage to another. We have performed the structural break analysis of data available for
207 countries till April 20, 2020. There are 42 countries which have recorded five breaks in COVID
cases series. This means that these countries are in the sixth stage of growth transmission and show a
downward pattern in reporting in the daily cases, whereas countries with two and three breaks, record
the rapid growth pattern in the daily cases. From this study, we conclude that the more the breaks in
the series, there is more possibility to determine the constant or decreasing rate of daily cases. It is
well fitted using lognormal distribution as this distribution is archived at its highest peak after some
period and then suddenly it decreases at a longer time period. This can be seen in various countries

like China, Australia, New Zealand and so on.
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INTRODUCTION:

COVID-19 is a novel coronavirus that has travelled from Wuhan, China, to the most of the
countries (207) within 100 days. COVID-19 is an infectious disease, growth of which depends upon
the stage of the epidemic, the average number of people one person can infect and the time it takes for
those people to become infectious themselves. However, the growth rate of coronavirus cases is
different in every country depends upon its health infrastructure, persons living life, environmental
conditions and many other factors. So, the stages of disease transmission depends upon the changing
pattern in the series of the number of COVID cases based on total population, total land area, medical
facilities, etc. These changing patterns may be analyzed by a structural break model where shifting in
the series can be determined using a change in the growth of spreading of COVID-19. Hence, the
structural break can easily explain the shifting on the COVID-19 time series from one breakpoint to
another by changing the model parameters. For each break interval, it follows a well-known growth
model, and the growth rate of the series is different. Significant contribution in the study of a
structural break in time series includes the work of Chow (1960), Nelson and Plosser (1982), Andrews
(1993), Bai and Perron (1998), Chaturvedi and Kumar (2007), Bai (2010), Meligkotsidou et al. (2011,
2017) and Agiwal et al. (2018).

In COVID-19 cases, a structural break might occur when most of the population and land area are
affected, sudden increments in corona patients on daily basis, population not following the
government guidelines or other factors. It also depends upon the administrative model which has the
main goal to slow down the growth of COVID-19 cases by various measures like social distancing,
lockdown etc. Health services may be provided in a more structural and significant way when such
services try to increase the recovery of COVID-19 cases. Most of the countries have managed the
disease in reasonable time. However, some countries record the change in the COVID series, i.e.,
there is a possibility in the series that structural break(s) have happened. So, the present study has
analyzed the changing pattern of COVID-19 cases and identified various suitable breakpoints. For
that, we have determined the breakpoints using statistical methodology and then examined the
changing trend in each break interval. We have analyzed every stage separately to understand the
behaviour of transmission on infections. Various distribution models have been fitted in each break
interval based on the number of infected days and the number of total cases. Based on the results, we

determine the best-fitted model in the overall break interval.

In the analysis of break intervals, the Lognormal distribution fitted better among all the five
discrete and continuous distributions under consideration. Similarly, in the analysis of the number of
cases at breaks, the Lognormal distribution fitted better than the rest of the distributions, both discrete

and continuous, under consideration.
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MATERIAL & METHOD

The data has been collected from our World COVID-19 databases of daily updates of confirmed
cases. The data covers the total number of people infected with the COVID-19 virus from December
31, 2019, to April 20, 2020. As of April 20, 2020, there were 2350993 cases of infections worldwide.
On April 20, there were a total of 205 countries/provinces infected with the virus. This data was
processed for further analysis.

In the present paper, we apply the Chow F-test statistic to determine the potential breaks at all
change points in the COVID series. This methodology is well discussed in R package “strucchange”,
developed by Zeileis et al. (2002). The number of change points (m) is determined by breakpoint (s)
function in strucchange that employs the location of the break(s) using the minimum value of the
residual sum of squares (RSS) and Bayesian information criterion (BIC) whereas. Various discrete
and continuous distributions are fitted for all break intervals to show the development of the
COVID19 cases feasibly. The selection of the best-fitted distribution is based on the minimum value
of the Akaike information criterion (AIC) and Bayesian information criterion (BIC).

We will do the following analysis step by step:

Step-1: Determine the number of the structural break(s) and its locations.

Step-2: Classify the countries by taking the break interval of World COVID cases.

Step-3: Fit a distribution in each break interval based on total infected days and the total number of
cases.

Step-4: Display the histogram and density plot based on the results obtained from the previous steps
to conclude the COVID-19 cases.

RESULTS

Out of the total 205 countries infected till April 20, 2020, 10 countries do not have any breaks in
their data, 3 countries have only 1 break, 23 countries have 2 breaks, 48 countries have 3 breaks, 79
countries have 4 breaks and remaining 42 countries have five breaks. All breaks identification
depends upon the size of the series as well as how much times there is a shift in the series. We can
interpret the number of breaks as various growth stages of COVID-19 cases. First breakpoint shows
the change in the growth stage of COVID-19 cases at the initial time period. Those countries having a
single breakpoint can be considered in the first stage because in these countries the growth of corona
cases is increasing slowly. A country can be regarded as in the second and third stages of growth in
COVID cases where there is a rapid change in the trend of corona cases. These countries have
recorded two or three breakpoints. Some of the countries that are having three breaks are getting a
higher peak and record a decreasing trend in the growth of cases. During the analysis, some countries
like Australia, Austria, China, Greece, New Zealand and many more record a constant or decreasing
growth rate in the COVID-19 cases. These countries show the fourth and fifth stage of growth and

have recorded at higher numbers of breaks (four, five) in the series. These breakpoints are identified
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based on the trend pattern of corona cases. So, we can consider break intervals as the growth stages
of COVID cases in our analysis.

Analysis the stages based on duration time:

All infectious disease always depends majorly on two factors, the first number of carriers and the
second time of infections. So, in the present section, we study the number of days in various
COVID19 infection stages. First, the structural breaks are found for each country over the data of total
cumulative cases. Maximum five breaks (B1, B2, B3, B4 and BS5) are identified in each country
series. Then intervals are formed between all the breakpoints, namely zero stage (S1: 1st day to B1),
the first stage (S2: (B2+1) to B3), second stage (S3: B2+1 to B3), the third stage (S4: B3+1 to B4),
fourth stage (S5: B4+1 to BS) and fifth stage (S6: (B5+1 to April 20). Here, each country has different
number of breaks, and its locations are also different. So, we study the total number of days where
there is a change in the series that means infection growth is from one stage to another stage. This
means that each break interval for every county records the time to shift from one to another point and
it is termed as I-stage, II-Stage, III-Stage, IV-Stage, Stage-V and Stage-VI. Table 1 records the
descriptive statistics of the occurrence period of different stages.

Table 1 shows that the shortest duration between any two breaks in the series is four days. The
average number of days for any interval is approximately eight days, with an exception in the first
interval, which is highest about 20 days. The quartiles for the different intervals show that 75% of the
countries have 6 to 25 days before coming into the first stage of the outbreak.

The common dataset of the number of days in the break intervals seems to be positively skewed
as recorded in above Figure 1. The later intervals are found to have a smaller number of days in break
intervals as compared to the others. The individual break interval datasets have similar asymmetrical
plot like the collective interval data, shown in Figure 2. The plots are skewed to the right, and there
are fewer countries that have larger break intervals.

Similarly, for the rest of the intervals, most of the countries have about 4 to 9 days before the next
breakpoint occurs. The difference in the shape of the first interval and rest of the intervals is that there
are more countries in the S1 than the rest, i.e., almost all the countries have observed their first
breakpoint based on total number of cases within the country. Likewise, very few countries have
observed their sixth stage in the number from the total cases, which leads to a distorted histogram for
S6 and less skewed than the other intervals. This also shows a control situation of these countries that
observed the sixth stage of COVID-19 infection.

The Cullen and Frey graphs were fitted for each of the intervals and used to find possible
candidates for fitting various discrete and continuous distributions to the data. The following
distributions are considered: Normal, Negative Binomial, Poisson, Lognormal and Gamma
distribution. Table-2 describes the best-fitted distribution based on various assumed distribution. This
table shows that lognormal distribution is fitted well in all break intervals except S4.

Tracing the theoretical density and distribution function over the empirical density and

distribution are displayed in Figure 3 and 4. These figures give a nice view of the shape of each stage
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interval of COVID-19 infection and fits well. Points the on P-P plots lie on the straight line
representing a better fit, whereas in Q-Q plot departures from the straight line can be observed which
increase at the later stages (due to fewer data in later stages). Deviations from the straight line are a
hint of lack of fit.

Analysis the number of cases at each stage:

In the analysis of different COVID-19 infection, we also need to understand the COVID-19 cases
as the infection in equally crucial for the number of carriers. So far, we modelled COVID-19 cases in
different stages of spreading of COVID-19. First, the data consisted of distinctively very high values
contributed by countries with a high number of infected cases. These are the countries like the United
States, Italy, China, Spain, Germany, Iran, etc., these data points consisted of about 15-19% of the
data and has been removed considering outliers which are recorded in Table 3.

The outlier countries are the countries that are worse affected by the disease than the countries in
the corresponding stages. It is also recorded that countries which are severely affected by COVID19
(United States, China, etc.), are not having reached in last stages like fifth and sixth. Table 4 records
the descriptive statistics of the break interval based on total cases, and Figure 5 displays its density
plot.

The aggregate data, after removing outliers, have a positively skewed shape and mildly peaked in
the first half of the data. The average number of cases at BO is 74, which is reasonable as these are
moderately affected (after removing outlier) countries and therefore have fewer cases till the first
break. This average increased rapidly till B4, reaching approximately 580 cases, where about 75% of
the countries have less than 802 cases in total. At break point BS, this average falls. The reason behind
this is a possibility to decrease the growth pattern of the COVID-19 cases in these countries. Most of
these countries have a high number of infected cases that were pulling the average up at the earlier
breaks.

The suitable candidates for distribution fitting were found using Cullen and Frey graphs in Table
5. The lognormal distribution fitted the best among exponential, normal, Gamma and other discrete
distributions. The trace of density & distribution function and the P-P plots are shown in Figures 7-8.
These figures show that a better fitting is observed using the lognormal distribution as it has achieved
its peak and after that, there is a sudden decreasing trend in the extended time period. This can be
easily seen in China series. Departures from the straight line in the Q-Q plot at the higher quantiles
form the distribution is fitted due to the highly skewed countries data. Hence the methods other than
lognormal distribution are not able to thoroughly explain the skewness of the data accurately in the

total cases.

DISCUSSION
This paper studies and analyzes the various stages in the growth of COVID-19 cases using the
structural break methodology. We considered the cumulative cases of coronavirus for each country as

a data series and identified the breaking point when the structure of the series is shifted suddenly. We
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have examined the inference based on each break period. This break period provides the length of the
duration and number of cases in various growth stages. For each break interval, we fit a distribution to
explain the growth pattern of COVID-19 cases. Based on the results, we observed that lognormal
distribution is better fitted to the number of days and number of cases in each break interval of
COVID19 in the whole world. This is so because lognormal distribution has a long right tail with an

exponential growth pattern.

REFERENCES

1. Andrews, D. W. (1993). Tests for parameter instability and structural change with unknown
change point. Econometrica, 61(4):821-856.

2. Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural
changes. Econometrica, 66(1):47-78.

3.  Chaturvedi, A. and Kumar, J. (2007). Bayesian unit root test for time series models with
structural breaks. American Journal of Mathematical and Management Sciences, 27(1-
2):243-268.

4. Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions.
Econometrica, 28:591-605.

5. Meligkotsidou, L., Tzavalis, E., and Vrontos, I. (2017). On Bayesian analysis and unit root
testing for autoregressive models in the presence of multiple structural breaks. Econometrics
and Statistics, 4:70-90.

6.  Meligkotsidou, L., Tzavalis, E., and Vrontos, I. D. (2011). A Bayesian analysis of unit roots
and structural breaks in the level, trend, and error variance of autoregressive models of
economic series. Econometric Reviews, 30(2):208-249.

7. Nelson, C. R. and Plosser, C. R. (1982). Trends and random walks in macroeconomic time
series: some evidence and implications. Journal of Monetary Economics, 10(2):139-162.

8.  Bai, J. (2010). Common breaks in means and variances for panel data. Journal of
Econometrics, 157(1):78-92.

9. Agiwal V., Kumar J. and Shangodoyin D. K. (2018): A Bayesian Inference of Multiple
Structural Breaks in Mean and Error Variance in Panel AR(1) Model. Statistics in Transition,
19(1):7-23.

10. Singh, A. K., Singh, A. and Engelhardt, M. (1997): The lognormal distribution in
environmental applications. In Technology Support Center Issue Paper.

11. Delignette-Muller, M. L. and Dutang, C. (2015): fitdistrplus: An R package for fitting
distributions. Journal of Statistical Software, 64(4):1-34.

12.  Stedinger, J. R. (1980): Fitting log normal distributions to hydrologic data. Water Resources
Research, 16(3):481-490.


https://doi.org/10.20944/preprints202005.0319.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2020 d0i:10.20944/preprints202005.0319.v1

13. Sénchez, S., Ancheyta, J., and McCaffrey, W. C. (2007): Comparison of probability
distribution functions for fitting distillation curves of petroleum. Energy & Fuels, 21(5):

2955-2963.


https://doi.org/10.20944/preprints202005.0319.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2020

d0i:10.20944/preprints202005.0319.v1

Break Interval
[ s

s2
l s3
. S4
. S5
[ ss

Break Interval Lengths - Total Cases
| m T ] |
ozol
0.154
2
2
[
la}
0.104
0.05
0.00
0 20 40 60
No. of days

Figure 1: Density plot on overall break intervals

Break Interval Lengths - Total Cases
Break Interval : S1 Break Interval : S2 Break Interval : S3
60+ — L] e &
240+ 2
£ 2
= c
o) o)
a} a]
20+
0
0 2 40 60 5 10 15 2 5 10 15 20
No. of days No. of days No. of days
Break Interval : S4 Break Interval : S5 Break Interval : S6
I T
— — .
404 104
2
‘»
j=
o)
o
204 54
0+ 04
0 20 30 40 50 5 10 15 2 3 6 9
No. of days No. of days No. of days

Figure 2: Histogram and box plot in each break interval
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Figure 3: Best fitted discrete distributions in Break Intervals
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Figure 8: Best fitted continuous distributions of cases at breakpoints
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Table 1: Descriptive statistics of break interval based on number of days

Break Interval Min. 1* Qu. Median Mean 3 Qu. Max.
S; 4 8 16 20.04 25 70
S, 4 6.5 8 8.426 9.5 21
S; 4 6 7 8.073 8.25 23
S4 4 6 7 8.562 9 54
Ss 4 6 7 8.025 9 24
Se 4 6 7 7.357 8 14

Table 2: Distribution fitting on Break Intervals
Distribution AIC BIC Interval

Normal mean= 20.041, sd= 15.193 1618.504 | 1625.050
NegBinom | size= 2.289, mu= 20.036 1519.761 | 1526.307
Poisson lambda= 20.041 2845.370 | 2848.643 S1
LogNormal | meanlog= 2.737, sdlog= 0.728 | 1500.993 | 1507.539
Gamma shape=1.74, rate=0 1517.354 | 1523.900
Normal mean= 8.426, sd= 3.004 986.363 | 992.909
NegBinom | size= 143.893, mu= 8.426 963.021 | 969.567
Poisson | lambda= 8.426 961.411 | 964.684 | 52
LogNormal | meanlog= 2.069, sdlog=0.334 | 936.440 | 942.986
Gamma shape=7.952, rate=1 946.518 | 953.064
Normal mean= 8.073, sd= 3.294 1006.612 | 1013.127
NegBinom | size= 30.527, mu= 8.073 969.217 | 975.732
Poisson | lambda= 8.073 974.439 | 977.696 | 53
LogNormal | meanlog= 1.981, sdlog=0.364 | 917.121 | 923.625
Gamma shape= 6.884, rate= 1 923.273 | 929.777
Normal mean= 8.562, sd=5.031 1029.682 | 1035.942
NegBinom | size=9.199, mu= 8.562 925.052 | 931.312
Poisson | lambda= 8.562 999.098 | 1002.228 | 4
LogNormal | meanlog= 1.946, sdlog=0.408 | 838.067 | 844.326
Gamma shape= 2.865, rate=0 897.692 | 903.951

Normal mean= 8.025, sd= 2.827 598.861 | 604.453
NegBinom | size= 182946.75, mu= 8.025 580.531 | 586.123
Poisson | lambda= 8.025 578.531 | 581327 | S
LogNormal | meanlog= 1.693, sdlog=0.488 | 583.292 | 588.883
Gamma shape= 4.689, rate= 1 578.328 | 583.919
Normal mean= 7.357, sd=2.202 189.496 | 192971
NegBinom | size= 2332625.794, mu= 7.357 | 190.746 | 194.221
Poisson | lambda= 7.357 188.746 | 190.484 | SO
LogNormal | meanlog= 1.434, sdlog= 0.438 | 162.131 | 165.458
Gamma shape=4.968, rate= 1 163.179 | 166.506
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Table 3: Outlier identification in each break interval

No. of No. of | Outlier
Break Country-Cases
countries | outliers (%)

Austria - 1332, Belarus - 700, Belgium - 1243, Brazil - 4256,
Canada - 4675, Chile - 1142, China - 1988, Ecuador - 789,
France - 4499, Germany - 3062, India - 1071, Indonesia - 579,
Iran - 5823, Ireland - 785, Israel - 1930, Italy - 3858, Japan -
B1 195 32 16% | 1128, Mexico - 848, Netherlands - 2994, Peru - 1323, Poland -
901, Portugal - 642, Qatar - 634, Russia - 1534, Saudi Arabia -
1012, Singapore - 594, Spain - 11178, Sweden - 1167, Turkey
- 7402, Switzerland - 3010, United Kingdom - 19522, United
States - 69194

Austria - 5888, Belarus - 3281, Belgium - 10836, , Canada -
20748, Chile - 3031, China - 44724, , Germany - 42288, India
- 7447, Iran - 16169, , Italy - 31506, Japan - 3906, Netherlands
B2 192 27 14% | - 9762, , Portugal - 2995, Russia - 11917, Saudi Arabia - 2932,
, Spain - 78797, Sweden - 3700, Switzerland - 10714, , United
Arab Emirates - 2990, United Kingdom - 70272, United States
-432132

Australia - 5844, Austria - 11129, Belgium - 26667, Chile -
5546, China - 79355, Czech Republic - 3589, Ecuador - 4965,
Germany - 108202, Iran - 29406, Ireland - 5364, Israel -

B3 169 30 18% | 10743, Malaysia - 4228, Mexico - 5399, Netherlands - 17851,
Peru - 11475, Poland - 5205, Portugal - 8251, Qatar - 3428,
Romania - 4057, South Korea - 8162, Spain - 157022, Sweden
- 9685, Switzerland - 19227, Ukraine - 4161

Austria - 13560, Chile - 8273, Czech Republic - 5312,
Indonesia - 5136, Iran - 55743, Ireland - 11479, Italy - 147577,
B4 121 18 15% | Norway - 5208, Pakistan - 5988, Poland - 7582, Portugal -
13141, Serbia - 4873, South Korea - 9661, Switzerland -
24820, Turkey - 74193

Argentina - 2432, Czech Republic - 6303, Denmark - 6511,
B5 42 8 19% | Iran - 73303, Norway - 6415, Panama - 4016, Portugal -
18091, South Africa - 2506
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Table 4: Descriptive statistics of break interval based on number of cases
Break | Min. | 1 Qu. | Median Mean 3“Qu. | Max.
B, 1 6 26 74.398 84.5 549
B, 2 18 87 364.115 339 2615
B; 4 39.5 158 469.136 571.5 3277
B, 5 51.5 241 579.805 802 3614
Bs 12 117.2 293.5 388.500 653 1100
Table 5: Distribution fitting on number of cases at breaks
Distribution AIC BIC Break
Exponential rate= 0.013 1732.877 1735.971
LogNormal meanlog= 3.133 ,sdlog=1.716 1664.021 1670.208
Gamma shape= 0.446 ,rate= 0 1682.891 1689.078 B1
Normal mean= 74.399 ,sd= 111.387 2003.014 2009.202
NegBinom size= 0.535 ,mu= 74.419 1686.026 1692.213
Poisson lambda= 74.399 20783.846 20786.94
Exponential rate= 0.003 2278.165 2281.271
LogNormal meanlog= 4.473 ,sdlog= 1.866 2154.149 2160.361
Gamma shape= 0.362 ,rate= 0 2187.982 2194.194 B2
Normal mean= 364.115 ,sd= 605.353 2586.168 2592.38
NegBinom size= 0.452 ;mu= 364.262 2184.135 2190.347
Poisson lambda= 364.115 118204.847 | 118207.953
Exponential rate= 0.002 1989.949 1992.883
LogNormal meanlog= 4.967 ,sdlog=1.735 1932.466 1938.335
Gamma shape= 0.451 ,rate=0 1946.092 1951.961 B3
Normal mean= 469.137 ,sd= 698.406 2219.032 2224.9
NegBinom size= 0.531 ,mu= 469.156 1944.489 1950.358
Poisson lambda= 469.137 107695.872 | 107698.807
Exponential rate= 0.002 1518.715 1521.35
LogNormal meanlog= 5.296 ,sdlog= 1.685 1494.836 1500.105
Gamma shape= 0.566 ,rate= 0 1495.598 1500.868 B4
Normal mean= 579.806 ,sd= 770.847 1665.684 1670.954
NegBinom size= 0.582 ,mu= 579.74 1496.071 1501.34
Poisson lambda= 579.806 85921.07 85923.705
Exponential rate= 0.003 475.436 476.962
LogNormal meanlog= 5.452 ,sdlog= 1.197 483.439 486.492
Gamma shape= 1.457 ,rate=0 478.832 481.885 B5
Normal mean= 388.5 ,sd= 321.866 493.129 496.182
NegBinom size=1.123 ,mu= 388.62 477.247 480.3
Poisson lambda= 388.5 9466.545 9468.072
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