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ABSTRACT 

 

 

COVID-19 is an infectious disease, growth of which depends upon the linked stages of the epidemic, 

the average number of people one person can infect and the time it takes for those people to become 

infectious themselves. We have studied the COVID-19 time series to understand the growth 

behaviour of COVID-19 cases series. A structural break occurs in the COVID-19 series at the change 

time form one stage to another. We have performed the structural break analysis of data available for 

207 countries till April 20, 2020. There are 42 countries which have recorded five breaks in COVID 

cases series. This means that these countries are in the sixth stage of growth transmission and show a 

downward pattern in reporting in the daily cases, whereas countries with two and three breaks, record 

the rapid growth pattern in the daily cases. From this study, we conclude that the more the breaks in 

the series, there is more possibility to determine the constant or decreasing rate of daily cases. It is 

well fitted using lognormal distribution as this distribution is archived at its highest peak after some 

period and then suddenly it decreases at a longer time period. This can be seen in various countries 

like China, Australia, New Zealand and so on.   
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INTRODUCTION: 

COVID-19 is a novel coronavirus that has travelled from Wuhan, China, to the most of the 

countries (207) within 100 days. COVID-19 is an infectious disease, growth of which depends upon 

the stage of the epidemic, the average number of people one person can infect and the time it takes for 

those people to become infectious themselves. However, the growth rate of coronavirus cases is 

different in every country depends upon its health infrastructure, persons living life, environmental 

conditions and many other factors. So, the stages of disease transmission depends upon the changing 

pattern in the series of the number of COVID cases based on total population, total land area, medical 

facilities, etc. These changing patterns may be analyzed by a structural break model where shifting in 

the series can be determined using a change in the growth of spreading of COVID-19. Hence, the 

structural break can easily explain the shifting on the COVID-19 time series from one breakpoint to 

another by changing the model parameters. For each break interval, it follows a well-known growth 

model, and the growth rate of the series is different.  Significant contribution in the study of a 

structural break in time series includes the work of Chow (1960), Nelson and Plosser (1982), Andrews 

(1993), Bai and Perron (1998), Chaturvedi and Kumar (2007), Bai (2010), Meligkotsidou et al. (2011, 

2017) and Agiwal et al. (2018).  

In COVID-19 cases, a structural break might occur when most of the population and land area are 

affected, sudden increments in corona patients on daily basis, population not following the 

government guidelines or  other factors. It also depends upon the administrative model which has the 

main goal to slow down the growth of COVID-19 cases by various measures like social distancing, 

lockdown etc. Health services may be provided in a more structural and significant way when such 

services try to increase the recovery of COVID-19 cases.  Most of the countries have managed the 

disease in reasonable time. However, some countries record the change in the COVID series, i.e., 

there is a possibility in the series that structural break(s) have happened.  So, the present study has 

analyzed the changing pattern of COVID-19 cases and identified various suitable breakpoints. For 

that, we have determined the breakpoints using statistical methodology and then examined the 

changing trend in each break interval. We have analyzed every stage separately to understand the 

behaviour of transmission on infections. Various distribution models have been fitted in each break 

interval based on the number of infected days and the number of total cases. Based on the results, we 

determine the best-fitted model in the overall break interval. 

 

In the analysis of break intervals, the Lognormal distribution fitted better among all the five 

discrete and continuous distributions under consideration. Similarly, in the analysis of the number of 

cases at breaks, the Lognormal distribution fitted better than the rest of the distributions, both discrete 

and continuous, under consideration. 
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MATERIAL & METHOD 

The data has been collected from our World COVID-19 databases of daily updates of confirmed 

cases. The data covers the total number of people infected with the COVID-19 virus from December 

31, 2019, to April 20, 2020. As of April 20, 2020, there were 2350993 cases of infections worldwide. 

On April 20, there were a total of 205 countries/provinces infected with the virus. This data was 

processed for further analysis. 

In the present paper, we apply the Chow F-test statistic to determine the potential breaks at all 

change points in the COVID series. This methodology is well discussed in R package “strucchange”, 

developed by Zeileis et al. (2002). The number of change points (m) is determined by breakpoint (s) 

function in strucchange that employs the location of the break(s) using the minimum value of the 

residual sum of squares (RSS) and Bayesian information criterion (BIC) whereas. Various discrete 

and continuous distributions are fitted for all break intervals to show the development of the 

COVID19 cases feasibly. The selection of the best-fitted distribution is based on the minimum value 

of the Akaike information criterion (AIC) and Bayesian information criterion (BIC).  

We will do the following analysis step by step: 

Step-1: Determine the number of the structural break(s) and its locations.  

Step-2: Classify the countries by taking the break interval of World COVID cases. 

Step-3: Fit a distribution in each break interval based on total infected days and the total number of 

cases.  

Step-4: Display the histogram and density plot based on the results obtained from the previous steps 

to conclude the COVID-19 cases.  

 

RESULTS 

Out of the total 205 countries infected till April 20, 2020, 10 countries do not have any breaks in 

their data, 3 countries have only 1 break, 23 countries have 2 breaks, 48 countries have 3 breaks, 79 

countries have 4 breaks and remaining 42 countries have five breaks. All breaks identification 

depends upon the size of the series as well as how much times there is a shift in the series. We can 

interpret the number of breaks as various growth stages of COVID-19 cases. First breakpoint shows 

the change in the growth stage of COVID-19 cases at the initial time period. Those countries having a 

single breakpoint can be considered in the first stage because in these countries the growth of corona 

cases is increasing slowly. A country can be regarded as in the second and third stages of growth in 

COVID cases where there is a rapid change in the trend of corona cases. These countries have 

recorded two or three breakpoints. Some of the countries that are having three breaks are getting a 

higher peak and record a decreasing trend in the growth of cases. During the analysis, some countries 

like Australia, Austria, China, Greece, New Zealand and many more record a constant or decreasing 

growth rate in the COVID-19 cases. These countries show the fourth and fifth stage of growth and 

have recorded at higher numbers of breaks (four, five) in the series. These breakpoints are identified 
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based on the trend pattern of corona cases. So, we can consider break intervals as the growth  stages 

of COVID cases in our analysis.    

Analysis the stages based on duration time: 

All infectious disease always depends majorly on two factors, the first number of carriers and the 

second time of infections. So, in the present section, we study the number of days in various 

COVID19 infection stages. First, the structural breaks are found for each country over the data of total 

cumulative cases. Maximum five breaks (B1, B2, B3, B4 and B5) are identified in each country 

series. Then intervals are formed between all the breakpoints, namely zero stage (S1: 1st day to B1), 

the first stage (S2: (B2+1) to B3), second stage (S3: B2+1 to B3), the third stage (S4: B3+1 to B4), 

fourth stage (S5: B4+1 to B5) and fifth stage (S6: (B5+1 to April 20). Here, each country has different 

number of breaks, and its locations are also different. So, we study the total number of days where 

there is a change in the series that means infection growth is from one stage to another stage. This 

means that each break interval for every county records the time to shift from one to another point and 

it is termed as I-stage, II-Stage, III-Stage, IV-Stage, Stage-V and Stage-VI. Table 1 records the 

descriptive statistics of the occurrence period of different stages.  

Table 1 shows that the shortest duration between any two breaks in the series is four days. The 

average number of days for any interval is approximately eight days, with an exception in the first 

interval, which is highest about 20 days. The quartiles for the different intervals show that 75% of the 

countries have 6 to 25 days before coming into the first stage of the outbreak.  

The common dataset of the number of days in the break intervals seems to be positively skewed 

as recorded in above Figure 1. The later intervals are found to have a smaller number of days in break 

intervals as compared to the others. The individual break interval datasets have similar asymmetrical 

plot like the collective interval data, shown in Figure 2. The plots are skewed to the right, and there 

are fewer countries that have larger break intervals. 

Similarly, for the rest of the intervals, most of the countries have about 4 to 9 days before the next 

breakpoint occurs. The difference in the shape of the first interval and rest of the intervals is that there 

are more countries in the S1 than the rest, i.e., almost all the countries have observed their first 

breakpoint based on total number of cases within the country. Likewise, very few countries have 

observed their sixth stage in the number from the total cases, which leads to a distorted histogram for 

S6 and less skewed than the other intervals. This also shows a control situation of these countries that 

observed the sixth stage of  COVID-19 infection.  

The Cullen and Frey graphs were fitted for each of the intervals and used to find possible 

candidates for fitting various discrete and continuous distributions to the data. The following 

distributions are considered: Normal, Negative Binomial, Poisson, Lognormal and Gamma 

distribution. Table-2 describes the best-fitted distribution based on various assumed distribution.  This 

table shows that lognormal distribution is fitted well in all break intervals except S4.  

Tracing the theoretical density and distribution function over the empirical density and 

distribution are displayed in Figure 3 and 4. These figures give a nice view of the shape of each stage 
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interval of COVID-19 infection and fits well. Points the on P-P plots lie on the straight line 

representing a better fit, whereas in Q-Q plot departures from the straight line can be observed which 

increase at the later stages (due to fewer data in later stages). Deviations from the straight line are a 

hint of lack of fit. 

Analysis the number of cases at each stage: 

In the analysis of different COVID-19 infection, we also need to understand the COVID-19 cases 

as the infection in equally crucial for the number of carriers. So far, we modelled COVID-19 cases in 

different stages of spreading of COVID-19. First, the data consisted of distinctively very high values 

contributed by countries with a high number of infected cases. These are the countries like the United 

States, Italy, China, Spain, Germany, Iran, etc., these data points consisted of about 15-19% of the 

data and has been removed considering outliers which are recorded in Table 3.  

The outlier countries are the countries that are worse affected by the disease than the countries in 

the corresponding stages. It is also recorded that countries which are severely affected by COVID19 

(United States, China, etc.), are not having reached in last stages like fifth and sixth. Table 4 records 

the descriptive statistics of the break interval based on total cases, and Figure 5 displays its density 

plot. 

The aggregate data, after removing outliers, have a positively skewed shape and mildly peaked in 

the first half of the data. The average number of cases at B0 is 74, which is reasonable as these are 

moderately affected (after removing outlier) countries and therefore have fewer cases till the first 

break. This average increased rapidly till B4, reaching approximately 580 cases, where about 75% of 

the countries have less than 802 cases in total. At break point B5, this average falls. The reason behind 

this is a possibility to decrease the growth pattern of the COVID-19 cases in these countries. Most of 

these countries have a high number of infected cases that were pulling the average up at the earlier 

breaks. 

The suitable candidates for distribution fitting were found using Cullen and Frey graphs in Table 

5. The lognormal distribution fitted the best among exponential, normal, Gamma and other discrete 

distributions. The trace of density & distribution function and the P-P plots are shown in Figures 7-8. 

These figures show that a better fitting is observed using the lognormal distribution as it has achieved 

its peak and after that, there is a sudden decreasing trend in the extended time period. This can be 

easily seen in China series. Departures from the straight line in the Q-Q plot at the higher quantiles 

form the distribution is fitted due to the highly skewed countries data. Hence the methods other than 

lognormal distribution are not able to thoroughly explain the skewness of the data accurately in the 

total cases. 

 

DISCUSSION 

This paper studies and analyzes the various stages in the growth of COVID-19 cases using the 

structural break methodology. We considered the cumulative cases of coronavirus for each country as 

a data series and identified the breaking point when the structure of the series is shifted suddenly. We 
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have examined the inference based on each break period. This break period provides the length of the 

duration and number of cases in various growth stages. For each break interval, we fit a distribution to 

explain the growth pattern of COVID-19 cases. Based on the results, we observed that lognormal 

distribution is better fitted to the number of days and number of cases in each break interval of 

COVID19 in the whole world. This is so  because lognormal distribution has a long right tail with an 

exponential growth pattern.     
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Figure 1: Density plot on overall break intervals 

 

 

Figure 2: Histogram and box plot in each break interval 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2020                   doi:10.20944/preprints202005.0319.v1

https://doi.org/10.20944/preprints202005.0319.v1


 

 
 

  

  

Figure 3: Best fitted discrete distributions in Break Intervals 
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Figure 4: Best fitted continuous distributions in break intervals 
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Figure 5: Density plot on overall break intervals 

 

 

Figure 6: Histogram and box plot in each break interval 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 May 2020                   doi:10.20944/preprints202005.0319.v1

https://doi.org/10.20944/preprints202005.0319.v1


  

  

 

Figure 7: Best fitted discrete distribution of total cases at breakpoints 
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Figure 8: Best fitted continuous distributions of cases at breakpoints 
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Table 1: Descriptive statistics of  break interval based on number of days 

Break Interval Min. 1
st
 Qu. Median Mean 3

rd
 Qu. Max. 

S1 4 8 16 20.04 25 70 

S2 4 6.5 8 8.426 9.5 21 

S3 4 6 7 8.073 8.25 23 

S4 4 6 7 8.562 9 54 

S5 4 6 7 8.025 9 24 

S6 4 6 7 7.357 8 14 

Table 2: Distribution fitting on Break Intervals 

Distribution AIC BIC Interval 

Normal mean= 20.041, sd= 15.193 1618.504 1625.050 

S1 
NegBinom size= 2.289, mu= 20.036 1519.761 1526.307 

Poisson lambda= 20.041 2845.370 2848.643 

LogNormal meanlog= 2.737, sdlog= 0.728 1500.993 1507.539 

Gamma shape= 1.74, rate= 0 1517.354 1523.900 

Normal mean= 8.426, sd= 3.004 986.363 992.909 

S2 
NegBinom size= 143.893, mu= 8.426 963.021 969.567 

Poisson lambda= 8.426 961.411 964.684 

LogNormal meanlog= 2.069, sdlog= 0.334 936.440 942.986 

Gamma shape= 7.952, rate= 1 946.518 953.064 

Normal mean= 8.073, sd= 3.294 1006.612 1013.127 

S3 
NegBinom size= 30.527, mu= 8.073 969.217 975.732 

Poisson lambda= 8.073 974.439 977.696 

LogNormal meanlog= 1.981, sdlog= 0.364 917.121 923.625 

Gamma shape= 6.884, rate= 1 923.273 929.777 

Normal mean= 8.562, sd= 5.031 1029.682 1035.942 

S4 
NegBinom size= 9.199, mu= 8.562 925.052 931.312 

Poisson lambda= 8.562 999.098 1002.228 

LogNormal meanlog= 1.946, sdlog= 0.408 838.067 844.326 

Gamma shape= 2.865, rate= 0 897.692 903.951 

Normal mean= 8.025, sd= 2.827 598.861 604.453 

S5 
NegBinom size= 182946.75, mu= 8.025 580.531 586.123 

Poisson lambda= 8.025 578.531 581.327 

LogNormal meanlog= 1.693, sdlog= 0.488 583.292 588.883 

Gamma shape= 4.689, rate= 1 578.328 583.919 

Normal mean= 7.357, sd= 2.202 189.496 192.971 

S6 
NegBinom size= 2332625.794, mu= 7.357 190.746 194.221 

Poisson lambda= 7.357 188.746 190.484 

LogNormal meanlog= 1.434, sdlog= 0.438 162.131 165.458 

Gamma shape= 4.968, rate= 1 163.179 166.506 
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Table 3: Outlier identification in each break interval 

Break 
No. of 

countries 

No. of 

outliers 

Outlier 

(%) 
Country-Cases 

B1 195 32 16% 

Austria - 1332, Belarus - 700, Belgium - 1243, Brazil - 4256 , 

Canada - 4675, Chile - 1142, China - 1988, Ecuador - 789, 

France - 4499, Germany - 3062, India - 1071, Indonesia - 579, 

Iran - 5823, Ireland - 785, Israel - 1930, Italy - 3858, Japan - 

1128, Mexico - 848, Netherlands - 2994, Peru - 1323, Poland - 

901, Portugal - 642, Qatar - 634, Russia - 1534, Saudi Arabia - 

1012, Singapore - 594, Spain - 11178, Sweden - 1167, Turkey 

- 7402, Switzerland - 3010, United Kingdom - 19522, United 

States - 69194 

B2 192 27 14% 

Austria - 5888, Belarus - 3281, Belgium - 10836, , Canada - 

20748, Chile - 3031, China - 44724, , Germany - 42288, India 

- 7447, Iran - 16169, , Italy - 31506, Japan - 3906, Netherlands 

- 9762, , Portugal - 2995, Russia - 11917, Saudi Arabia - 2932, 

, Spain - 78797, Sweden - 3700, Switzerland - 10714, , United 

Arab Emirates - 2990, United Kingdom - 70272, United States 

- 432132 

B3 169 30 18% 

Australia - 5844, Austria - 11129, Belgium - 26667, Chile - 

5546, China - 79355, Czech Republic - 3589, Ecuador - 4965, 

Germany - 108202, Iran - 29406, Ireland - 5364, Israel - 

10743, Malaysia - 4228, Mexico - 5399, Netherlands - 17851, 

Peru - 11475, Poland - 5205, Portugal - 8251, Qatar - 3428, 

Romania - 4057, South Korea - 8162, Spain - 157022, Sweden 

- 9685, Switzerland - 19227, Ukraine - 4161 

B4 121 18 15% 

Austria - 13560, Chile - 8273, Czech Republic - 5312, 

Indonesia - 5136, Iran - 55743, Ireland - 11479, Italy - 147577, 

Norway - 5208, Pakistan - 5988, Poland - 7582, Portugal - 

13141, Serbia - 4873, South Korea - 9661, Switzerland - 

24820, Turkey - 74193 

B5 42 8 19% 

Argentina - 2432, Czech Republic - 6303, Denmark - 6511, 

Iran - 73303, Norway - 6415, Panama - 4016, Portugal - 

18091, South Africa - 2506 
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Table 4: Descriptive statistics of break interval based on number of cases 

Break Min. 1
st
 Qu. Median Mean 3

rd
 Qu. Max. 

B1 1 6 26 74.398 84.5 549 

B2 2 18 87 364.115 339 2615 

B3 4 39.5 158 469.136 571.5 3277 

B4 5 51.5 241 579.805 802 3614 

B5 12 117.2 293.5 388.500 653 1100 

 

 

 

Table 5: Distribution fitting on number of cases at breaks 

Distribution AIC BIC Break 

Exponential rate= 0.013 1732.877 1735.971 

B1 

LogNormal meanlog= 3.133 ,sdlog= 1.716 1664.021 1670.208 

Gamma shape= 0.446 ,rate= 0 1682.891 1689.078 

Normal mean= 74.399 ,sd= 111.387 2003.014 2009.202 

NegBinom size= 0.535 ,mu= 74.419 1686.026 1692.213 

Poisson lambda= 74.399 20783.846 20786.94 

Exponential rate= 0.003 2278.165 2281.271 

B2 

LogNormal meanlog= 4.473 ,sdlog= 1.866 2154.149 2160.361 

Gamma shape= 0.362 ,rate= 0 2187.982 2194.194 

Normal mean= 364.115 ,sd= 605.353 2586.168 2592.38 

NegBinom size= 0.452 ,mu= 364.262 2184.135 2190.347 

Poisson lambda= 364.115 118204.847 118207.953 

Exponential rate= 0.002 1989.949 1992.883 

B3 

LogNormal meanlog= 4.967 ,sdlog= 1.735 1932.466 1938.335 

Gamma shape= 0.451 ,rate= 0 1946.092 1951.961 

Normal mean= 469.137 ,sd= 698.406 2219.032 2224.9 

NegBinom size= 0.531 ,mu= 469.156 1944.489 1950.358 

Poisson lambda= 469.137 107695.872 107698.807 

Exponential rate= 0.002 1518.715 1521.35 

B4 

LogNormal meanlog= 5.296 ,sdlog= 1.685 1494.836 1500.105 

Gamma shape= 0.566 ,rate= 0 1495.598 1500.868 

Normal mean= 579.806 ,sd= 770.847 1665.684 1670.954 

NegBinom size= 0.582 ,mu= 579.74 1496.071 1501.34 

Poisson lambda= 579.806 85921.07 85923.705 

Exponential rate= 0.003 475.436 476.962 

B5 

LogNormal meanlog= 5.452 ,sdlog= 1.197 483.439 486.492 

Gamma shape= 1.457 ,rate= 0 478.832 481.885 

Normal mean= 388.5 ,sd= 321.866 493.129 496.182 

NegBinom size= 1.123 ,mu= 388.62 477.247 480.3 

Poisson lambda= 388.5 9466.545 9468.072 
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