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Abstract: The behaviour of oxidized and non-oxidized multiwalled carbon nanotubes in the 

adsorption of lanthanum(III) from aqueous solutions is described. Metal uptake is studied as a 

function of several variables such as the stirring speed of the system, pH of the aqueous solution 

and metal and nanomaterial concentrations. The experimental results are fitted to various kinetics 

and isotherm models, being the rate law fitted to the film diffusion and particle diffusion models, 

when the non-oxidized and the oxidized nanomaterials are used to remove lanthanum from the 

solution, respectively. Sulphuric acid solutions seem to be appropriate to recover the metal from 

La-loaded nanomaterials. 
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1. Introduction 

Since the sixties of the last century, applications of rare earths in daily life had been increased 

until become to be elements which are critical in industrial developments and modern technologies, 

thus in this context, these elements are designed as technology-critical elements [1]. Although rare 

earths are more abundant than precious metals, their individual extraction is not an easy task mainly 

due to two main reasons; i) they are dispersed in ores, and ii) having similar chemical properties, it is 

difficult their individual separation. 

With uses in different technologies and industries, rare earths are considered by the European 

Commission as the most critical raw materials group with the highest supply risk [2]. However, and 

in spite of their great applications and the larger amounts of REs-wastes, their recycling is still 

poorly developed, i.e. in the EU only 6% of the heavy REs and 7% of the light REs are 

recovered[3][4]. 

Among these elements, lanthanum is used in metal alloys, batteries, glass, catalysts, and 

rechargeable lithium-nickel batteries[5],[6] and it is being considered as one of the most critical 

elements until 2025 [7]. Particularly, the recycling of electric and hybrid vehicles batteries is of a 

great social and technological challenge, mainly due to the environmental problem associated to 

their dangerous compounds, among others, heavy metals which are forming part of the anode in the 

Ni-MH cell [3][8]. Nowadays, these types of batteries are one of the most used [9].  

Including in separation technologies, adsorption is one of the most popular methodologies due 

to its simplicity, flexibility, low cost and high efficiency [10]. In the last decades, the study and the 

development of new adsorbent had been constant, such as clay ore, chelating, carbon nanomaterials, 

MOFs, hallosite nanotubes and activated carbon [11],[12],[13],[14],[15],[16],[17],[18]. Among these, 

carbon nanomaterials are a great research field due to their metals adsorption properties 

[10],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29]. Different researches have been conducted in 

the La adsorption. Crane et al. [30] studied the behavior of La adsorption onto nanoscale zero valent 
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iron in an acid drainage medium; Iftekhar et al. [31] reviewed the factors that affect the La 

adsorption with different adsorbents, biosorbent, inorganic nano/composites, magnetic, silica, 

graphene oxides, activated carbon, etc... Finally, Cardoso et al. [32] also presented a deep review 

about the adsorption capacity of different kind carbon nanomaterials.  

Since the global demand of REs is increased and it is expected to experiment a notable growth 

over time [33], the present investigation concerns the adsorption of lanthanum(III) from aqueous 

solutions with two commercial available adsorbents, in the form of, non-oxidized and oxidized 

(carboxylic groups) multiwalled carbon nanotubes. 

2. Materials and Methods  

The adsorbents used in this research (Merk KGaA, Damstadt, Germany) have the characteristics 

shown in Table 1. 

Table 1. Characteristics of the adsorbents. 

Adsorbent 
Purity 

(%) 

a Functionalization 
grade (%) 

BET 
(m2/g) 

Average 
diameter 

(nm) 
Density 

Length 
(µm) 

Method 
of 

process 
MWCNT >98% ---- 263 6-9 2.1 5 CVD 

ox-MWCN
T 

>80% >8 307 9.5 --- 1.5 CVD 

a carboxylic groups. CVD: Chemical vapour deposition  

On both adsorbents, Z potential was measured using a Zetasizer Malvern Nano ZS (Malvern, 

UK) at 25º C. Aqueous suspensions were prepared in pH solutions between 1 and 13 using solutions 

of HCl and NaOH. The concentration of activated carbon was adjusted to a value of 0.1 g/L. The 

suspensions were dispersed with a Bandelin Electronic Sonopuls HD 3100 sonicator (Bandelin, 

Berlín, Germany), using amplitudes of 60% for 150 s. The results from these measurements were 

shown in Figure 1, indicating that the isoelectronic points (IEP) were of 1.22 and 0.26 for the 

MWCNTs and ox-MWCNTs, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Z potential vs pH. 

 

Lanthanum(III) nitrate (La(NO3)3·6H2O) (Merk KGaA, Damstadt, Germany) was used as source 

for La3+ ions. Other reagents were of AR grade. 

 

Batch adsorption experiments were performed in a 0.5 L glass reactor provided of mechanical 

shaking, and the percentage of metal in the solution was determined by monitoring the metal 

concentration by Inductively coupled plasma atomic emission spectroscopy (ICP-OES) using a 
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Agilent 5100 (Agilent Technologies, Santa Clara, California, USA) in the aqueous solution as a 

function of time:  

 

 
100x

La

La
%

0,aq

t,aq
=                     (1) 

whereas the percentage of metal adsorption, onto the corresponding adsorbent, was calculated by 

the mass balance (Equation 1). Desorption experiments were carried out on the same basis. 

3. Results 

3.1. La(III) uptake by non-oxidized multiwalled carbon nanotubes (MWCNTs) 

 

Having non-active groups, lanthanum uptake onto the present nanomaterial can be described 

by the next equilibrium: 

 
++  3

c

3

aq LaLa                                             (2) 

 

where Laaq3+ and Lac3+ represented the lanthanum ions in the aqueous solution and occupying the 

corresponding adsorptive sites in the carbon nanomaterial, respectively. 

 

In all the adsorption experiments carried out with MWCNTs, a stirring speed of 500 min-1 was 

used to mix the solution and the adsorbent material. By the use of aqueous solutions containing 0.01 

g L-1 La(III) at pH 6 and carbon dosages of 4 g/L, previous experiments showed [34]that the 

percentage of lanthanum uptake increased with the increase of the stirring speed from 300 min-1 (84% 

metal adsorption) until reaching a maximum (99 % metal adsorption) at the above stirring speed, 

indicating that a minimum value of the thickness of the aqueous phase boundary layer was reached. 

The increase of the stirring speed until 1000 min-1, resulted in a slight decrease of the adsorption, i.e., 

96% at 750 min-1 and 94% at 1000 min-1, being this decrease attributable to the formation of local 

equilibria at these higher stirring speeds. 

The data derived from experiments at 500 min-1 were used to estimate the kinetics associated to 

the system, and this investigation revealed that La(III) uptake onto the present MWCNT was best 

represented by the pseudo-second order kinetic model (r2= 0.989) [21]: 

 

     
t

La

1

Lak

1

La

t

e,c

2

e,ct,c

+=                        (3) 

 

where [La]c,e and [La]c,t represented the lanthanum concentrations at the equilibrium and at elapsed 

time, respectively, k represented the rate constant, and t being the elapsed time. From this fit, it was 

obtained that [La]c,e was of 2.8 mg/g, which fitted very well with the experimental value of 2.5 mg/g, 

and k of 0.16 g mg-1 min-1. Furthermore, the fit of the data to the pseudo-second order model should 

be indicative of chemical activation between the adsorbent and the lanthanum ions [35],[36]. 

 

3.1.1. Influence of the aqueous pH 

 

The influence of varying the pH of the aqueous solution on the adsorption of lanthanum by the 

MWCNTs was evaluated. Adsorbent dosages of 3 g/L were used. The aqueous phase contained 0.01 

g/L La(III) at various pH values. Table 2 shows the results obtained from these experiments. It can be 

seen that the decrease of the pH value decreased the percentage of metals adsorption onto the 
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carbon material. This could be due to the surface charge of MWCNTs turns negative at pH value 

higher than the pH(IEP) 1.22, see Figure 1. 

 

Table 2. Influence of the pH on La(III) uptake. 

pH % La(III) uptake 

1 

2 

3 

4 

6 

15 

32 

61 

80 

98 

Temperature: 25º C. Time: 5 h 

 

The results derived from experiments at pH 6 were used to estimate the rate law for the present 

system, and the results derived from these fits, indicated the La(III) uptake onto the nanomaterial 

was best associated to the aqueous film diffusion mechanism (r2= 0.988) [21]:  

 

( ) ktF1ln −=−                                           (4) 

where k is the rate constant, t the elapsed time, and F the fractional approach to the equilibrium, 

calculated as: 

 

 
  e,c

t,c

La

La
F =                                                              (5) 

 

the value of k being estimated as 0.03 min-1. It should be noted here, that the aqueous film diffusion 

was often associated to adsorption processes obeying the pseudo-second order kinetic model [37]. 

 

3.1.2. Effect of adsorbent dosage 

 

Figure 2 represents the results obtained for the study of the influence of the adsorbent dosage 

on lanthanum adsorption. The aqueous solution contained 0.01 g/L La(III) at pH 6, and the 

adsorbent dosages ranged from 1 to 4 g L-1. The results obtained showed that the increase of the 

adsorbent dosage increased lanthanum adsorption, however, the effectiveness of this adsorbent for 

metal adsorption is constant if adsorbent dosages of 3 and 4 g L-1 are used. 
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Figure 2. Influence of MWCNTs dosage on the adsorption of lanthanum. Temperature: 25º C. Time: 

5h.   

 

3.1.3. Effect of metal concentration 

 

The influence of the initial lanthanum concentration in the percentage of adsorption of this 

metal onto the MWCNTs was investigated. This study was carried out using aqueous solutions that 

contained various lanthanum concentrations at pH 6, and carbon dosages of 3 g/L. The results are 

shown in Table 3, it can be seen that the percentage of metal adsorption decreased with the increase 

of the of the initial metal concentration in the aqueous solution, whereas maximum metal loading 

onto the nanomaterial was around 5.3 mg g-1. 

 

Table 3. Influence of initial metal concentration on La(III) uptake. 

[La]0, mg/L % La(III) uptake [La]c,e, mg/g 

10 

20 

40 

80 

98 

75 

46 

20 

3.3 

5.0 

6.1 

5.3 

Temperature: 25º C. Time: 5 h 

    

These results were fitted to the Langmuir and Freundlich models [38],[39]; it was found that the 

best fit was related to the Langmuir Type-1 equation model (r2: 0.992), indicative of a homogeneous 

surface of the adsorbent covering with a single layer: 

 

                         
 

     
  e,aq

m,cm,cLe,c

e,aq
La

La

1

Lak

1

La

La
+=               (6)                                    
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in the above expression, [La]c,e and [La]aq,e represented the metal concentrations in the carbon 

nanomaterial and in the aqueous solution at the equilibrium, respectively, [La]c,m is the maximum 

lanthanum concentration in the carbon nanomaterial, and kL is the Langmuir constant. From the 

above fit, [La]c,m was of 5.3 mg/g, value which compares well with the experimental value of 5.5 

mg/g, and kL being 1.4 L/mg. Moreover, being: 

 

                                          
  0,aqL

L
Lak1

1
R

+
=         (7)                                                       

 

it was found that in all the lanthanum concentrations range used in this work, the adsorption 

process is favourable since RL<1 [40].   

 

3.2. La(III) uptake by oxidized multiwalled carbon nanotubes (ox-MWCNTs) 

 

The presence of carboxylic groups in the carbon nanomaterial is indicative that La(III) uptake, 

onto this nanomaterial, is not represented by an adsorption process but by a cation exchange 

process:   

 

                       ( ) ( ) ++−+ +−+− aq

3

c3

3

aqc H3LaCOORLaCOOHR3       (8)                         

 

where the subscripts c and aq represented the equilibrated carbon and aqueous phases, respectively, 

and R the non-reactive part of the carbon nanomaterial. As it can be seen from the above equation, 

La(III) uptake onto the oxidized nanomaterial is accompanied by the release of protons to the 

aqueous solution. 

 

3.2.1. Effect of stirring speed 

A number of tests were performed in order to establish correct hydrodynamic conditions. The 

uptake onto the carbon material was studied as a function of the stirring speed applied to the system. 

Results obtained are shown in Table 4, maximum lanthanum uptake for stirring speed of 500 min-1 

was obtained, thus, the thickness of the aqueous diffusion layer and the aqueous resistance to mass 

transfer were minimized. There is also a slight decrease in the metal uptake with the increase of the 

stirring speed, being this effect explained as above; however, in the present case, the stirring speed 

has an influence on the time to reach equilibrium, since, in the present experimental conditions, it is 

attained at 30 min (500 min-1), 3 h (750 min-1) and 5 h (1000 min-1).  

The estimation of the kinetic model, responsible for La(III) uptake onto the carbonaceous 

nanomaterial, indicated that the results at 500 min-1 best fitted to the pseudo-second order kinetic 

model (r2= 0.995) [21] eq.(3), and from this, [La]c,e is of 10.9 mg/g, concentration which is a little 

higher than the maximum theoretical of 10 mg/g, which can be derived using the present 

experimental conditions, and higher than the more realistic and experimentally obtained of 9.9 mg/g. 

From this fit, and using this 9.9 mg/g value, k resulted as 0.68 g/mg min. 
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Table 4. Influence of the stirring speed on lanthanum uptake onto ox-MWCNTs. 

Stirring speed (min-1) % La(III) uptake 

250 

350 

500 

750 

1000 

70 

90 

99 

97 

94 

Aqueous phase: 0.01 g/L La(III) at pH 6. Carbon dosage: 1 g/L. Temperature: 25º C. Time : 5h  

 

3.2.2. Effect of the aqueous pH 

Experiments were carried out using solutions of 0.01 g/L La(III) at various pH values and carbon 

dosages of 0.5 g/L. Figure 3 shows the results obtained; as expected from eq. (6), it can be seen that  

the variation of the aqueous pH value has a markedly effect on La(III) uptake onto the ox-MWCNTs, 

decreasing the metal uptake as the pH value is being decreasing. From eq. (6): 

 

( )  
( )   +

++−

−

−
=

33

33

3

LaCOOHR

HLaCOOR
K                                  (9) 

 

By definition, the metal distribution coefficient is: 

 

( ) 
 +

+−−
=

3

3

3

La

LaCOOR
D                                     (10) 

substituting the above in eq.(9) and rearranging, the next expression is derived: 

 

  pH3COOHRlogDlog
3
+−=                            (11) 

 

thus, by plotting log D versus pH a straight line of slope 3 may be obtained. From results showed in 

Fig.3, such a plot confirming a slope of near 3, and that La(III) uptake onto these ox-MWCNTs 

occurred via the equilibrium showed in eq. (6). It is worth to note here, that the curve has an 

approximate S-shape, characteristic among others, of cationic exchangers. 

The results at pH 6 are used to estimate the rate law for the lanthanum uptake onto these 

oxidized nanomaterials. The results fitted well with the particle diffusion model (r2= 0.945) [21]: 

( ) ktF1ln 2 −=−                                             (12) 

and k estimated as 0.06 min-1. 
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Figure 3. Variation in the percentage of La(III) adsorption versus pH. Temperature: 25º C. Time: 5 h. 

 

3.2.3. Effect of ox-MWCNTs dosage 

The variation in the percentage of lanthanum adsorption at different adsorbent dosages is 

shown in Fig, 4. The experiments were carried out with carbon dosages in the 0.13 to 1 g/L range and 

aqueous solutions of 0.01 g/L La(III) at pH 6. 

 

Figure 4. Influence of ox-MWCNTs dosage on the adsorption of lanthanum. Temperature: 25º C. 

Time: 5h. 

The results obtained showed that increasing the adsorbent dosage increased the percentage of 

lanthanum adsorption although from 0.5 g/L carbon dosage, the difference in the values is less 

significant than in the lower adsorbent dosage range.   

3.2.4. Effect of initial lanthanum concentration 

Figure 5 shows the variation in the percentage of lanthanum uptake onto the ox-MWCNTs against 

the initial concentration of the metal ranging from 0.01 to 0.08 g/L. It can be observed that with the 
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present experimental conditions, the percentage of metal uptake reached a maximum at 0.01-0.02 

g/L La(III), and then decreased. 

  

Figure 5. Influence of the initial metal concentration on the uptake of lanthanum. Aqueous phase: 

La(III) at pH 6. Adsorbent dosage: 0.5 g/L. Temperature: 25º C. Time. 5 h. 

Lanthanum uptake is best represented by the Langmuir Type-1 isotherm (eq. (6)), with [La]c,m of 

59 mg/g, value very similar to that experimentally obtained of 57 mg/g, and kL 0.78 L/mg. 

Considering eq. (7), the estimated value of RL for the system is of 0.11, indicative of a favourable 

metal uptake process [40]. 

3.3.Elution 

As results in subsections 3.1.1. and 3.2.2. shown, using both adsorbent, there is a strong 

influence of the aqueous pH on lanthanum adsorption, thus, it is logical to use acidic solutions to 

desorbed this metal form La-loaded carbon nanomaterials. These series of experiments are carried 

out, at 25º C, using 0.1 M H2SO4 solutions, and a La-loaded nanomaterial in a 0.4 carbon/solution 

relationship. The results from these experiments show that the percentage of lanthanum recovery in 

the eluate is 79% and 87% for the non-oxidized and the oxidized nanomaterials, respectively. At the 

same time, the nanomaterial is recovered for further use, in the case of the oxidized nanomaterial by 

shifting of the equilibrium shows in eq,(6) to the left, as a consequence of the desorption reaction. 

The use of HCl or HNO3 solutions do not improve the desorption results yielded with the sulphuric 

acid one.   

4. Conclusions 

From the experimental data obtained from this investigation, it can be deduced that both 

oxidized and non-oxidized multiwalled carbon nanotubes, commercially available materials, can be 

used to recover lanthanum from aqueous solutions.  

For both nanomaterials, the adsorption of lanthanum, is influence by a number of variables, 

such as metal concentration and adsorbent dosages, the stirring speed applied to the system, and the 

pH of the aqueous solution. 

In both cases, the metal uptake responded to the pseudo-second order kinetic model and the 

Langmuir Type-1 isotherm model, however, they differ in the rate law, as the film diffusion model 

fitted the uptake when the non-oxidized material is used, against the fitting of the particle diffusion 

model to the results yielded when the oxidized carbon nanotubes are used to remove lanthanum 

from the solution. The mechanism from which lanthanum is removed from the solution using both 

nanomaterials also appeared to be different: an adsorption process in the case of the non-oxidized 
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carbon against a cation exchange process in the case of the oxidized material. This is somewhat 

reflected in the fact that to obtain the same degree of lanthanum removal from the solution (more 

than 90%), the material dosage using the oxidized material is three times lower than that of the 

non-oxidized carbon nanotubes. Lanthanum loaded, onto both nanomaterials, can be desorbed by 

the use of acid solutions, i.e. sulphuric acid. 
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