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Retrieval of sea surface wind speed from
spaceborne SAR over the Arctic marginal ice
zone with a neural network

Xiao-Ming Li, Member, IEEE, Tingting Qin and Ke Wu

Abstract—TIn this paper, we presented a method of retrieving sea
surface wind speed from Sentinel-1 synthetic aperture radar (SAR)
horizontal-horizontal (HH) polarization data in extra-wide mode,
which have been extensively acquired over the Arctic for sea ice
monitoring. In contrast to the conventional algorithm, i.e., using a
geophysical model function (GMF) to retrieve sea surface wind by
spaceborne SAR, we introduced an alternative method based on
physical model guided neural network. Parameters of SAR
normalized radar cross section, incidence angle, and wind
direction are used as the inputs of the backward propagation (BP)
neural network, and the output is the sea surface wind speed. The
network is developed based on more than 11,000 HH-polarized
EW images acquired in the marginal ice zone (MIZ) of the Arctic
and their collocations with scatterometer measurements.
Verification of the neural network based on the testing dataset
yields a bias of 0.23 m/s and a root mean square error (RMSE) of
1.25 m/s compared to the scatterometer wind speed. Further
comparison of the SAR retrieved sea surface wind speed with
independent buoy measurements shows a bias and RMSE of 0.12
m/s and 1.42 m/s, respectively. We also analyzed the uncertainty
of retrieval when the wind direction data of a reanalysis model are
used as inputs to the neural network. By combining the detected
sea ice cover information based on the EW data, one can expect to
derive simultaneously sea ice and marine-meteorological
parameters by spaceborne SAR in a high spatial resolution in the
Arctic.

Index Terms—Synthetic Aperture Radar, sea surface wind,
machine learning

I. INTRODUCTION

RETRIEVAL of sea surface wind (SSW) by spaceborne
synthetic aperture radar (SAR) has been studied for a few
decades. The general retrieval method adopts the
geophysical model function (GMF), which was designed for a
microwave scatterometer to retrieve SSW field. The GMFs
generally have the following format:
0o = ag(8,u10)[1 + a;(8,uy0) cos ¢ + a,(0,uy,) cos 2¢]°
&)
The GMF empirically relates the normalized radar cross section
(NRCS, g) with SSW speed u,,, azimuthal wind direction ¢
and incidence angle 6 through various linear or nonlinear
functions of a,, a; and a,. Different GMFs for C-band radar
data with vertical-vertical (VV) polarization have been
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proposed and are widely exploited to acquire SSW at a high
spatial resolution, e.g., from CMOD4, CMODS, and
CMODS.N to the currently used CMOD7 [1] - [5], and
CMOD IFR2 [6]. On the other hand, as spaceborne SAR can
also operate in horizontal-horizontal (HH) polarization, the so-
called polarization ratio (PR) should be used to transform the
NRCS of HH-polarization to that of V'V polarization and then
the GMFs developed for VV polarization data can be applied to
retrieve the SSW speed. However, the dependence of PR is not
only on incidence angle [7] - [9] but also on SSW conditions
[8],[10]. While PR depends on various factors, one can also
develop independent GMFs for HH-polarized spaceborne SAR
data, e.g., as proposed by Monaldo et al. [11] for the Radarsat
data and by Zhang et al. [12] for ENVISAT/ASAR data in HH
polarization. This should be an optimized method to retrieve
SSW by spaceborne SAR in HH polarization, as the PR may
depend on various factors through nonlinear relations.

When spaceborne SAR operating in different microwave
frequencies from C-band are in orbit, the functions in (1) must
be refit to make them suitable for retrieving SSW, e.g., the
LMOD [13] for the L-band ALOS/PALSAR and the XMOD
[14] for the X-band TerraSAR-X and TanDEM-X. Although
the format of (1) is compact, the functions a,, a; and a, are
complicated; they often consist of sub-functions and generally,
more than 30 coefficients need to be determined. Moreover, to
our knowledge, the formats of these functions are empirically
fitted to a large amount of tuning data.

Both Sentinel-1A (S1A) and Sentinel-1B(S1B) have been in
orbit since June 2016 and have acquired extensive the extra-
wide (EW) swath data with a polarization combination of HH
and horizontal-vertical (HV) for sea ice monitoring in the Arctic.
The marginal ice zone (MIZ) is generally defined as the transit
area of sea ice and open water, where the sea ice concentration
is between 15% and 80%. Along with the rapid decline of sea
ice in the Arctic, its seasonal MIZ is widening [15], which leads
to significant interaction between sea ice and ocean dynamics.
Therefore, we intend to derive SSW at high spatial resolution
from these EW data acquired in the Arctic, in combination with
sea ice information for supporting scientific research, resource
utilization and navigation safety.

We preliminarily analyzed the combinations of CMODS5.N and
different PR models for retrieving sea surface wind speed by
the S1 HH-polarized data [16] acquired over MIZ of the Arctic.
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The comparisons suggest that the PR models developed in [8]
and [10] have better performances on retrieving SSW speed.
Machine learning algorithms have demonstrated their great
potential for mining information from ocean remote sensing
imagery (e.g., as reviewed in [17]), and they generally have a
strong capability of fitting the nonlinear curves, e.g., the one
depicted by (1). As described before, tuning the GMFs for
spaceborne SAR data is a challenge because there are multiple
non-linear functions and sub-functions that need to be
empirically or statistically determined. Therefore, in this paper,
we present a method of retrieving SSW from S1 EW data in
HH-polarization based on a neural network.

Following the introduction, the methodology including the
datasets and the construction of a backward propagation (BP)
neural network, are described in Section II. We verified the
trained BP neural network by comparing retrieval with the
advanced scatterometer (ASCAT) data. Then we further
validated the retrieval by comparing it with in situ buoy
measurements and the measurements from the Chinese
icebreaker “XuelLong” in the Arctic. These comparisons are
presented in Section III. A summary and conclusions are given
in the last section.

II. METHODOLOGY

A. SI data and their collocations with ASCAT data

Both S1A and S1B EW mode data with a swath width of 400
km in HH polarization are used in this study. The incidence
angle of the EW data varies between 19° and 47°. Radiometric
calibration and thermal noise removal of the EW data is
conducted according to the S1 user manual [18]; referring to the
appendix for details.

The daily EUMETSAT ASCAT-A/B SSW data under all
weather conditions with a spatial resolution of 0.25° by 0.25°
were collected in this study. The S1 EW data were spatially and
temporally collocated with ASCAT wind data with a spatial
distance of less than 25 km and a temporal window of less than
60 minutes, respectively, which yields a total of 11, 431 scenes
of S1 EW imagery, among which 8,452 and 2,979 scenes were
acquired by S1A and SIB, respectively, collocated with
ASCAT measurements over the Arctic MIZ from 2015 to 2018.
The spatial distribution of these collocations is shown in Fig.1.
The majority of the collocations are in the Atlantic sector of the
Arctic.

The unavoidable existence of speckles in SAR image makes
it impossible to retrieve wind speed at the primary pixel
resolution. Therefore, the numbers of pixels are averaged (to
obtain a “cell”) to reduce speckles in the S1 data and are then
used for retrieval of SSW. Generally, the larger the cell size is,
the better its radiometric resolution y is, which is defined in (2).

In this study, the radiometric resolution is used to describe
the speckle “noise” [19].

y = 10log,,(1 + 1/VENL) ()
where ENL is the equivalent number of looks, given as:
(E[P])?
= 3
ENL VAR[P] 3

d0i:10.20944/preprints202005.0300.v1

where P is the intensity of pixels obtained from the image,
and VAR and E are the variance and mean of P, respectively
[20].
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Fig.1. Spatial distribution of the collocations of S1 EW data with the ASCAT
measurements from 2015 to 2018.

All 11,431 S1 EW scenes are sampled to different cells with
sizes from 200 m to 6 km, and the corresponding derived
radiometric resolution (using (2)) is shown in Fig. 2. The
radiometric resolution decreases as the cell size increases.
However, we also expect to retrieve the SSW from SAR with
high spatial resolution (i.e., using a small cell size for retrievals).
The absolute calibration accuracy of the S1 data is 0.43 dB [21].
For a cell size of 2 km by 2 km, the mean value of radiometric
resolution is 0.37 dB and the standard deviation is 0.08 dB,
which is generally lower than the absolute calibration accuracy
of the S1 data. Therefore, to balance the trade-off of radiometric
resolution and spatial resolution of the retrieved SSW, we chose
a cell size of 2 km by 2 km for retrieval.
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Fig. 2 The radiometric resolution calculated using different cell sizes of the S1
EW data in HH polarization.

As some S1 EW data acquired with a mixture of sea ice and
open water, the ice-covered subscenes are filtered out using the
ice mapping system (IMS) reanalysis data [22] We checked
these data in another study of sea ice detection based on the S1
EW data [23], and they generally show consistency with visual
inspection of sea ice cover.

Further, the open water subscenes are screened out using a
homogeneity factor, which has been widely applied for
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screening SAR data [24] - [26] that contain features making sea
surface inhomogeneous, e.g., targets, dark patterns (oil,
upwelling, etc.) as well as sea ice. The two steps of
preprocessing ensure that the remaining SAR subscenes are
suitable for retrieval of SSW. Finally, there are a total of
1,740,509 collocation data pairs were obtained.

B. In situ buoy data

In the present study, 289 scenes of S1 imagery acquired in
EW and interferometric wide-swath (IW) modes in HH
polarization from October 2014 to October 2019 were collected
and matched with data from National Data Buoy Center (NDBC)
buoys, yielding a total of 305 data pairs. The ten-minute sea
wind measurements of the buoys are used in the following
analysis. As the S1 data in VV polarization are generally
acquired over buoys, there are not as many data in HH
polarization available over the NDBC buoys.

C. Setup and training of the BP neural network

The well-studied GMF presented in (1) suggests that the
retrieval of SSW from radar NRCS is a nonlinear relationship.
Although the BP neural network is a traditional machine
learning algorithm proposed a few decades ago [27], it is a basis
of modern neural networks in machine learning and is good at
fitting such nonlinear curves.

In the study, the designed BP network consists of an input
layer, an output layer and three hidden layers, as illustrated in
Fig. 3. The numbers of nodes of the three hidden layers are 6,
10, and 8, respectively. Each neuron connects with all the
neurons in the next layer, but there is no connection between
neurons in the same layer.

Hidden
layer 2

Hidden
layer 3

Input Hidden

TF:tansig TF:purelin

Fig. 3. The structure of the BP neural network developed to retrieve ssws from
the S1 data.

Based on the expression of the general GMF (referring to
(1)), there are four nodes in the input layer of the BP neural
network in this study, oyy, cos(¢), cos(2¢), and 6.The output
layer node of the network has only one value of SSW speed
(denoted ssws hereafter). The transfer function (abbreviated
‘TF” in Fig.3) of the hidden layer is “zansig” (tangent S-type
transfer function), which can converge quickly. The output

d0i:10.20944/preprints202005.0300.v1

layer transfer function is “purelin” (linear transfer function),
which can make the network output arbitrary values. The
training function is “traindx” (momentum BP algorithm with a
variable learning rate), which has the fastest convergence speed
for a medium-scale BP network. The learning function of the
network is “learngdm” (gradient descent momentum learning
function), which is used to calculate the change rate of weights
and thresholds. The performance function of the network is the
mean square error (MSE), which is a fast way to measure the
"average error".

Because of the difference in the magnitude range of the
onn, €os(@),cos(2¢) , and 6 values, either the network will
not converge or the convergence speed will be very slow.
Therefore, before training the network, the input values of
onm, €0s(p) , cos(2¢) ,and 6 and the output value of ssws of
the model are normalized, as shown in (4):

x. —_— x .
Xl — L min ( 4)

Xmax ~ Xmin

where x; is the input or output data, x,,, and xp,;, are the
maximum and minimum values, respectively, of the input or
output data, and X; is the normalized input or output. After
normalizing the data, we can train the network using the
designed neural network model. Notably, the retrieved SSWS
needs to be anti-normalized after training.

Fig. 4 shows the histograms of collocated wind speeds and
wind directions. The distribution of collocated wind directions
is generally regular over 360 degrees, indicating they can cover
various conditions from crosswind to upwind, which yield the
lowest and highest radar backscatter of SAR, respectively.
However, the distribution of wind speed is close to Rayleigh
distribution, in which the cases of high wind speed (e.g., higher
than 15 m/s) are greatly reduced. Such an unbalanced training
dataset can have a significant impact on the training of the BP
network. The training of a BP network ends according to
whether the overall bias between the output and the true values
is less than a set threshold. Therefore, using less training data
with high wind speeds means that such data are taken into
account less by the BP network when it tries to fit a nonlinear
relationship among oyy, cos(¢), cos(2¢),0 and ssws; The
majority of the training data are between 2 m/s and 15 m/s.

We used a somewhat “tricky” method to solve this problem.
We first randomly chose 80% data of the data with wind speeds
lower than 4 m/s, 40% of the data with wind speeds between 4
m/s and 15 m/s, and 80% of the data with wind speeds higher
than 15 m/s, which yielded a “pool” of training dataset (822,949
data pairs), denoted Datarr. Then, we arbitrarily adjusted
these data by duplicating cases in high wind and discarding
cases in low to moderate winds, whose histogram roughly fits a
normal distribution, as shown by the dark gray bars in Fig. 4(a).
They resulted in another training dataset (762,350 data pairs),
denoted Datarg normar-

The training of the neural network is terminated when it
meets the requirements of MSE less than 0.001 or training times
of 50,000 iterations.
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Fig. 4. Histograms of the S1 SAR collocated sea surface wind speed (a) and wind direction (b). The dark gray bars present the distribution of the data (i.e. the

Datayg yormar described in main text) used for training the BP neural network.

III. RESULTS AND ANALYSIS

In this section, we first present verification of the trained
network using both the training and testing datasets.
Comparisons of the SAR retrieved ssws with in situ buoy data
and the measurements from the icebreaker “XueLong” during
its Arctic surveys in the summer season of 2017 - 2019 are also
conducted.

A. Verification of the training BP network for ssws retrieval

Fig. 5 shows the comparisons between the retrieved ssws and
the collocated ASCAT wind speed based on the training and
testing datasets.

Fig. 5 (a): Verification of the training result of the trial using
the Datarg directly for training the neural network. The
training yields a zero bias. However, the saturation of SAR
retrieved ssws at approximately 24 m/s is distinctive, which we
have known in the previous studies on SSW retrieval from SAR
data on co-polarization using the GMF. Even using all the high
wind cases in the collocated data pairs, the saturation problem
cannot be solved.

Fig. 5(b): Verification of the training result of another trial
using Datarg norma for training the neural network. Although
the RMSE increases slightly from 1.17 m/s to 1.45 m/s, the S.I.
reduces significantly to less than 10%, which is a good
indication of data concentration. More importantly, the bias
shows very limited dependence on ssws, and the saturation
does not appear, at least up to the highest ssws of the collocated
data pairs, approximately 32 m/s.

Fig. 5(c): Using the same neural network result of (b) but
excluding the duplicated cases of the Datarg norma from
verification. The most distinct change in comparing (c) to (b) is
that the bias increases from zero to 0.23 m/s. This is not
surprising, as one can see that the amount of data pairs in (c) is
only approximately 55% of that in (d), while the training of the
neural network seeks an overall minimum bias.

Fig. 5(d): Verification of the neural network result achieved
in (b) by using the testing data, which consists of two parts: the

collocated data that are not selected for the dataset Data,g and
the collocated data that belong to Datarg but not belong to
Datarg normai- Noting that remaining data that are not used for
training the neural network are not regular in terms of their wind
speed ranges; therefore, the data density in (d) does not change
continuously. Comparing the verifications using the testing data
and training data (Fig. 5(b)), the bias increases to 0.23 m/s,
which indicates that the overall SAR retrievals are higher than
the ASCAT wind speeds, whereas the RMSE reduces slightly
to 1.25 m/s from 1.41 m/s. On the other hand, the verification
using the testing dataset shows the bias in different wind speed
ranges remains stable and saturation is not observed.

The trained neural network (Fig. 5(b)) is consequently used
to retrieve ssws from the S1 HH-polarized data, and the
retrieval is further validated by comparing it with in situ
measurements.

B. Comparison of the SAR-retrieved ssws with in situ
measurements

The diagram shown in Fig. 6(a) is the comparison of the
retrieved ssws based on the BP neural network described
above with the NDBC buoy measurements. All the anemometer
measurements of wind speed (U,,) at different heights (Z,,)
above the sea surface are adjusted to that (U,o) at the 10 m
height (Z) using (4), assuming conditions of neutral wind [28].

Uso In(Z/Z,)

Uy 10Zn/Zo) ®)

where Z,, is the roughness length has a value of 1.52 x 1074,

The comparison with buoy measurements has a bias of 0.12
m/s and an RMSE of 1.42 m/s. A recent study [29]shows that
the retrieval of ssws by S1 HH-polarized data using the
CMODH [12] has a bias of 0.49 m/s and an RMSE of 2.05 m/s
compared with buoy measurements. This suggests that the
proposed machine learning-type retrieval method can also yield
accurate estimates of ssws but avoids the complicatedly tuning


https://doi.org/10.20944/preprints202005.0300.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 May 2020

of coefficients in the CMOD functions.

Furthermore, we compared the ssws retrieved from S1 HH-
polarized data with the in situ measurements conducted by the
XueLong icebreaker in its three times (2017, 2018, and 2019)
surveys in the Arctic. Although only 23 data pairs were
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collocated, the valuable data are worth of examining. The bias
is slightly high of -0.45 m/s, while the RMSE of 1.46 m/s is
close to the result achieved in the comparison with NDBC buoy
data.

32 T I T | T I T T T T I T J_/

| Correlation: 0.98 p

0.00 m/s S
1.41 m/s -

933% o,

I~ Bias:
28 |_RMSE:
Scatter Index:

| Entries: 762350
24 —

20

S1 Retrieved sea surface wind speed using NN (m/s)

1 25 - 150 300 500 700 1000 20002000+~
T I EI I B
12 16 20 24 28 32
Collocated ASCAT sea surface wind speed (m/s)

(b)

L L UL L B B L R C/
32 Correlation:  0.94 /J_
L pises .
Bias: 0.23 m/s . v
28 _RMSE: 1.25m/s .o E-'/ |

Scatter Index: 15.79% % st pral
. . —t

| Entries: 1319321

24

20

16

12

S1 Retrieved sea surface wind speed using NN (m/s)

25 150 300 500 700 1000 20002000+

gl . A I
0 4 8 12 16 20 24 28 32

Collocated ASCAT sea surface wind speed (m/s)
(d)

Fig.5 Comparison of the S1-retrieved ssws with the collocated ASCAT using different training datasets (a) — (c) and the testing dataset (d). Referring to the main

text for detailed explanations.
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Fig.6 Comparisons of the S1-retrieved ssws using the developed BP neural network with the NDBC buoy measurements (a) and with the in situ measurements

acquired by the XueLong ice breaker during her Arctic survey (b).

C. Uncertainty of ssws retrieval using the external ERA-5
wind direction

To produce a dataset of S1-derived SSW in the Arctic MIZ,
we have to use a reanalysis SSW direction as an external input
to the neural network, because it is uniform at both spatial and
temporal scales. However, the reanalysis wind data may have
biases, which can induce uncertainty in the ssws retrieval. The
SSW direction of the reanalysis model data is calculated based
on its u and v components of the wind field. It is characterized
that the ERA-5 has a zonal wind bias of approximately -0.1 m/s
and meridional bias of approximately 0.25 m/s in high latitude
region of 70°N [30]. As the detailed values of biases are not
listed in [30], both numbers are roughly estimated based on Fig.
3 and Fig. 4 in that work. We used the ERA-5 wind direction
data (with a grid size of 0.25° and available by each hour) as
the input to the trained BP network, and the retrieval is applied
to the 11,431 scenes. The results are denoted ssws;. By adding
the zonal (u component) and meridional (v component) wind
bias of the ERAS5 data to the original dataset and applying the
same retrieval procedure, we obtained the ssws,.Variations in
Assws = |ssw; — ssw,| with sea surface wind speed and
azimuthal wind direction are shown in Fig. 7(a) and (b),
respectively.

Assws shows an overall increasing trend with wind speed.
For an ssws lower than approximately 19 m/s, the increasing
trend is slight, and the mean Assws is smaller than 0.20 m/s
with the maximum standard deviation is of 0.25 m/s. When the
ssws is high (i.e., higher than 20 m/s), the trend increases
rapidly, and the largest mean Assws reaches 0.38 m/s at a wind
speed of 27 m/s. The reason for the decreased Assws (in terms
of both mean and standard deviation values) for a wind speed
of 29 m/s is not clear. The number of collocated data in this bin
is 4,185, which is comparable to that of neighbor bins, e.g.,
there are 6,359 and 6,727 in the bins of 25 m/s and 27 m/s,
respectively.

The wvariation in Assws along with the azimuth wind

direction (Fig. 7(b)) shows a periodic fluctuations, following a
combination of sine and cosine functions of the azimuth wind
angles. Under various wind direction conditions, the Assws is
generally lower than 0.15 m/s.
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speed and azimuth wind direction.
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D. Discrepancy in ssws retrieval from SIA and S1B data

The twins S1A and S1B are identical sensors, but their
radiometric calibration accuracy has discrepancies. Both
sensors’ radiometric calibrations are verified independently.
Based on point target measurements, the study in [21] shows
that the overall absolute radiometric calibration accuracy of
S1A co-polarization data for the Stripmap (SM), IW, and EW
modes is of 0.43 dB (1o). Another study on the independent
verification of S1B calibration [31] suggests that the absolute
radiometric calibration accuracy of the S1B co-polarization
data in EW mode (based on the second and third beams of the
five swath beams) is 0.30 dB. This implies that the twin sensors
do have some discrepancy in their radiometric calibration,
although the difference is only approximately 0.13 dB.
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Fig.8 Comparisons of the SAR retrieved ssws and the collocated ASCAT wind
speed based on the S1A (a) and S1B(b) data.

Fig.8 shows comparisons of the S1 A and S1B retrieved ssws
with the collocated ASCAT wind speed. We did not
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discriminate between training and testing data in the
comparison. The number of the S1A collocations with the
ASCAT data is approximately 4 times that of S1B collocations.
In fact, the discrepancy between the ssws retrievals by the two
sensors is almost negligible. The correlation and S.I. of the two
comparisons are identical. The bias suggests that the S1B
retrieved ssws is closer to the ASCAT ssws than that from the
S1A (0.17 m/s versus 0.24 m/s), while the RMSE values of 1.37
m/s versus 1.26 m/s suggest that the S1A retrievals have better
agreement with the ASCAT data than the S1B retrievals.

IV. DISCUSSION

The BP neural network is the basis of a few machine learning
models, which is a good candidate for fitting nonlinear relations,
making it suitable for deriving some geophysical parameters
from satellite data. With respect to retrieving ssws by
spaceborne SAR data using a neural network, there are
generally three sources of uncertainties.

First, there is uncertainty about which inputs are used. For
instance, in a previous study [24] the authors used inputs
including radar backscatter of SAR alone and both radar
backscatter and the collocated scatterometer wind direction.
The retrieval results were significantly improved when the wind
direction data were used as the input to the neural network
(though the expression for inputting the wind direction is
unclear). Thanks to long-term investigations on SSW retrieval
by scatterometer and SAR, various GMFs have been proposed
and the mathematical relationship (which may also be called
physical) between radar backscatter and sea surface wind field
is clear. Therefore, we decided to use four parameters oyy,
cos(¢), cos(2¢), and 6 as inputs to the network. In our
experiments, it was found that the training of the BP neural
network rapidly reaches convergency, which can be partially
attributed to using appropriate input parameters.

Second, determining the structure of the neural network is a
challenge. Although it is well known that the BP neural network
has three layers, the difficulty is the design of the number of
hidden layers and neurons. We had no better choice than to test
various combinations (e.g., the number of hidden layers was
increased from 2 to 3, and then to 4) until the retrieval results
(output) showed the best agreement with the collocated ASCAT
wind speed which was based on the statistical parameters of
bias and RMSE. We eventually determined the current structure
of the BP neural network for ssws retrieval from S1 HH-
polarized data. Nevertheless, designing the neural network to
achieve the desired goals was difficult.

Last, the distribution of ssws is naturally unbalanced, and
this problem cannot be fully solved by simply expanding the
training dataset. In fact, our collocations of more than 1.7
million are enough to represent various SSW conditions (e.g.,
as shown in Fig. 4) and we also tried various combinations of
data in different wind speed ranges to consist of the training
dataset. Once there is a large enough number of training data,
the performance of the neural network becomes stable, and the
results are generally unchanged even when more training data
are added to the network (which may also induce overfitting).
In the case of ssws retrieval by spaceborne SAR, although the
overall bias of zero is very good, it shows a clear dependence
on wind speed, i.e., the underestimation trend becomes more
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distinct with wind speed increasing. Compared with the fraction
of low to moderate wind speed cases of the entire dataset, high
wind speed cases (ssws larger than 15 m/s) are rare. These rare
cases are often neglected by the neural network as “noise”, as
the training process is terminated based on the overall minimum
bias. By duplicating the high wind cases in the training dataset,
we arbitrarily enhanced their weights in the neural network. The
retrieval results based on both training and testing datasets
suggest that this method can partially solve the problem of
underestimation of ssws.

Although the twins S1A and S1B have some discrepancies in
their radiometric calibration, our analysis by comparing their
respective retrievals suggests the discrepancy in retrievals is
negligible. Since the S1 Instrument Processing Facility (IPF)
version 2.90 (available from March 2018; referring to
https://qc.sentinell.eo.esa.int/ipf/), the noise vectors in both the
range and azimuth directions have been provided in the EW
mode data. Prior to the IPF version 2.90, only the noise vectors
in the range direction were available in the EW data. This
improvement in noise estimation may lead to a more accurate
calibration of the EW mode data. However, we did not treat the
EW mode data acquired before and after March 2018 separately
in the development of the neural network. We found this
improvement (providing noise vectors in the azimuth direction)
in the noise estimation has a significant effect on the cross-
polarization data in EW mode [32], e.g., by reducing the
scalloping effect in the azimuth direction. Nevertheless, along
with more S1 EW data are being acquired, one may separate the
two sensors’ data to develop their respective neural networks
and compare the weights and biases of each neuron to figure out
the discrepancy in their retrievals of ssws.

Thus far, we have used the IMS sea ice cover data to mask
the sea ice cover. Notably, that the IMS data are daily available,
which is based on multi-sensor observations within one day,
while SAR observations are a snapshot. Therefore, the sea ice
cover observed by spaceborne SAR has discrepancies with the
IMS data, because sea ice drifts. Fig. 9 shows a such case.

3
Sea Surface Wind Speed (m/s)

Fig.9. A case of S1 EW data acquired over the Barents Sea to demonstrate the
combination of sea ice cover detection and SSW retrieval. (a) is a false-color
composite image based on the HV and HH-polarized images (refer to the main
text for details). (b) shows the discrimination of sea ice cover (yellow) and open
water (purple) based on the EW data and (c) is the SSW map of the case, where
the gray tone represents sea ice cover from the IMS data (note its discrepancy
with the result in (b)). The color of the background is the retrieved ssws using
the developed BP neural network. The ERA-5 reanalysis wind field (colored
arrows) in synoptic time is superimposed on the plot for comparison. The ERA-
5 wind direction data are used as input to the BP neural network. The Image ID

of this case is
S1A_EW_GRDM_1SDH 20180404T034739 20180404T034839 021312 0
24AC5_AS80C.

The S1 EW mode data were acquired in April 2018 over the
Barents Sea. Fig. 9 (a) shows its false-color composite image
based on three channels of HV (red), the difference between HV
and HH (green) and the ratio of HV and HH (blue). Note that
HV-polarized data of the EW mode over sea ice and open water
areas are significantly disturbed by noise, and they should be
denoised [32]. Based on the information in the three channels,
we developed a deep-learning method (U-net) for
discriminating sea ice cover and open water regions, as shown
in Fig. 9(b), in which yellow represents sea ice cover with a
spatial resolution of 200 m. While the algorithm is being tested
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and adjusted for a large dataset of the S1 data acquired in the
Arctic to achieve accurate results of sea ice cover, we currently
used the IMS data to mask sea ice cover and conduct ssws
retrieval based on the developed BP neural network, as shown
in Fig. 9(c), in which the gray tone represents the sea ice cover
from the IMS data. Comparing (c) with (b), one can observe
that the IMS sea ice cover is larger than the SAR observation,
which is reasonable, as sea ice drifts, and is particularly distinct
in the MIZ. If open water areas are marked as sea ice cover,
then we lose some information on SSW, as these areas are not
used for retrieval. For areas that are sea ice cover as observed
by SAR but they are not masked by the IMS (either due to the
uncertainty of the IMS data or due to sea ice drifting over time),
the following processing step of homogeneity test after sea ice
masking can further discard these areas and avoid biased
retrieval.

V. CONCLUSION

With the rapid retreat of sea ice in the Arctic, the MIZ is
drawing more attention, as the interaction between sea ice and
ocean dynamics is significant and may have feedback affecting
seasonal sea ice retreat in the Arctic. Therefore, SSW data with
high spatial resolution are highly desirable because of the lack
of currently available ice and ocean remote sensing information
from space for polar regions.

In this study, we presented a method of retrieving ssws from
S1 EW data in HH polarization based on a BP neural network.
Unlike over other sea areas where most acquisitions of the EW
data are in the combination of VV and vertical-horizontal (VH)
polarizations, the EW data acquired in the Arctic are
combinations of HH and HV polarizations for intensive
monitoring of sea ice.

Based on the rather well-developed GMFs for retrieving
SSW by spaceborne SAR data, we determined four parameters
the radar backscatter ojy,, the sea surface wind direction in
terms of cos(¢p) and cos(2¢), and the incidence angle 6 to use
as inputs to the neural network. The structure of the neural
network was determined based on various trials. We duplicated
the high wind cases in the training dataset to increase their
influence on the network performance, which partially solved
the problems of underestimating ssws for wind speeds above
approximately 16 m/s. Comparison of the retrieved ssws by the
testing dataset (1,319,321 data pairs) with the collocated
ASCAT wind speed yields a bias of 0.23 m/s and an RMSE of
1.25 m/s. Although the overall bias suggesting an
overestimation than the ASCAT wind speeds, the stepwise
comparison (indicated by the error bars in Fig. 5(d)) suggests
the bias has a limited dependence on wind speeds. Moreover,
the saturation of SSW retrieval generally found in SAR co-
polarization data using GMFs is not distinct in the retrievals (up
to ssws of approximately 30 m/s) using the BP neural network.

We further compared the Sl-derived ssws with the
independent NDBC buoy measurements, in which a bias of 0.12
m/s and an RMSE of 1.42 m/s were obtained. Although data
pairs of S1 collocated with the measurements of the XueLong
icebreaker acquired in the Arctic surveys are limited, the
comparison shows a similar RMSE value to that of the
comparison with the NDBC buoy measurements.
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As our next step is to produce a sea surface wind field
product based on the SI data acquired in the Arctic since its
launch, and we have to use a reanalysis model wind direction
data (which has uniform outputs in both space and time) as
input to the developed BP neural network, we therefore
preliminarily analyzed the effect of the bias of the ERA-5
reanalysis wind model on the retrieval of the S1 ssws. Up to 19
m/s of ssws, the induced absolute error of retrieval is less than
0.25 m/s. Along with the increase in wind speed, the increasing
trend of the absolute error is obvious and can reach 0.38 m/s for
the ssws of 27 m/s. Interestingly, it is found that the induced
absolute error has a periodic variation in azimuthal wind
direction, roughly follows a combination of sine and cosine
functions.

The discrepancy in respective ssws retrieval by S1A and
S1B is almost negligible, which may be partially because that
their collocations with ASCAT were combined in training the
BP neural network. A separate training can probably avoid
differing performance in the ssws retrievals due to their
discrepancy in radiometric calibration accuracy. Along with
developing a robust method of discriminating sea ice and open
water from S1 EW data, we will combine this method with SSW
retrievals to obtain synergistic information on sea ice and ocean
dynamic parameters in the MIZ of the Arctic.

APPENDIX

In the following, the processing steps for retrieving ssws
from the S1 EW data using the developed BP neural network
are provided. The MATLAB functions used are written in bold
and italic.

Step 1: Reading the S1 data and conducting radiometric
calibration

The digital number (DN) values (DN;) of the S1 data are read
from the Geotiff data and the calibration vector (A;), noise
vector (n,), latitude matrix (lat), longitude matrix (lon),
incidence angle matrix (inc) and look angle (look_angle) are
read from the annotation files (.XML).

The S1 data are radiometrically calibrated using the
following equation:

DNIZ - N
Az

1

oa() = (A1)

At the same time, the matrices of o0y, lat, lon and inc are
interpolated to grids, where each grid has a size of 2 km by 2
km.

Step 2: Masking and homogeneity test

We use the Global Self-consistent, Hierarchical, High-
resolution Geography Database (GSHHG) coastal line data [33]
to mask the land area in the S1 images. Then, the IMS data are
used to mask the sea ice cover. As mentioned in the main text,
there are discrepancies in sea ice cover between SAR
observations and IMS data. On the other hand, there may exist
other features that disturb the sea surface and make the data
unsuitable for SSW retrieval, we use the homogeneity factor
[25] to exclude these grids from retrievals. The factor is defined
as:
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We further divide each SAR subimage (2 km % 2 km) into
2x2 subgrids to calculate the homogeneity factor, i.e. N = 2 in
(A2) and (A3). The image power spectrum ® of each subgrid
is estimated by FFT. The S1 subimage with a homogeneity
factor < 1.05 is used for ssws retrieval. However, as this
threshold is determined based on empirical experience (visual
inspections), we have found that some retrievals are acceptable
when their homogeneity factors are between 1.05 and 1.50.
Therefore, the ssws retrievals from the sub-images which have
the homogeneity factor in this range ([1.05, 1.5]) are defined as
“suspecting” results in the NetCDF product.

Step 3: Matching S1 data with the ERA-5 reanalysis wind
model data

Following the preprocessing in the above two steps, each S1
subimage is temporally and spatially matched with the ERA-5
reanalysis wind data.

As the ERA-5 reanalysis wind model data is available each
hour, the temporal difference between the S1 observation and
the model is no larger than 30 minutes. With respect to temporal
collocation, the u and v components of the ERA-5 wind data at
the four (model) grids nearest to the S1 subimage are bilinearly
interpolated to the location of the subimage. Based on the u and
v components, one can derive wind direction and the
consequent azimuthal wind direction ¢ by taking into account
the SAR looking angle.

After matching the S1 observations with the ERA-5
reanalysis wind data, each S1 subimage has four inputs
available, i.e. a2y, 8, cos(¢) and cos(2¢) for the trained BP
neural network, which compose an array in MATLAB:

Arrayinput = [O-IgH cos(¢) cos(2¢) 0]

Step 4: Retrieval of ssws using the BP neural network

We applied the MATLAB function mapminmax to scale the
input to the range [—1,1]:

ATTAYinput_norm = mapminmax(Arrayinput) (A4)
Then, we applied the MATLAB function sim to retrieve the
SSWS:
SSWSnorm = SIM(BPrpet, ATTAY input,orm) (A5)
The output of the neural network ssws,,,,,, is a normalized

retrieved sea surface wind speed and needs to be anti-
normalized to obtain the true wind speed. We set the min and
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max values of normalizing the sea surface wind speed to be 0
and 30. Note that setting of the maximum value of 30 m/s to
normalize ssws does not limit the retrievals cannot be over 30
m/s as the network can output values of ssws,, -, larger than
1.0.

The weights and biases of the trained BP neural network are
stored in the matrix BP,,;, which are provided in the Table A1l.
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TABLE Al
THE WEIGHTS OF NEURONS CONNECTING THE INPUT LAYER (ROW) AND THE FIRST HIDDEN LAYER (COLUMN)
Neuron 1 Neuron 4
Neuron 1 1.35799401462446 -1.10259316914732 0.335981355623764 0.272512797610827
-2.36441248024990 1.03503460476278 0.543268223117868 -1.49702712335111
-2.28049553757969 -0.464650444976570 0.317823811389357 -1.21443905897947
-2.21693910117561 0.0383351731986321 0.282252861921783 -0.0613427064770843
... -0.270660648829750 1.41445838668801 0.668843417713446 0.496561569414443
Neuron 6 -1.60231069909676 -0.195465009443951 0.728880985579777 -1.10445019344022
THE WEIGHTS OF NEURONS CONNECTING THE FIRST HIDDEN LAYER (ROW) AND THE SECOND HIDDEN LAYER (COLUMN)
Neuron 1 Neuron 6
Neuron 1 1.1397920256150 1.89661266986153 -1.283773847885 0.085187536483929  -0.063459295262 -1.162136873516
-0.198358601266 1.36394018568907 1.57253186821047 -1.148018805309 0.231112562654413  0.645796503500879
-0.678142348763 -0.199461939342 1.01869958730975 1.46781374438703 -0.041822043747 -0.712885953434
0.1910453831996 1.14768330387281 0.498706446019045 0.452359997020326 1.19089307746359 -1.355978406219
0.3849750801359 -1.177105608704 1.54472685609111 0.632812104673446  0.100762037819503  0.704017088900113
0.5032146711624 -0.899832114283 1.03126116077854 -0.687996417608 0.578206049832177  0.009656430341968
1.0820875254610 0.627483501361421 1.97723402406411 0.885647029665893  -0.532557259337 -0.639919305010
0.5979511985770 1.24509069053319 0.415655062240200  -0.489321038622 0.912386007906291 -1.036934496026
0.6169216114075 -0.588978212579 2.32443511996747 -0.338686199388 -0.752987408030 -0.453853733339
Neuron 10 0.3488855414082 0.000244118790022  0.700448757317926  -2.273538016844 0.201986903576005  0.869807053825020
THE WEIGHTS OF NEURONS CONNECTING THE SECOND HIDDEN LAYER (ROW) AND THE THIRD HIDDEN LAYER (COLUMN)
Neuron 1 Neuron 10
Neuron 1 1.0387134  -1.286728 -0.392615 -0.918542 0.2233739  -0.324166 -0.166188 0.4237303 1.0779886  0.7406658
6707379 76290900 921447484 209953449 33854063 732629374 842209020 02842222 7366136 35665252
-1.006663 0.0788090  -0.034908 -1.281439 -0.658215 -0.770763 0.0736626  0.1961303 -0.242265 1.1262639
78061236 379982044 183036705 44528808 248375978 163056224 773265441 52054691 264811827 6208120
0.3520905 -1.105574 -0.393935 -1.407932 1.1447989  0.2425887 -2.848675 0.7604654  -1.045264 1.8286696
41064823 73139957 445745547 33049740 7459074 48827192 53200052 95635649 00804428 3454512
-1.251848 -0.002921 0.7935489  -0.413759 -0.386891 0.1837802 0.6056033 -0.445297 -0.558112 0.2419876
34604807 328603112 42102038 943228806 235719630 50647745 88328891 473437239 568469832 49922061
-1.005888 -1.275323 0.3562453 -0.255098 0.2359288 -0.120358 -0.973247 -0.677960 -0.347725 -1.003807
44808547 39992951 60443631 835380100 47743238 788060656 795963073 006377093 829272019 01043712
-1.482462 1.6969135 -0.045767 -1.034607 -0.897943 -0.533440 0.4041267 0.0337563 -0.026170 -0.510112
74565115 7574192 538939816 07870829 172841501 548692554 14539928 000929784 987394873 218260637
-1.444093 -0.036753 -0.036414 -0.602262 0.1857092 0.5960770  -0.741236 -0.033596 1.4159200  0.2496935
74386379 118357037 262633473 857817669 87142008 15455694 406603249 430450842 4992181 39119471
Neuron 8  -0.656092 -0.731203 0.1285923 0.4586477 1.4556264  -0.465070 -0.225582 0.4680555 0.7984297  0.6877344
230151342 026026613 07275371 46149548 7650427 471822353 844718152 22497490 73320449 03258738
THE WEIGHTS OF NEURONS CONNECTING THE THIRD HIDDEN LAYER (ROW) AND THE OUTPUT LAYER (COLUMN)
Neuron 1 Neuron 8
Neuron 1 0.4029406987 1.0722908532 1.8064761705  -0.514197995 0.3036328792 -0.974434882 0.7779415527  -1.026315289
THE BIAS OF NEURONS IN THE FIRST HIDDEN LAYER
Neuron 1 Neuron 6
-2.20530861321237 1.70505319262913 1.40897518132112 1.53185999556214 -0.892858805540525 -1.28878524037813
THE BIAS OF NEURONS IN THE SECOND HIDDEN LAYER
Neuron 1 Neuron 10
-1.6383213 -1.5810461 0.78122489 -0.6796223  0.15719104 0.70699193 0.50946988 1.40529511 1.80579509 2.31071207
9090154 7255786 0952619 20647683 5400725 8763485 4095470 309813 259162 212034
THE BIAS OF NEURONS IN THE THIRD HIDDEN LAYER
Neuron 1 Neuron 8§
-1.53076034415  1.308441784515 -1.06924300491  0.225317438845  -0.14620232293  -0.72731241228  -0.75848764460  -2.05859481314
164 66 170 222 6459 6867 7696 414

THE BIAS OF NEURONS IN THE OUTPUT LAYER

Neuron 1
0.577119828493821
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