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Abstract. A popular account of the mixing patterns for the three
generations of quarks and leptons is through the characters κ of a fi-
nite group G. Here we introduce a d-dimensional Hilbert space with
d = cc(G), the number of conjugacy classes of G. Groups under con-
sideration should follow two rules, (a) the character table contains both
two- and three-dimensional representations with at least one of them
faithful and (b) there are minimal informationally complete measure-
ments under the action of a d-dimensional Pauli group over the charac-
ters of these representations. Groups with small d that satisfy these rules
coincide in a large part with viable ones derived so far for reproducing
simultaneously the CKM (quark) and PNMS (lepton) mixing matrices.
Groups leading to physical CP violation are singled out.
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1. Introduction8

In the standard model of elementary particles and according to the current9

experiments there exist three generations of matter but we do not know10

why. The matter particles are fermions of spin 1/2 and comprise the quarks11

(responsible for the strong interactions) and leptons (responsible for the12

electroweak interactions as shown in Table 1 and Fig. 1.13

matter type 1 type 2 type 3 Q T3 YW
(1) quarks u c t 2/3 1/2 1/3

d s b -1/3 -1/2 .
(2) leptons e µ τ -1 -1/2 -1

νe νµ ντ 0 1/2 .

Table 1. (1) The three generations of up-type quarks (up,
charm and top) and of down-type quarks (down, strange
and bottom), (2) The three generations of leptons (electron,
muon and tau) and their partner neutrinos. The symbols Q,
T3 and YW are for the charge, the isospin and the weak hy-
percharge, respectively. They satisfy the equation Q = T3 +
1
2YW .

In order to explain the CP-violation (the non-invariance of interactions14

under the combined action of charged-conjugation (C) and parity (P) trans-15

formations) in quarks, Kobayashi and Maskawa introduced the so-called16

1
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Figure 1. An angular picture of the three generations of
quarks and leptons. The blue and black pancakes have
isospin is 1/2 and −1/2, respectively. The inside and out-
side crowns have weak hypercharges 1

3 and −1, respectively.

Cabibbo-Kobayashi-Maskawa unitary matrix (or CKM matrix) that de-17

scribes the probability of transition from one quark i to another j. These18

transitions are proportional to |Vij |2 where the Vij ’s are entries in the CKM19

matrix [1, 2]20

UCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

with |UCKM | ≈

0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.040 0.999

 .

There is a standard parametrization of the CKM matrix with three Euler21

angles θ12 (the Cabbibo angle), θ23, θ12 and the CP-violating phase δCP .22

Taking sij = sin(θij) and cij = cos(θij), the CKM matrix reads23 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
s13e

−iδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 .

Similarly, the charged leptons e, µ and τ partner with three generations24

of flavors of neutrinos νe, νµ and ντ in the charged-current weak interaction.25
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Neutrino’s mass mi can be deduced with probability |Uαi|2 where the Uαi’s26

are the amplitudes of mass eigenstates i in flavor α. The so-called Pontecor-27

voMakiNakagawaSakata unitary matrix (or PMNS matrix) is as follows [3]28

UPMNS =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3



with |UPMNS | ≈

0.799→ 0.844 0.516→ 0.582 0.141→ 0.156
0.242→ 0.494 0.467→ 0.678 0.639→ 0.774
0.284→ 0.521 0.490→ 0.695 0.615→ 0.754

 ,

where the entries in the matrix mean the range of values allowed by the29

present day experiments.30

As for the CKM matrix the three mixing angles are denoted θ12, θ23, θ1231

and the CP-violating phase is called δCP .32

The current experimental values of angles for reproducing entries in the33

CKM and PMNS matrices are in Table 2.34

angles (in degrees) θ12 θ13 θ23 δCP
quark mixings 13.04 0.201 2.38 71
lepton mixings 33.62 8.54 47.2 -90

Table 2. Experimental values of the angles in degrees for
mixing patterns of quarks (in the CKM matrix) and leptons
(in the PMNS matrix).

In the last twenty years or so, a paradigm has emerged that it may exist35

an underlying discrete symmetry jointly explaining the mixing patterns of36

quarks and leptons [4, 5]. This assumption follows from the fact that the37

CKM matrix is found closed to the identity matrix and the entries in the38

PMNS matrix are found to be of order one except for the almost vanishing39

Ue3. A puzzling difference between quark and lepton mixing lies in the40

fact that there is much more neutrino mixing than mixing between the41

quark flavors. Up and down quark matrices are only slightly misaligned42

while there exists a strong misalignment of charged leptons with respect to43

neutrino mass matrices. A valid model should account for these features.44

The standard model essentially consists of two continuous symmetries,45

the electroweak symmetry SU(2) × U(1) (that unifies the electromagnetic46

and weak interactions) and the quantum chromodynamics symmetry SU(3)47

(that corresponds to strong interactions). There are several puzzles not48

explained within the standard model including the flavor mixing patterns,49

the fermion masses, and the CP violations in the quark and lepton sectors.50

There are astonishing numerical coincidences such as the Koide formula for51

fermion masses [6], the quark-lepton complementarity relations θ
quark
12 +52

θ
lepton
12 ≈ π/4, θ

quark
23 ± θlepton

23 ≈ π/4 [7] and efficient first order models53

such as the tribimaximal model [8]-[11] and the ‘Golden ratio’ model [12,54

13]. For instance, tribimaximal mixing gives values of angles as θ
lepton
12 =55
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sin−1( 1√
3
) ≈ 35.3◦, θ

lepton
23 = 45◦, θ

lepton
13 = 0 and δCP = 0, compatible56

with earlier data. Such a model could be made more realistic by taking two57

CP-phases instead of one [11].58

Currently many discrete models of quark-lepton mixing patterns are based59

on the representations of finite groups that are both subgroups of U(2) and60

U(3) [14]-[23]. In the same spirit, we add to this body of knowledge by61

selecting valid subgroups of unitary groups from a criterion borrowed to the62

theory of generalized quantum measurements.63

One needs a quantum state (called a fiducial state) and one also re-64

quires that such a state is informationally complete under the action of65

a d-dimensional Pauli group Pd. When such a state is not an eigenstate of a66

d-dimensional Pauli group it allows to perform universal quantum computa-67

tion [24]-[26]. In the latter papers, valid states belong to the eigenstates of68

mutually commuting permutation matrices in a permutation group derived69

from the coset classes of a free group with relations. From now, the fidu-70

cial state will have to be selected from the characters κ of a finite group G71

with the number of conjugacy classes d = cc(G) defining the Hilbert space72

dimension. Groups under consideration should obey two rules (a) the char-73

acter table of G contains both two- and three-dimensional representations74

with at least one of them faithful and (b) there are minimal informationally75

complete measurements under the action of a d-dimensional Pauli group76

over the characters of these representations. The first criterion is inspired77

by the current understanding of quark and lepton mixings (and the stan-78

dard model) and the second one by the theory of magic states in quantum79

computing [24]. Since matter particles are spin 1/2 fermions it is entirely80

consistent to see them under the prism of quantum measurements.81

In the rest of this introduction we recall what we mean by a minimal82

informationally complete quantum measurement (or MIC). In Section 2 we83

apply criteria (a) and (b) to groups with small cc ≤ 36 where we can perform84

the calculations. Then we extrapolate to some other groups with cc > 36.85

Most groups found from this procedure fit the current literature as being86

viable for reproducing lepton and quark mixing patterns. In Section 3, we87

examine the distinction between generalized CP symmetry and CP violation88

and apply it to our list of viable groups.89

Minimal informationally complete quantum measurements. LetHd90

be a d-dimensional complex Hilbert space and {E1, . . . , Em} be a collection91

of positive semi-definite operators (POVM) that sum to the identity. Taking92

the unkwown quantum state as a rank one projector ρ = |ψ〉 〈ψ| (with93

ρ2 = ρ and tr(ρ) = 1), the i-th outcome is obtained with a probability given94

by the Born rule p(i) = tr(ρEi). A minimal and informationally complete95

POVM (or MIC) requires d2 one-dimensional projectors Πi = |ψi〉 〈ψi|, with96

Πi = dEi, such that the rank of the Gram matrix with elements tr(ΠiΠj),97

is precisely d2.98

With a MIC, the complete recovery of a state ρ is possible at a minimal99

cost from the probabilities p(i). In the best case, the MIC is symmetric and100

called a SIC with a further relation |〈ψi|ψj〉|2 = tr(ΠiΠj) =
dδij+1
d+1 so that101

the density matrix ρ can be made explicit [27, 28].102
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In our earlier references [24, 25], a large collection of MICs are derived.103

They correspond to Hermitian angles |〈ψi|ψj〉|i 6=j ∈ A = {a1, . . . , al} be-104

longing a discrete set of values of small cardinality l. They arise from the105

action of a Pauli group Pd [29] on an appropriate magic state pertaining to106

the coset structure of subgroups of index d of a free group with relations.107

Here, an entirely new class of MICs in the Hilbert space Hd, relevant for108

the lepton and quark mixing patterns, is obtained by taking fiducial/magic109

states as characters of a finite group G possessing d conjugacy classes and110

using the action of a Pauli group Pd on them.111

2. Informationally complete characters for quark/lepton112

mixing matrices113

The standard classification of small groups is from their cardinality. Finite114

groups relevant to quark and lepton mixings are listed accordingly [8, 14, 18].115

We depart from this habit by classifying the small groups G of interest versus116

the number d = cc(G) of their conjugacy classes. This motivation is due to117

the application of criterion (b) where we need to check whether the action118

of a Pauli group in the d-dimensional Hilbert space Hd results in a minimal119

informationally complete POVM (or MIC).120

A list of finite groups G according to the number of their conjugacy classes121

(complete only up to d ≤ 12) is in Ref. [30]. It can also be easily recovered122

with a simple code in Magma or Gap. For our application to quark and123

lepton mixings, we need much higher d. In practice, we used existing tables124

of subgroups of U(3) (of cardinality up to 2000 in [8, 14, 18] and up to 1025125

in [21] to select our group candidates).126

Tables 3 is the list of 16 + 2 small groups with cc ≤ 36 found to satisfy127

the two rules (a) the character table of G contains both two- and three-128

dimensional representations with at least one of them faithful and (b) the129

quantum measurement is informationally complete under a d-dimensional130

Pauli group.131

The 16 groups lead to good models for the absolute values of entries132

in the CKM and PMNS matrices except for the ones that have the factor133

SL(2, 5) in their signature. The two extra groups (294, 7) = ∆(6× 72) and134

(384, 568) = ∆(6×82) arise when one takes into account the generalized CP135

symmetry as in Section 3.136

Details are in Table 4 for the first three groups and the group (294, 7).137

Full results are in Table 7 and 8 of the Appendix.138

Table 6 is an extrapolation to groups with higher cc where criterion (a) is139

satisfied but where (b) could not be checked. Most groups in the two tables140

have been found to be viable models and several of them belong to known141

sequences.142

In tables 3 and 6, the first column is the standard small group identifier143

in which the first entry is the order of the group (as in [14]). At the second144

column, one finds a signature in terms of a direct product (with the symbol145

×), a semidirect product (with the symbol o), a dot product (with the146

symbol .) or a member of a sequence of groups such as the ∆(6×n2) sequence147

found to contain many viable groups for quark and lepton mixings. The148

third column gives the number of irreducible characters/conjugacy classes.149

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 May 2020                   

Peer-reviewed version available at Symmetry 2020, 12, 1000; doi:10.3390/sym12061000

https://doi.org/10.3390/sym12061000


6MICHEL PLANAT†, RAYMONDASCHHEIM‡, MARCELOM. AMARAL‡ANDKLEE IRWIN‡

Group Name or signature cc Graph Ref
SmallGroup(24,12) S4, ∆(6× 22) 5 K4 [14]
SmallGroup(120,5) 2I, SL(2, 5) 9 K3

5 [20],†, ‡
SmallGroup(150,5) ∆(6× 52) 13 K3

5 [2, 14, 15]
SmallGroup(72,42) Z4 × S4 15 K4

3 [8]
SmallGroup(216,95) ∆(6× 62) 19 K3

6 [14]
SmallGroup(294,7) ∆(6× 72) 20 ? [32]
SmallGroup(72,3) Q8 o Z9 21 K3

2 [8]
SmallGroup(162,12) Z2

3 o (Z2
3 o Z2) 22 K3

9 [2, 14, 17]

SmallGroup(162,14) ., D
(1)
9,3 . . [2, 14, 19]

SmallGroup(384,568) ∆(6× 82) 24 ? [32]
SmallGroup(648,532) Σ(216× 3), Z3 o (Z3 o SL(2, 3)) 24 ? [14, 23]
SmallGroup(648,533) Q(648) , . 24 ? [14, 16]
SmallGroup(120,37) Z5 × S4 25 K4

5 †
SmallGroup(360,51) Z3 × SL(2, 5) 27 K6

12 †
SmallGroup(162,44) Z2

3 o (Z2
3 o Z2) 30 K3

9 [14]
SmallGroup(600,179) ∆(6× 102) 33 K3

10 [2, 14, 15]
SmallGroup(168,45) Z7 × S4 35 K4

7 †
SmallGroup(480,221) Z8.A5, SL(2, 5).Z4 36 K6

8 ‡
Table 3. List of the 16 + 2 groups with number of conju-
gacy classes cc ≤ 36 that satisfy rules (a) and (b). Groups
(294, 7) and (384, 568) need two CP phases to become viable
models as mentioned in Section 3. The smallest permutation
representation on k × l letters stabilizes the n-partite graph
K l
k given at the fourth column. The groups ∆(6 × n2) is

isomorphic to Z2
n o S3. A reference is given at the last col-

umn if a viable model for quark or/and lepton mixings can
be obtained. The extra cases with reference † and ‡ can be
found in [22] and [18], respectively.

Another information is about the geometry of the group. To get it, one first150

selects the smallest permutation representation on k × l letters of G. Then151

one looks at the two-point stabilizer subgroup Gs of smallest cardinality in152

the selected group G. The incidence matrix of such a subgroup turns out to153

be the l-partite graph K l
k that one can identify from the graph spectrum.154

Such a method is already used in our previous papers about magic state155

type quantum computing [24]-[26] where other types of geometries have156

been found. Finally, column five refers to papers where the group under157

study leads to a viable model both for quark and lepton mixing patterns.158

The recent reference [21] is taken apart from the other references singled out159

with the index † in the tables. It is based on the alternative concept of a160

two-Higgs-doublet model.161

2.1. Groups in the series ∆(6n2) and more groups. An important162

paper dealing with the series ∆(6n2) ∼= Z2
n o S3 as a good model for lepton163

mixing is [15]. A group in this series has to be spontaneously broken into164

two subgroups, one abelian subgroup ZTm in the charged lepton sector and165
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Group d
(24,12) 5 1 1 2 3 3
5-dit . 5 21 d2 d2 d2

(120,5) 9 1 2 2 3 3 4 4 5 6
9-dit . 9 d2 d2 d2 d2 d2 d2 79 d2

2QT . 9 d2 d2 d2 d2 d2 d2 d2 d2

(150,5) 13 1 1 2 3 3 3 3 3 3 3 3 6 6
13-dit . 13 157 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

(294,7) 20 1 1 2 3 3 3 3 3 3 3 3 3 3
20-dit . 20 349 388 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

. . 6 6 6 6 6

. . 390 390 390 398 398

Table 4. The first three small groups considered in our Ta-
ble 3 and group (294, 7) added in Section 3. For each group
and each character the table provides the dimension of the
representation and the rank of the Gram matrix obtained
under the action of the corresponding Pauli group. Bold
characters are for faithful representations. According to our
demand, each selected group has both 2- and 3-dimensional
characters (with at least one of them faithful) that are fidu-
cial states for an informationally complete POVM (or MIC)
with the rank of Gram matrix equal to d2. The Pauli group
performing this action is a d-dit or a 2-qutrit (2QT) for the
group (120, 5) = SL(2, 5) = 2I.

a Klein subgroup ZS2 × ZU2 in the neutrino sector (with neutrinos seen as166

Majorana particles). The superscripts S, T and U refer to the generators of167

their corresponding Zm group in the diagonal charged lepton basis. In this168

particular model, there is trimaximal lepton mixing with (so called reactor169

angle) θ13 fixed up to a discrete choice, an oscillation phase zero or π and170

the (so-called atmospheric angle) θ23 = 45◦ ± θ13/
√

2.171

It is shown in [2, Table I] that two groups in this series with n = 10172

and n = 16 provide leading order leptonic mixing patterns within 3-sigma173

of current best fit with acceptable entries in the CKM matrix. The small174

group (648, 259) = D
(1)
18,6 also satisfies this requirement. Additionally, if one175

accepts that neutrinos are Dirac particles then the residual symmetry group176

of neutrino masses is no longer restricted to the Klein group but may be any177

abelian group. In such a case, four small groups that are ∆(6×52) and small178

groups (162, 10), (162, 12) and (162, 14) = D
(1)
9,3 predict acceptable entries179

for the quark and lepton mixing matrices [2, Table II]. It is noticeable that180

our small selection of groups (from requirements (a) and (b) include all of181

them except for the group (162, 10) whose two-dimensional representations182

are not MICs.183

Still assuming that neutrinos are Dirac particles and with loose enough184

constraints on Vus, paper [17] include ∆-groups with n = 9 (it does not lie185

in our Table 3) and n = 14 in their selection, as well as groups (648, 259),186
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(648, 260) and (648, 266), the latter groups are in our Table 6. Additional187

material [18] provides very useful information about the ability of a group188

to be a good candidate for modeling the mixing patterns. According to this189

reference, the groups ∆(6×n2) with n = 10, 11, 14 and 18, and small groups190

(972, 64) and (972, 245), that are in our tables also match Dirac neutrinos191

with a 3-sigma fit and quark mixing patterns for triplet assignment.192

Three extra groups (120, 5) (the binary icosahedral group SL(2, 5) = 2I),193

(360, 51) = Z3 × SL(2, 5) and (480, 221) = SL(2, 5).Z4 in our tables, whose194

signature has a factor equal to the binary icosahedral group 2I, can be195

assigned with a doublet and a singlet for quarks but cannot be generated196

by the residual symmetries in the lepton sector.197

2.2. Exceptional subgroups of SU(3). The viability of so-called excep-198

tional groups of SU(3) for lepton mixings have been studied in [23] by assum-199

ing neutrinos to be either Dirac or Majorana particles. These subgroups are200

listed according to the number of their conjugacy classes in Table 5. They201

are Σ(60) ∼= A5 (a subgroup of SO(3)), Σ(168) ∼= PSL(2, 7), Σ(36 × 3),202

Σ(72 × 3), Σ(360 × 3) and Σ(216 × 3). Only group Σ(360 × 3) has Klein203

subgroups and thus supports a model with neutrinos as Majorana particles.204

Group Σ(216× 3) is already in our Table 3 and potentially provides a valid205

model for quark/lepton mixings by assuming neutrinos are Dirac particles.206

According to our Table 5, all these exceptional groups have information-207

ally complete characters as regard to most of their faithful three-dimensional208

representations. Another useful information is about groups Σ(60) and209

Σ(360×3) that are informationally complete as regard to their five-dimensional210

representations. Models based on the A5 family symmetry are in [31, 32].211

3. Generalized CP symmetry, CP violation212

Currently, many models focus on the introduction of a generalized CP213

symmetry in the lepton mixing matrix [11, 32, 33]. The Dirac CP phase214

δCP = δ13 for leptons is believed to be around −π/2. A set of viable mod-215

els with discrete symmetries including generalized CP symmetry has been216

derived in [34]. Most finite groups used for quark/lepton mixings without217

taking into account the CP symmetry do survive as carrying generalized218

CP symmetries. It is found that two extra groups (294, 7) = ∆(6× 72) and219

(384, 568) = ∆(6 × 82), that have triplet assignments for the quarks, can220

be added. This confirms the relevance of ∆ models in this context. Group221

(294, 7) was added to our short Table 4 where we see that all of its two- and222

three-dimensional characters are informationally complete.223

A generalized CP symmetry should not be confused with a ‘physical’224

CP violation as shown in Reference [35]. A ‘physical’ CP violation is a225

prerequisite for baryogenesis that is the matter-antimatter asymmetry of226

elementary matter particles. The generalized CP symmetry was introduced227

as a way of reproducing the absolute values of the entries in the lepton228

and quark mixing matrices and, at the same time, explaining or predicting229

the phase angles. A physical CP violation, on the other hand, exchanges230

particles and antiparticles and its finite group picture had to be clarified.231

It is known that the exchange between distinct conjugacy classes of a finite232

group G is controlled by the outer automorphisms u of the group. Such (non233
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Group d
(60,5), Σ(60) 5 1 3 3 4 5

5-dit . 5 d2 d2 d2 d2

(168,42), Σ(168) 6 1 3 3 6 7 8
6-dit . 6 d2 d2 33 33 33

(108,15), Σ(36× 3) 14 1 1 1 1 3 3 3 3 3 3 3 3
14-dit . 14 166 181 181 195 195 d2 d2 d2 d2 d2 d2

. . 4 4

. . 154 154
(216,88), Σ(72× 3) 16 1 1 1 1 2 3 3 3 3 3 3 3

16-dit . 16 175 175 157 233 d2 d2 d2 d2 d2 d2 d2

2Quartits . 16 121 149 125 200 d2 d2 d2 d2 d2 d2 d2

. . 3 3 3 8
16-dit . d2 222 222 144

2Quartits . d2 118 118 144
(1080,260), Σ(360× 3) 17 1 3 3 3 3 5 5 6 6 8 8 9

17-dit . 17 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

. . 9 9 10 15 15

. . d2 d2 d2 d2 d2

(648,532),Σ(216× 3) 24 1 1 1 2 2 2 3 3 3 3 3 3
24-dit . 24 527 527 562 d2 d2 560 d2 d2 d2 d2 d2

. . 3 6 6 6 6 6 6 8 8 8 9 9

. . d2 d2 d2 d2 d2 d2 d2 564 d2 d2 552 552

Table 5. Exceptional subgroups of SU(3). For each group
and each character the table provides the dimension of the
representation and the rank of the Gram matrix obtained
under the action of the corresponding Pauli group. Bold
characters are for faithful representations.

trivial) outer automorphisms have to be class-inverting to correspond to a234

physical CP violation [35]. This is equivalent to a relation obeyed by the235

automorphism u : G→ G that maps every irreducible representation ρri to236

its conjugate237

ρri(u(g)) = Uriρri(g)∗U †r , ∀g ∈ G and ∀i,

with Uri a unitary symmetric matrix.238

A criterion that ensures that this relation is satisfied is in terms of the239

so-called twisted Frobenius-Schur indicator over the character κri240

FS(n)
u (ri) =

(dim ri)
(n−1)

|G|n
∑
gi∈G

κri(g1u(g1) · · · gnu(gn)) = ±1, ∀i,

where n = ord(u)/2 if ord(u) is even and n = ord(u) otherwise.241

Following this criterion there are three types of groups242

1. the groups of type I: there is at least one representation ri for which243

FS
(n)
u (ri) = 0, these groups correspond to a physical CP violation,244
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Group Name or signature cc Graph Ref
SmallGroup(726,5) ∆(6× 112) 38 K3

11 [14, 17]

SmallGroup(648,259) (Z18 × Z6) o S3, D
(1)
18,6 49 K3

18 [2, 14, 17, 19]

SmallGroup(648,260) Z2
3 o SmallGroup(72, 42) . . .

SmallGroup(648,266) . . K3
6 [14]

SmallGroup(1176,243) ∆(6× 142) 59 K3
14 [14, 17]

SmallGroup(972,64) Z2
9 o Z12 62 K3

36 .
SmallGroup(972,245) Z2

9 o (Z2 × S3) . K3
18 [17]

SmallGroup(1536,408544632) ∆(6× 162) 68 ? [2, 14, 15]
SmallGroup(1944,849) ∆(6× 182) 85 K3

18 [14, 17]

Table 6. List of considered groups with number of conju-
gacy classes cc > 36 that satisfy rule (a) (presumably (b)
as well) and have been considered before as valid groups for
quark/lepton mixing. A reference is given at the last col-
umn if a viable model for quark or/and lepton mixings can
be obtained. The question mark means that the minimal
permutation representation could not be obtained.

2. groups of type II: for (at least) one automorphism u ∈ G the FSu’s for245

all representations are non zero. The automorphism u can be used to define246

a proper CP transformation in any basis. There are two sub-cases247

Case II A, all FSu’s are +1 for one of those u’s,248

Case II B, some FSu’s are −1 for all candidates u’s.249

A simple program written in the Gap software allows to distinguish these250

cases [35, Appendix B].251

Applying this code to our groups in Tables 3, 5 and 6, we found that all252

groups are of type II A or type I. Type I groups corresponding to a physical253

CP violation are254

(216, 95) = ∆(6× 62), (162, 44), (216, 88) = Σ(72× 3)255

where we could check that our criteria (a) and (b) apply, the exceptional256

group (1080, 260) = Σ(360, 3) in Table 5 and groups (972, 64), (972, 245),257

(1944, 849) = ∆(6× 183) of Table 6.258

4. Conclusion259

Selecting two- and three-dimensional representations of informationally260

complete characters has been found to be efficient in the context of models261

of CKM and PMNS mixing matrices. Generalized quantum measurements262

(in the form of MICs) are customary in the field of quantum information263

by providing a Bayesian interpretation of quantum theory and leading to an264

innovative view of universal quantum computing. The aim of this paper has265

been to see the mixing patterns of matter particles with the prism of MICs.266

Our method has been shown to have satisfactorily predictive power for pre-267

dicting the appropriate symmetries used so far in modeling CKM/PMNS268

matrices and for investigating the symmetries of CP phases.269

It is admitted that the standard model has to be completed with discrete270

symmetries or/and to be replaced by more general symmetries such as SU(5)271
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or E8 ⊃ SU(5), as in F-theory [36], to account for existing measurements on272

quarks, leptons and bosons, and the hypothetical dark matter. Imposing the273

right constraints on the quantum measurements of such particles happens274

to be a useful operating way.275
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Group d

(24,12) 5 1 1 2 3 3

5-dit . 5 21 d2 d2 d2

(120,5) 9 1 2 2 3 3 4 4 5 6
9-dit . 9 d2 d2 d2 d2 d2 d2 79 d2

2QT . 9 d2 d2 d2 d2 d2 d2 d2 d2

(150,5) 13 1 1 2 3 3 3 3 3 3 3 3 6 6
13-dit . 13 157 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

(72,42) 15 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3

15-dit . 15 203 209 209 195 195 219 d2 d2 d2 d2 d2 d2 d2 d2

(216,95) 19 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3

19-dit . 19 343 357 359 355 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

. . 3 6 6 6

. . d2 d2 d2 d2

(294,7) 20 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3

20-dit . 20 349 388 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

. . 6 6 6 6 6

. . 390 390 390 398 398

(72,3) 21 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
21-dit . 21 405 405 421 421 421 421 421 421 d2 d2 d2 d2 d2 d2

. . 2 2 2 3 3 3

. . d2 d2 d2 d2 d2 d2

(162,12) 22 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3

22-dit . 22 446 463 463 463 463 473 d2 d2 d2 d2 d2 d2 d2 d2

. . 3 3 3 3 3 3 6

. . d2 d2 d2 d2 d2 d2 198

(162,14) 22 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3
22-dit . 22 444 461 463 461 463 473 d2 d2 d2 d2 d2 d2 d2 d2

. . 3 3 3 3 3 3 6

. . d2 d2 d2 d2 d2 d2 198

(648,532) 24 1 1 1 2 2 2 3 3 3 3 3 3 3 6 6
24-dit . 24 527 527 562 d2 d2 560 d2 d2 d2 d2 d2 d2 d2 d2

3QB-QT . 24 500 500 476 568 568 448 d2 d2 d2 d2 d2 d2 d2 d2

. . 6 6 6 6 8 8 8 9 9
24-dit . d2 d2 d2 d2 564 d2 d2 552 552

3QB-QT . d2 d2 d2 d2 448 560 560 510 510

(648,533) 24 1 1 1 2 2 2 3 3 3 3 3 3 3 6 6
24-dit . 24 539 539 562 d2 d2 514 d2 d2 d2 574 574 d2 d2 d2

3QB-QT . 24 532 532 481 572 572 452 572 568 568 570 570 572 575 d2

. . 6 6 6 6 8 8 8 9 9
24-dit . d2 d2 d2 d2 563 d2 d2 478 478

3QB-QT . d2 573 573 575 488 560 560 520 520

Table 7. Small groups considered in our Table 3. For each group
and each character the table provides the dimension of the repre-
sentation and the rank of the Gram matrix obtained under the
action of the corresponding Pauli group. Bold characters are for
faithful representations. According to our demand, each selected
group has both 2- and 3-dimensional characters (with at least one
of them faithful) that are magic states for an informationally com-
plete POVM (or MIC), with the rank of Gram matrix equal to
d2. The Pauli group performing this action is in general a d-dit
but is a 2-qutrit (2QT) for the group (120, 5) = SL(2, 5) = 2I, a
3-qutrit (2QT) for the group (360, 51) = Z3 × SL(2, 5) or may be
a three-qubit/qutrit (3QB-QT) for the groups (648, 532) and

(648, 533).
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Group d

(120,37) 25 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

25-dit . 25 601 601 601 601 601 601 601 601 601 623 d2 d2 d2 d2

. . 3 3 3 3 3 3 3 3 3 3

. . d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

(360,51) 27 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

3QT . 27 613 613 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

. . 4 4 4 4 4 4 5 5 5 6 6 6

. . 727 725 727 727 727 727 727 727 727 727 727 727

(162,44) 30 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
30-dit . 31 826 861 871 861 871 883 877 879 883 898 d2 d2 d2 898

. . 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

. . 898 898 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

(600,179) 33 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3
33-dit . 33 1041 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

. . 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6

. . d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

. . 6 6 6

. . d2 d2 d2

(168,45) 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
35-dit . 35 1175 1191 1191 1191 1191 1191 1191 1191 1191 1191 1191 1191 1191 d2

. . 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3

. . d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

. . 3 3 3 3 3

. . d2 d2 d2 d2 d2

(480,221) 36 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3

36-dit . 36 36 1085 1185 1184 d2 d2 d2 d2 d2 d2 d2 1278 1278 1278
. . 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5
. . 1278 d2 d2 d2 d2 1275 1278 d2 d2 d2 d2 d2 d2 1277 1273

. . 5 5 6 6 6 6

. . 1294 1294 1295 1295 1295 1295

Table 8. The following up of Table 7.
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