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ABSTRACT. A popular account of the mixing patterns for the three
generations of quarks and leptons is through the characters k of a fi-
nite group G. Here we introduce a d-dimensional Hilbert space with
d = cc(G), the number of conjugacy classes of G. Groups under con-
sideration should follow two rules, (a) the character table contains both
two- and three-dimensional representations with at least one of them
faithful and (b) there are minimal informationally complete measure-
ments under the action of a d-dimensional Pauli group over the charac-
ters of these representations. Groups with small d that satisfy these rules
coincide in a large part with viable ones derived so far for reproducing
simultaneously the CKM (quark) and PNMS (lepton) mixing matrices.
Groups leading to physical C'P violation are singled out.

o

PACS: 03.67.-a, 12.15.Ff, 12.15.Hh, 03.65.Fd, 98.80.Cq

6 Keywords: Informationally complete characters, quark and lepton mixings, CP viola-
7 tion, Pauli groups

8 1. INTRODUCTION

9 In the standard model of elementary particles and according to the current

10 experiments there exist three generations of matter but we do not know
11 why. The matter particles are fermions of spin 1/2 and comprise the quarks
12 (responsible for the strong interactions) and leptons (responsible for the
13 electroweak interactions as shown in Table 1 and Fig. 1.

matter type 1 | type 2 | type 3 || Q | T3 Yw

(1) quarks || u c t 2/3 [1/2 |1/3
d s | b 1/3|-1/2| .

(2) leptons || e L T -1 (-1/2 ] -1
Ve Uy vy 0 [1/2 .

TABLE 1. (1) The three generations of up-type quarks (up,
charm and top) and of down-type quarks (down, strange
and bottom), (2) The three generations of leptons (electron,
muon and tau) and their partner neutrinos. The symbols @,

T3 and Yy are for the charge, the isospin and the weak hy-
percharge, respectively. They satisfy the equation Q) = T5 +
1

=Y.

2

14 In order to explain the CP-violation (the non-invariance of interactions
15 under the combined action of charged-conjugation (C) and parity (P) trans-

16 formations) in quarks, Kobayashi and Maskawa introduced the so-called
1
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T,=1/2

T,=-1/2

Q=Ts+ 1/2 Yy

FIGURE 1. An angular picture of the three generations of
quarks and leptons. The blue and black pancakes have
isospin is 1/2 and —1/2, respectively. The inside and out-
side crowns have weak hypercharges % and —1, respectively.

Cabibbo-Kobayashi-Maskawa unitary matrix (or CKM matrix) that de-
scribes the probability of transition from one quark ¢ to another j. These
transitions are proportional to \V;j|2 where the V;;’s are entries in the CKM
matrix [1, 2]

Vud Vus Vup 0.974 0.225 0.004
Uckm = | Vea Ves Ve | with |UCKM| ~ | 0.225 0.973 0.041
Vie Vis Vi 0.009 0.040 0.999

There is a standard parametrization of the CKM matrix with three Euler
angles 612 (the Cabbibo angle), 023, 612 and the CP-violating phase dcop.
Taking s;; = sin(6;;) and ¢;; = cos(6;5), the CKM matrix reads

1 0 0 Cc13 0 Slgefiécp C12 si2 O
0 C23 S923 0 1 0 —S12 C12 0
0 —s23 co3 3136*’501’ 0 C13 0 0 1

Similarly, the charged leptons e, p and 7 partner with three generations
of flavors of neutrinos v,, v, and v, in the charged-current weak interaction.
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Neutrino’s mass m; can be deduced with probability \UaiP where the U,;’s
are the amplitudes of mass eigenstates ¢ in flavor a. The so-called Pontecor-
voMakiNakagawaSakata unitary matrix (or PMNS matrix) is as follows [3]

Uel UeZ Ue3
Upvns = U Up Ups
U‘rl UT2 U‘r3

0.799 — 0.844 0.516 — 0.582 0.141 — 0.156
with |[Upyns| =~ [ 0.242 — 0.494 0.467 — 0.678 0.639 — 0.774 | ,
0.284 — 0.521 0.490 — 0.695 0.615 — 0.754

where the entries in the matrix mean the range of values allowed by the
present day experiments.

As for the CKM matrix the three mixing angles are denoted 615, 6o3, 012
and the CP-violating phase is called d¢p.

The current experimental values of angles for reproducing entries in the
CKM and PMNS matrices are in Table 2.

angles (in degrees) | 012 013 | Baz | ocp
quark mixings 13.04 1 0.201 | 2.38 | 71
lepton mixings | 33.62 | 8.54 | 47.2 | -90
TABLE 2. Experimental values of the angles in degrees for
mixing patterns of quarks (in the CKM matrix) and leptons
(in the PMNS matrix).

In the last twenty years or so, a paradigm has emerged that it may exist
an underlying discrete symmetry jointly explaining the mixing patterns of
quarks and leptons [4, 5]. This assumption follows from the fact that the
CKM matrix is found closed to the identity matrix and the entries in the
PMNS matrix are found to be of order one except for the almost vanishing
Ues. A puzzling difference between quark and lepton mixing lies in the
fact that there is much more neutrino mixing than mixing between the
quark flavors. Up and down quark matrices are only slightly misaligned
while there exists a strong misalignment of charged leptons with respect to
neutrino mass matrices. A valid model should account for these features.

The standard model essentially consists of two continuous symmetries,
the electroweak symmetry SU(2) x U(1) (that unifies the electromagnetic
and weak interactions) and the quantum chromodynamics symmetry SU(3)
(that corresponds to strong interactions). There are several puzzles not
explained within the standard model including the flavor mixing patterns,
the fermion masses, and the CP violations in the quark and lepton sectors.
There are astonishing numerical coincidences such as the Koide formula for

fermion masses [6], the quark-lepton complementarity relations 0(11211 ark +

eigpton ~ /4, 9;1;1 ark | Qégpton ~ m/4 [7] and efficient first order models
such as the tribimaximal model [8]-[11] and the ‘Golden ratio’ model [12,

13]. For instance, tribimaximal mixing gives values of angles as egpton =
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sinfl(%) ~ 35.3°, eégpton = 45° ngton = 0 and dcp = 0, compatible
with earlier data. Such a model could be made more realistic by taking two
CP-phases instead of one [11].

Currently many discrete models of quark-lepton mixing patterns are based
on the representations of finite groups that are both subgroups of U(2) and
U(3) [14]-[23]. In the same spirit, we add to this body of knowledge by
selecting valid subgroups of unitary groups from a criterion borrowed to the
theory of generalized quantum measurements.

One needs a quantum state (called a fiducial state) and one also re-
quires that such a state is informationally complete under the action of
a d-dimensional Pauli group P;. When such a state is not an eigenstate of a
d-dimensional Pauli group it allows to perform universal quantum computa-
tion [24]-[26]. In the latter papers, valid states belong to the eigenstates of
mutually commuting permutation matrices in a permutation group derived
from the coset classes of a free group with relations. From now, the fidu-
cial state will have to be selected from the characters x of a finite group G
with the number of conjugacy classes d = cc(G) defining the Hilbert space
dimension. Groups under consideration should obey two rules (a) the char-
acter table of G contains both two- and three-dimensional representations
with at least one of them faithful and (b) there are minimal informationally
complete measurements under the action of a d-dimensional Pauli group
over the characters of these representations. The first criterion is inspired
by the current understanding of quark and lepton mixings (and the stan-
dard model) and the second one by the theory of magic states in quantum
computing [24]. Since matter particles are spin 1/2 fermions it is entirely
consistent to see them under the prism of quantum measurements.

In the rest of this introduction we recall what we mean by a minimal
informationally complete quantum measurement (or MIC). In Section 2 we
apply criteria (a) and (b) to groups with small cc < 36 where we can perform
the calculations. Then we extrapolate to some other groups with cc > 36.
Most groups found from this procedure fit the current literature as being
viable for reproducing lepton and quark mixing patterns. In Section 3, we
examine the distinction between generalized CP symmetry and CP violation
and apply it to our list of viable groups.

Minimal informationally complete quantum measurements. Let Hg4
be a d-dimensional complex Hilbert space and {E1, ..., E,,} be a collection
of positive semi-definite operators (POVM) that sum to the identity. Taking
the unkwown quantum state as a rank one projector p = |¢) ()| (with
p? = p and tr(p) = 1), the i-th outcome is obtained with a probability given
by the Born rule p(i) = tr(pE;). A minimal and informationally complete
POVM (or MIC) requires d? one-dimensional projectors I1; = |t;) (1;], with
II; = dE;, such that the rank of the Gram matrix with elements tr(IL1I;),
is precisely d2.

With a MIC, the complete recovery of a state p is possible at a minimal
cost from the probabilities p(7). In the best case, the MIC is symmetric and

called a SIC with a further relation |<wi|¢j>|2 = tr(ILIL;) = dilflrl so that
the density matrix p can be made explicit [27, 28].
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In our earlier references [24, 25], a large collection of MICs are derived.
They correspond to Hermitian angles [(y:[v);)],,; € A = {a1,..., a1} be-
longing a discrete set of values of small cardinality [. They arise from the
action of a Pauli group P4 [29] on an appropriate magic state pertaining to
the coset structure of subgroups of index d of a free group with relations.

Here, an entirely new class of MICs in the Hilbert space Hg4, relevant for
the lepton and quark mixing patterns, is obtained by taking fiducial/magic
states as characters of a finite group GG possessing d conjugacy classes and
using the action of a Pauli group Py on them.

2. INFORMATIONALLY COMPLETE CHARACTERS FOR QUARK/LEPTON
MIXING MATRICES

The standard classification of small groups is from their cardinality. Finite
groups relevant to quark and lepton mixings are listed accordingly [8, 14, 18].
We depart from this habit by classifying the small groups G of interest versus
the number d = cc(G) of their conjugacy classes. This motivation is due to
the application of criterion (b) where we need to check whether the action
of a Pauli group in the d-dimensional Hilbert space Hg results in a minimal
informationally complete POVM (or MIC).

A list of finite groups G according to the number of their conjugacy classes
(complete only up to d < 12) is in Ref. [30]. It can also be easily recovered
with a simple code in Magma or Gap. For our application to quark and
lepton mixings, we need much higher d. In practice, we used existing tables
of subgroups of U(3) (of cardinality up to 2000 in [8, 14, 18] and up to 1025
in [21] to select our group candidates).

Tables 3 is the list of 16 + 2 small groups with cc < 36 found to satisfy
the two rules (a) the character table of G contains both two- and three-
dimensional representations with at least one of them faithful and (b) the
quantum measurement is informationally complete under a d-dimensional
Pauli group.

The 16 groups lead to good models for the absolute values of entries
in the CKM and PMNS matrices except for the ones that have the factor
SL(2,5) in their signature. The two extra groups (294,7) = A(6 x 72) and
(384,568) = A(6 x 82) arise when one takes into account the generalized CP
symmetry as in Section 3.

Details are in Table 4 for the first three groups and the group (294, 7).
Full results are in Table 7 and 8 of the Appendix.

Table 6 is an extrapolation to groups with higher cc where criterion (a) is
satisfied but where (b) could not be checked. Most groups in the two tables
have been found to be viable models and several of them belong to known
sequences.

In tables 3 and 6, the first column is the standard small group identifier
in which the first entry is the order of the group (as in [14]). At the second
column, one finds a signature in terms of a direct product (with the symbol
x), a semidirect product (with the symbol %), a dot product (with the
symbol .) or a member of a sequence of groups such as the A(6xn?) sequence
found to contain many viable groups for quark and lepton mixings. The
third column gives the number of irreducible characters/conjugacy classes.
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Group Name or signature cc | Graph Ref
SmallGroup(24,12) | Sy, A(6 x 2?) 5 | K4 [14]
SmallGroup(120,5) | 21, SL(2, 5) 9 | K3 [20],1, T
SmallGroup(150,5) | A(6 x 52) 13| K3 2, 14, 15]
SmallGroup(72,42) | Zy x Sa 15 | K3 8]
SmallGroup(216,95) | A(6 x 62) 19 | K3 [14]
SmallGroup(294,7) | A(6 x 7?) 20| 7 [32]

SmallGroup(72,3) | Qs x Zg 21 | K3 8]
SmallGroup(162,12) | Z2 x (Z2% x Zs) 22 | K 2, 14, 17]
SmallGroup(162,14) | ., D§') . [2, 14, 19]
SmallGroup(384,568) | A(6 x 82) 24 | ? [32]
SmallGroup(648,532) | (216 x 3), Zs x (Z3z x SL(2,3)) | 24 | ? [14, 23]
SmallGroup(648,533) | Q(648) , . 24 |7 14, 16]
SmallGroup(120,37) | Zs x Ss 25 | K2 T
SmallGroup(360,51) | Z3 x SL(2,5) 27 | KY, T
SmallGroup(162,44) | Z3 x (Z% x Zs) 30 | K3 [14]
SmallGroup(600,179) | A(6 x 10?) 33| K3, 2, 14, 15]
SmallGroup(168,45) | Z7 x Sy 35 | K# T
SmallGroup(480,221) | Zg.As, SL(2,5).Z4 36 | K§ I

TABLE 3. List of the 16 + 2 groups with number of conju-
gacy classes cc < 36 that satisfy rules (a) and (b). Groups
(294,7) and (384, 568) need two CP phases to become viable
models as mentioned in Section 3. The smallest permutation
representation on k x [ letters stabilizes the n-partite graph
K! given at the fourth column. The groups A(6 x n?) is
isomorphic to Z2 x S3. A reference is given at the last col-
umn if a viable model for quark or/and lepton mixings can
be obtained. The extra cases with reference t and I can be
found in [22] and [18], respectively.

150 Another information is about the geometry of the group. To get it, one first
151 selects the smallest permutation representation on k x [ letters of G. Then
152 one looks at the two-point stabilizer subgroup G, of smallest cardinality in
153 the selected group G. The incidence matrix of such a subgroup turns out to
154 be the [-partite graph K ,lc that one can identify from the graph spectrum.
155 Such a method is already used in our previous papers about magic state
156 type quantum computing [24]-[26] where other types of geometries have
157 been found. Finally, column five refers to papers where the group under
158 study leads to a viable model both for quark and lepton mixing patterns.
150 The recent reference [21] is taken apart from the other references singled out
160 with the index { in the tables. It is based on the alternative concept of a
161 two-Higgs-doublet model.

162 2.1. Groups in the series A(6n%) and more groups. An important
163 paper dealing with the series A(6n2) =2 Z2 x S5 as a good model for lepton
164 mixing is [15]. A group in this series has to be spontaneously broken into
165 two subgroups, one abelian subgroup Z?! in the charged lepton sector and
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Group | d
(24,12) [ 5 1 |1 2 |3 3
5-dit | . 5 121 | &2 |d® | 42
(120,5) | 9 1 ]2 2 |3 314145 |6
9-dit 9 |d? | &2 |d® | & || d?|79]|d?
2QT |. 9 |d% | &2 |&® | & ||| d%|d?
(150,5) [13] 1 |1 2 |3 3 /3[3[3|3[3 366
13-dit | . 13 (157 &% |d? | &2 ||| d? | d?|d?|d?|d?|d?
94, 7) 720 1 |1 2 [3 3 [/3[3[3[3[3[3[3]3
20-dit | . 20 | 349 | 388 | d? | & || P || P ||| dP|d?
6 |6 6 |6 6
390 | 390 | 390 | 398 | 398

TABLE 4. The first three small groups considered in our Ta-
ble 3 and group (294, 7) added in Section 3. For each group
and each character the table provides the dimension of the
representation and the rank of the Gram matrix obtained
under the action of the corresponding Pauli group. Bold
characters are for faithful representations. According to our
demand, each selected group has both 2- and 3-dimensional
characters (with at least one of them faithful) that are fidu-
cial states for an informationally complete POVM (or MIC)
with the rank of Gram matrix equal to d?. The Pauli group
performing this action is a d-dit or a 2-qutrit (2QT) for the
group (120,5) = SL(2,5) = 21.

a Klein subgroup Z5 x ZY in the neutrino sector (with neutrinos seen as
Majorana particles). The superscripts S, T and U refer to the generators of
their corresponding Z,, group in the diagonal charged lepton basis. In this
particular model, there is trimaximal lepton mixing with (so called reactor
angle) 013 fixed up to a discrete choice, an oscillation phase zero or 7 and
the (so-called atmospheric angle) a3 = 45° & 013/+/2.

It is shown in [2, Table I] that two groups in this series with n = 10
and n = 16 provide leading order leptonic mixing patterns within 3-sigma
of current best fit with acceptable entries in the CKM matrix. The small

group (648,259) = D%)ﬁ also satisfies this requirement. Additionally, if one
accepts that neutrinos are Dirac particles then the residual symmetry group
of neutrino masses is no longer restricted to the Klein group but may be any
abelian group. In such a case, four small groups that are A(6 x 52) and small
groups (162,10), (162,12) and (162,14) = D(g’lg predict acceptable entries
for the quark and lepton mixing matrices [2, Table II]. It is noticeable that
our small selection of groups (from requirements (a) and (b) include all of
them except for the group (162,10) whose two-dimensional representations
are not MICs.

Still assuming that neutrinos are Dirac particles and with loose enough
constraints on Vs, paper [17] include A-groups with n = 9 (it does not lie
in our Table 3) and n = 14 in their selection, as well as groups (648,259),
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187 (648,260) and (648,266), the latter groups are in our Table 6. Additional
188 material [18] provides very useful information about the ability of a group
189 to be a good candidate for modeling the mixing patterns. According to this
100 reference, the groups A(6xn?) with n = 10, 11, 14 and 18, and small groups
101 (972,64) and (972,245), that are in our tables also match Dirac neutrinos
192 with a 3-sigma fit and quark mixing patterns for triplet assignment.

193 Three extra groups (120, 5) (the binary icosahedral group SL(2,5) = 2I),
194 (360,51) = Zs3 x SL(2,5) and (480,221) = SL(2,5).Z4 in our tables, whose
195 signature has a factor equal to the binary icosahedral group 21, can be
196 assigned with a doublet and a singlet for quarks but cannot be generated
197 by the residual symmetries in the lepton sector.

198 2.2. Exceptional subgroups of SU(3). The viability of so-called excep-
199 tional groups of SU(3) for lepton mixings have been studied in [23] by assum-
200 ing neutrinos to be either Dirac or Majorana particles. These subgroups are
201 listed according to the number of their conjugacy classes in Table 5. They
202 are %(60) = As (a subgroup of SO(3)), X£(168) = PSL(2,7), £(36 x 3),
203 X(72 x 3), X(360 x 3) and (216 x 3). Only group %(360 x 3) has Klein
204 subgroups and thus supports a model with neutrinos as Majorana particles.
205 Group (216 x 3) is already in our Table 3 and potentially provides a valid
206 model for quark/lepton mixings by assuming neutrinos are Dirac particles.
207 According to our Table 5, all these exceptional groups have information-
208 ally complete characters as regard to most of their faithful three-dimensional
209 representations. Another useful information is about groups X(60) and
210 X(360x3) that are informationally complete as regard to their five-dimensional
211 representations. Models based on the A5 family symmetry are in [31, 32].

212 3. GENERALIZED CP sYMMETRY, CP VIOLATION

213 Currently, many models focus on the introduction of a generalized CP
214 symmetry in the lepton mixing matrix [11, 32, 33]. The Dirac CP phase
215 0cp = 013 for leptons is believed to be around —7/2. A set of viable mod-
216 els with discrete symmetries including generalized CP symmetry has been
217 derived in [34]. Most finite groups used for quark/lepton mixings without
218 taking into account the CP symmetry do survive as carrying generalized
219 CP symmetries. It is found that two extra groups (294,7) = A(6 x 7?) and
220 (384,568) = A(6 x 82), that have triplet assignments for the quarks, can
21 be added. This confirms the relevance of A models in this context. Group
222 (294,7) was added to our short Table 4 where we see that all of its two- and
223 three-dimensional characters are informationally complete.

224 A generalized CP symmetry should not be confused with a ‘physical’
225 CP violation as shown in Reference [35]. A ‘physical’ CP violation is a
226 prerequisite for baryogenesis that is the matter-antimatter asymmetry of
27 elementary matter particles. The generalized CP symmetry was introduced
28 as a way of reproducing the absolute values of the entries in the lepton
229 and quark mixing matrices and, at the same time, explaining or predicting
230 the phase angles. A physical CP violation, on the other hand, exchanges
231 particles and antiparticles and its finite group picture had to be clarified.
232 It is known that the exchange between distinct conjugacy classes of a finite
233 group G is controlled by the outer automorphisms u of the group. Such (non
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Group d
(60,5), £(60) 5 1 ]3 3 [4 5
5-dit ) 5 | d? | &% |d? | &2
(168,42), X(168) 6 1 ]3 3 |6 7 |8
6-dit . 6 |d® | d2 |33 | 33|33
(108,15), (36 x 3) [ 14 1 [1 1 |1 3 [3 3 |3 3!3] 3 [3
14-dit . 14 | 166 | 181 [ 181 [ 195 [ 195 | d? |d? | d? | d? | d* | d?
) ) 4 |4
) ) 154 | 154
(216,88), (72 x3) |16 1 |1 1 |1 2 |3 3 |3 3!3] 3 |3
16-dit ) 16 | 175 | 175 | 157 [ 233 |d® | d® |d® | &% | d? | d? | d?
2Quartits ) 16 | 121 | 149 [ 125 (200 | d? | 2 |d? | d? | d? | &2 | &2
) ) 3 |3 3 |8
16-dit ) d? | 222|222 | 144
2Quartits ) d? | 118 | 118 | 144
(1080,260), (360 x 3) [ 17| 1 [3 3 [3 3 |5 5 |6 6 |8 8 |9
17-dit ) 17 | d® | & |d? | &2 |d® | &2 | |32 |d?| &P |d?

. . 9 |9 10 |15 | 15
i . d? | d®> | & | d® | d?

(648,532),%(216 x 3) | 24 1 |1 1 |2 2 12 3 |3 3|3 3 |3
24-dit . 24 | 527 | 527562 | d% |d® | 560 |d?> |d®|d?| d® | d?

3 |6 6 |6 6 |6 6 |8 8 |8 9 |9

. . d?> | d®> | d* |d® | d* | d® | d* | 564 |d?|d*| 552|552

TABLE 5. Exceptional subgroups of SU(3). For each group

and each character the table provides the dimension of the

representation and the rank of the Gram matrix obtained

under the action of the corresponding Pauli group. Bold

characters are for faithful representations.

234 trivial) outer automorphisms have to be class-inverting to correspond to a
235 physical CP violation [35]. This is equivalent to a relation obeyed by the
236 automorphism u : G — G that maps every irreducible representation p,, to
237 its conjugate

pri(u(g)) = Uyp,pr.(9)*UJ, Vg € G and Vi,

238 with U,, a unitary symmetric matrix.
239 A criterion that ensures that this relation is satisfied is in terms of the
240 so-called twisted Frobenius-Schur indicator over the character k.,

dim ;)1

FSP () = | S ko (grugn) -~ guu(gn)) = %1, Vi,

n
|G| g:i€G
241 where n = ord(u)/2 if ord(u) is even and n = ord(u) otherwise.
242 Following this criterion there are three types of groups
243 1. the groups of type I: there is at least one representation r; for which

244 FS&”) (r;) = 0, these groups correspond to a physical CP violation,
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Group Name or signature cc | Graph Ref

SmallGroup(726,5) A(6 x 112) 38 | K3, (14, 17]
SmallGroup(648,259) (Zis X Zg) % S3, D\ |49 | K35 | [2, 14, 17, 19]
SmallGroup(648,260) Z3 x SmallGroup(72,42) | . |. .
SmallGroup(648,266) . LK [14]
SmallGroup(1176,243) A(6 x 142) 59 | K3, (14, 17]
SmallGroup(972,64) 7% x 7o 62 | K3 .
SmallGroup(972,245) 73 x (Zg x Ss) - K [17]

SmallGroup(1536,408544632) | A(6 x 162) 68 | ? 2, 14, 15]

SmallGroup(1944,849) A(6 x 182) 85 | Kis [14, 17

TABLE 6. List of considered groups with number of conju-
gacy classes cc > 36 that satisfy rule (a) (presumably (b)
as well) and have been considered before as valid groups for
quark/lepton mixing. A reference is given at the last col-
umn if a viable model for quark or/and lepton mixings can
be obtained. The question mark means that the minimal
permutation representation could not be obtained.

245 2. groups of type II: for (at least) one automorphism u € G the F'S,’s for
246 all representations are non zero. The automorphism « can be used to define
247 a proper CP transformation in any basis. There are two sub-cases

248 Case II A, all F'S,’s are +1 for one of those u’s,

249 Case 1II B, some F'S,’s are —1 for all candidates u’s.

250 A simple program written in the Gap software allows to distinguish these
251 cases [35, Appendix B].

252 Applying this code to our groups in Tables 3, 5 and 6, we found that all
253 groups are of type II A or type I. Type I groups corresponding to a physical
254 CP violation are

55 (216,95) = A(6 x 62), (162,44), (216,88) = X(72 x 3)

256 where we could check that our criteria (a) and (b) apply, the exceptional
257 group (1080,260) = (360, 3) in Table 5 and groups (972,64), (972,245),
253 (1944,849) = A(6 x 183) of Table 6.

259 4. CONCLUSION

260 Selecting two- and three-dimensional representations of informationally
261 complete characters has been found to be efficient in the context of models
262 of CKM and PMNS mixing matrices. Generalized quantum measurements
263 (in the form of MICs) are customary in the field of quantum information
264 by providing a Bayesian interpretation of quantum theory and leading to an
265 innovative view of universal quantum computing. The aim of this paper has
266 been to see the mixing patterns of matter particles with the prism of MICs.
267 Our method has been shown to have satisfactorily predictive power for pre-
268 dicting the appropriate symmetries used so far in modeling CKM/PMNS
260 matrices and for investigating the symmetries of C'P phases.

270 It is admitted that the standard model has to be completed with discrete
271 symmetries or/and to be replaced by more general symmetries such as SU(5)
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22 or Eg D SU(5), as in F-theory [36], to account for existing measurements on
273 quarks, leptons and bosons, and the hypothetical dark matter. Imposing the
274 right constraints on the quantum measurements of such particles happens
275 to be a useful operating way.
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Group d
(24,12) |5 1 [1 2 |3 3
5-dit ) 5 |21 d? | d? d?
(120,5) |9 1 |2 2 |3 3 |4 4 [5 6
9-dit 9 | d? dz | d? d? | d? a2 | 79 d2
2QT ) 9 | d? d? | d? d? | d? d? | d? d?
(150,5) | 13 1 [1 2 |3 3 [3 3 [3 3 [3 3 [6 6
13-dit . 13 | 157 | d? | d? a2 | d? d? | d? d? | d? d? | d? d?
(72,42) |15 1 |1 1 |1 1 |1 2 |2 2 [3 3 |3 3 |3 3
15-dit ) 15 | 203 | 209 | 209 | 195 | 195 | 219 | d2 d2 | d2 a2 | d2 a2 | a2 | d2
(216,95) | 19 1 |1 2 |2 2 |2 3 [3 3 3 3 [3 3 [3 3
19-dit 19 | 343 | 357 | 359 | 355 | d? d? | d? d? | d? d? | d? a2 | d® | d?
3 |6 6 |6
) ) d? | d2 d2 | d?
(294,7) | 20 1 |1 2 |3 3 |3 3 |3 3 [3 3 [3 3 [3 3
20-dit . 20 | 349 | 388 | d? d? | d? d? | d? d? | d? d? | d? d? | d? | d?
6 |6 6 |6 6
. ) 390 | 390 | 390 | 398 | 398
(72,3) 21 1 |1 1 |1 1 |1 1 |1 1 |2 2 |2 2 |2 2
21-dit ) 21 | 405 | 405 | 421 | 421 | 421 | 421 | 421 | 421 | 42 d2 | d2 a2 | a2 | d2
2 |2 2 |3 3 |3
: . d2 | d? d? | d? d? | d?
(162,12) | 22 1 |1 1 |1 1 |1 2 |2 2 |3 3 |3 3 |3 3
22-dit : 22 | 446 | 463 | 463 | 463 | 463 | 473 | d? d? | d? d? | d? a2 | a2 | d?
3 |3 3 |3 3 |3 6
) ) d2 | d? d2 | d? d? | d? | 198
(162,14) | 22 1 |1 1 |1 1 |1 2 |2 2 |3 3 [3 3 [3 3
22-dit ) 22 | 444 | 461 | 463 | 461 | 463 | 473 | d2 d? | d? d? | d? a2 | d® | d?
3 |3 3 |3 3 |3 6
) ) dz | d? d? | d? d? | d®> | 198
(648,532) | 24 1 |1 1 |2 2 |2 3 |3 3 |3 3 |3 3 [6 6
24-dit . 24 | 527 | 527 | 562 | d? | d? | 560 | d? d? | d? d? | d? d? | d? | d?
3QB-QT | . 24 | 500 | 500 | 476 | 568 | 568 | 448 | d? d? | d? d? | d? d? | d? | d?
) ) 6 |6 6 |6 8 |8 8 |9 9
24-dit ) d2 | d? d?2 | d? | 564 | d? d? | 552 | 552
3QB-QT | . dz | d2 d? | d?2 | 448 | 560 | 560 | 510 | 510
(648,533) | 24 1 |1 1 |2 2 |2 3 |3 3 |3 3 |3 3 |6 6
24-dit ) 24 | 539 | 539 | 562 | d2 | d? | 514 | d? d2 | d®2 | 574|574 | d2 | d?2 | d?
3QB-QT | . 24 | 532 | 532 | 481 | 572 | 572 | 452 | 572 | 568 | 568 | 570 | 570 | 572 | 575 | d?
) ) 6 |6 6 |6 8 |8 8 |9 9
24-dit ) dz | d? d? | d®> | 563 | d? d? | 478 | 478
3QB-QT | . d? | 573 | 573 | 575 | 488 | 560 | 560 | 520 | 520

TABLE 7. Small groups considered in our Table 3. For each group
and each character the table provides the dimension of the repre-
sentation and the rank of the Gram matrix obtained under the
action of the corresponding Pauli group. Bold characters are for
faithful representations. According to our demand, each selected
group has both 2- and 3-dimensional characters (with at least one
of them faithful) that are magic states for an informationally com-
plete POVM (or MIC), with the rank of Gram matrix equal to
d?. The Pauli group performing this action is in general a d-dit
but is a 2-qutrit (2QT) for the group (120,5) = SL(2,5) = 21, a
3-qutrit (2QT) for the group (360,51) = Z3 x SL(2,5) or may be
a three-qubit/qutrit (3QB-QT) for the groups (648,532) and
(648, 533).
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Group d
(120,37) | 25 1 1 1 1 1 1 1 1 1 1 2 |2 2 |2 2
25-dit ) 25 | 601 601 | 601 601 | 601 601 | 601 601 | 601 623 | d? dz | d? d?
3 |3 3 |3 3 |3 3 |3 3 |3
) ) a2 | d? da? | d? a2 | d? da? | d? a2 | d?
(360,51) | 27 1 1 1 2 2 2 2 |2 2 [3 3 |3 3 |3 3
3QT . 27 | 613 613 | d? a2 | d? a2 | d? a2 | d? dz | d? dz | d? d?
4 |4 4 |4 4 |4 5 |5 5 |6 6 |6
) ) 727 | 725 727 | T27 | v27 | 727 | 727 |v2v | v2v | 727 | 727 | 727
(162,44) | 30 1 1 1 1 1 1 2 |2 2 |2 2 |2 2 |2 2
30-dit ) 31 | 826 861 | 871 861 | 871 883 | 877 879 | 883 898 | d? a2z | d? 898
2 2 2 3 3 |3 3 |3 3 |3 3 |3 3 |3 3
) ) 898 | 898 a2 | d? a2 | d? a2 | d? a2 | d? a2 | d? dz | d? d?
(600,179) | 33 1 1 2 |3 3 |3 3 [3 3 [3 3 |3 3 |3 3
33-dit ) 33 | 1041 | d? | d? a2 | d? da? | d? a2 | d? a2 | d? dz | d? d?
3 |3 3 |3 3 |3 6 |6 6 |6 6 |6 6 |6 6
dz | d? daz | d? a2 | d? a2 | d? a2 | d? a2 | d? a2 | d? d?
6 |6 6
) ) d? | d? d?
(168,45) | 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
35-dit ) 35 | 1175 | 1191 | 1191 | 1191 | 1191 | 1191 | 1191 | 1191 | 1191 | 1191 | 1191 | 1191 | 1191 | d2
2 2 2 2 2 2 3 |3 3 |3 3 |3 3 |3 3
dz | d2 d? | d2 a2 | d2 a2 | d2 a2 | d2 a2 | d2 dz | d2 d?
3 |3 3 |3 3
) ) dz | d2 d? | d2 d2
(480,221) | 36 1 1 1 1 2 |2 2 |2 2 |2 2 |2 3 [3 3
36-dit ) 36 | 36 1085 | 1185 | 1184 | d2 a2 | d? a2 | d? a2 | d? 1278 | 1278 | 1278
3 |3 3 |3 3 |4 4 |4 4 |4 4 |4 4 |5 5
1278 | d? dz | d? d2 | 1275 | 1278 | d? a2 | d? a2 | d? d? | 1277 | 1273
5 5 6 |6 6 |6
1294 | 1294 | 1295 | 1295 | 1295 | 1295

TABLE 8. The following up of Table 7.
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