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 
Abstract—In this paper, we presented a method of retrieving sea 

surface wind speed from Sentinel-1 synthetic aperture radar (SAR) 
horizontal-horizontal (HH) polarization data in extra-wide mode, 
which have been extensively acquired over the Arctic for sea ice 
monitoring. In contrast to the conventional algorithm, i.e., using a 
geophysical model function (GMF) to retrieve sea surface wind by 
spaceborne SAR, we introduced an alternative method based on 
physical model guided neural network. Parameters of SAR 
normalized radar cross section, incidence angle, and wind 
direction are used as the inputs of the backward propagation (BP) 
neural network, and the output is the sea surface wind speed. The 
network is developed based on more than 11,000 HH-polarized 
EW images acquired in the marginal ice zone (MIZ) of the Arctic 
and their collocations with scatterometer measurements. 
Verification of the neural network based on the testing dataset 
yields a bias of 0.23 m/s and a root mean square error (RMSE) of 
1.25 m/s compared to the scatterometer wind speed. Further 
comparison of the SAR retrieved sea surface wind speed with 
independent buoy measurements shows a bias and RMSE of 0.12 
m/s and 1.42 m/s, respectively. We also analyzed the uncertainty 
of retrieval when the wind direction data of a reanalysis model are 
used as inputs to the neural network. By combining the detected 
sea ice cover information based on the EW data, one can expect to 
derive simultaneously sea ice and marine-meteorological 
parameters by spaceborne SAR in a high spatial resolution in the 
Arctic.  
 

Index Terms—Synthetic Aperture Radar, sea surface wind, 
machine learning 

I. INTRODUCTION 

ETRIEVAL of sea surface wind (SSW) by spaceborne 
synthetic aperture radar (SAR) has been studied for a few 
decades. The general retrieval method adopts the 

geophysical model function (GMF), which was designed for a 
microwave scatterometer to retrieve SSW field. The GMFs 
generally have the following format: 
𝜎଴ ൌ 𝑎଴ሺ𝜃, 𝑢ଵ଴ሻሾ1 ൅ 𝑎ଵሺ𝜃, 𝑢ଵ଴ሻ cos 𝜙 ൅ 𝑎ଶሺ𝜃, 𝑢ଵ଴ሻ cos 2𝜙ሿ௣ 

(1) 
The GMF empirically relates the normalized radar cross section 
(NRCS, 𝜎଴) with SSW speed 𝑢ଵ଴, azimuthal wind direction 𝜙 
and incidence angle θ through various linear or nonlinear 
functions of 𝑎଴, 𝑎ଵ and 𝑎ଶ . Different GMFs for C-band radar 
data with vertical-vertical (VV) polarization have been 
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proposed and are widely exploited to acquire SSW at a high 
spatial resolution, e.g., from CMOD4, CMOD5, and 
CMOD5.N to the currently used CMOD7 [1] - [5], and 
CMOD_IFR2 [6].  On the other hand, as spaceborne SAR can 
also operate in horizontal-horizontal (HH) polarization, the so-
called polarization ratio (PR) should be used to transform the 
NRCS of HH-polarization to that of VV polarization and then 
the GMFs developed for VV polarization data can be applied to 
retrieve the SSW speed. However, the dependence of PR is not 
only on incidence angle [7] - [9] but also on SSW conditions 
[8],[10]. While PR depends on various factors, one can also 
develop independent GMFs for HH-polarized spaceborne SAR 
data, e.g., as proposed by Monaldo et al. [11] for the Radarsat 
data and by Zhang et al. [12] for ENVISAT/ASAR data in HH 
polarization. This should be an optimized method to retrieve 
SSW by spaceborne SAR in HH polarization, as the PR may 
depend on various factors through nonlinear relations.  
When spaceborne SAR operating in different microwave 
frequencies from C-band are in orbit, the functions in (1) must 
be refit to make them suitable for retrieving SSW, e.g., the 
LMOD [13] for the L-band ALOS/PALSAR and the XMOD 
[14] for the X-band TerraSAR-X and TanDEM-X. Although 
the format of (1) is compact, the functions 𝑎଴, 𝑎ଵ and 𝑎ଶ  are 
complicated; they often consist of sub-functions and generally, 
more than 30 coefficients need to be determined. Moreover, to 
our knowledge, the formats of these functions are empirically 
fitted to a large amount of tuning data. 
Both Sentinel-1A (S1A) and Sentinel-1B(S1B) have been in 
orbit since June 2016 and have acquired extensive the extra-
wide (EW) swath data with a polarization combination of HH 
and horizontal-vertical (HV) for sea ice monitoring in the Arctic. 
The marginal ice zone (MIZ) is generally defined as the transit 
area of sea ice and open water, where the sea ice concentration 
is between 15% and 80%. Along with the rapid decline of sea 
ice in the Arctic, its seasonal MIZ is widening [15], which leads 
to significant interaction between sea ice and ocean dynamics. 
Therefore, we intend to derive SSW at high spatial resolution 
from these EW data acquired in the Arctic, in combination with 
sea ice information for supporting scientific research, resource 
utilization and navigation safety.    
We preliminarily analyzed the combinations of CMOD5.N and 
different PR models for retrieving sea surface wind speed by 
the S1 HH-polarized data [16] acquired over MIZ of the Arctic. 

All the authors are with the Key Laboratory of Digital Earth, Aerospace 
Information Research Institution, Chinese Academy of Sciences, Beijing, 
100094, P. R. China (e-mail: lixm@radi.ac.cn).  

Retrieval of sea surface wind speed from 
spaceborne SAR over the Arctic marginal ice 

zone with a neural network 

Xiao-Ming Li, Member, IEEE, Tingting Qin and Ke Wu 

R 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 May 2020                   doi:10.20944/preprints202005.0300.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202005.0300.v1
http://creativecommons.org/licenses/by/4.0/


 

 

2

The comparisons suggest that the PR models developed in [8] 
and [10] have better performances on retrieving SSW speed. 
Machine learning algorithms have demonstrated their great 
potential for mining information from ocean remote sensing 
imagery (e.g., as reviewed in [17]), and they generally have a 
strong capability of fitting the nonlinear curves, e.g., the one 
depicted by (1). As described before, tuning the GMFs for 
spaceborne SAR data is a challenge because there are multiple 
non-linear functions and sub-functions that need to be 
empirically or statistically determined.  Therefore, in this paper, 
we present a method of retrieving SSW from S1 EW data in 
HH-polarization based on a neural network.  
Following the introduction, the methodology including the 
datasets and the construction of a backward propagation (BP) 
neural network, are described in Section II. We verified the 
trained BP neural network by comparing retrieval with the 
advanced scatterometer (ASCAT) data. Then we further 
validated the retrieval by comparing it with in situ buoy 
measurements and the measurements from the Chinese 
icebreaker “XueLong” in the Arctic. These comparisons are 
presented in Section III. A summary and conclusions are given 
in the last section.  

II. METHODOLOGY 

A. S1 data and their collocations with ASCAT data 

Both S1A and S1B EW mode data with a swath width of 400 
km in HH polarization are used in this study. The incidence 
angle of the EW data varies between 19° and 47°. Radiometric 
calibration and thermal noise removal of the EW data is 
conducted according to the S1 user manual [18]; referring to the 
appendix for details.  

The daily EUMETSAT ASCAT-A/B SSW data under all 
weather conditions with a spatial resolution of 0.25° by 0.25° 
were collected in this study. The S1 EW data were spatially and 
temporally collocated with ASCAT wind data with a spatial 
distance of less than 25 km and a temporal window of less than 
60 minutes, respectively, which yields a total of 11, 431 scenes 
of S1 EW imagery, among which 8,452 and 2,979 scenes were 
acquired by S1A and S1B, respectively, collocated with 
ASCAT measurements over the Arctic MIZ from 2015 to 2018. 
The spatial distribution of these collocations is shown in Fig.1. 
The majority of the collocations are in the Atlantic sector of the 
Arctic.  

 The unavoidable existence of speckles in SAR image makes 
it impossible to retrieve wind speed at the primary pixel 
resolution. Therefore, the numbers of pixels are averaged (to 
obtain a “cell”) to reduce speckles in the S1 data and are then 
used for retrieval of SSW. Generally, the larger the cell size is, 
the better its radiometric resolution γ  is, which is defined in (2).  

In this study, the radiometric resolution is used to describe 
the speckle “noise” [19]. 

 
γ ൌ 10logଵ଴൫1 ൅ 1 √ENL⁄ ൯ (2) 

 
where ENL is the equivalent number of looks, given as: 

ENL ൌ
ሺEሾPሿሻଶ

VARሾPሿ
  (3) 

where P is the intensity of pixels obtained from the image, 
and VAR and  E are the variance and mean of P, respectively 
[20].  

 

 
Fig.1. Spatial distribution of the collocations of S1 EW data with the ASCAT 
measurements from 2015 to 2018. 

 
All 11,431 S1 EW scenes are sampled to different cells with 

sizes from 200 m to 6 km, and the corresponding derived 
radiometric resolution (using (2)) is shown in Fig. 2. The 
radiometric resolution decreases as the cell size increases. 
However, we also expect to retrieve the SSW from SAR with 
high spatial resolution (i.e., using a small cell size for retrievals). 
The absolute calibration accuracy of the S1 data is 0.43 dB [21]. 
For a cell size of 2 km by 2 km, the mean value of radiometric 
resolution is 0.37 dB and the standard deviation is 0.08 dB, 
which is generally lower than the absolute calibration accuracy 
of the S1 data. Therefore, to balance the trade-off of radiometric 
resolution and spatial resolution of the retrieved SSW, we chose 
a cell size of 2 km by 2 km for retrieval.  

 

 
Fig. 2 The radiometric resolution calculated using different cell sizes of the S1 
EW data in HH polarization. 

 
As some S1 EW data acquired with a mixture of sea ice and 

open water, the ice-covered subscenes are filtered out using the 
ice mapping system (IMS) reanalysis data [22] We checked 
these data in another study of sea ice detection based on the S1 
EW data [23], and they generally show consistency with visual 
inspection of sea ice cover.  

Further, the open water subscenes are screened out using a 
homogeneity factor, which has been widely applied for 
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screening SAR data [24] - [26] that contain features making sea 
surface inhomogeneous, e.g., targets, dark patterns (oil, 
upwelling, etc.) as well as sea ice. The two steps of 
preprocessing ensure that the remaining SAR subscenes are 
suitable for retrieval of SSW. Finally, there are a total of 
1,740,509 collocation data pairs were obtained.  

B. In situ buoy data 

In the present study, 289 scenes of S1 imagery acquired in 
EW and interferometric wide-swath (IW) modes in HH 
polarization from October 2014 to October 2019 were collected 
and matched with data from National Data Buoy Center (NDBC) 
buoys, yielding a total of 305 data pairs. The ten-minute sea 
wind measurements of the buoys are used in the following 
analysis. As the S1 data in VV polarization are generally 
acquired over buoys, there are not as many data in HH 
polarization available over the NDBC buoys.  

C. Setup and training of the BP neural network 

The well-studied GMF presented in (1) suggests that the 
retrieval of SSW from radar NRCS is a nonlinear relationship. 
Although the BP neural network is a traditional machine 
learning algorithm proposed a few decades ago [27], it is a basis 
of modern neural networks in machine learning and is good at 
fitting such nonlinear curves.  

In the study, the designed BP network consists of an input 
layer, an output layer and three hidden layers, as illustrated in 
Fig. 3. The numbers of nodes of the three hidden layers are 6, 
10, and 8, respectively. Each neuron connects with all the 
neurons in the next layer, but there is no connection between 
neurons in the same layer.  

 
Fig. 3. The structure of the BP neural network developed to retrieve ssws from 
the S1 data.  

Based on the expression of the general GMF (referring to 
(1)), there are four nodes in the input layer of the BP neural 
network in this study, 𝜎ୌୌ, cosሺ𝜙ሻ , cosሺ2𝜙ሻ , and 𝜃.The output 
layer node of the network has only one value of SSW speed 
(denoted ssws hereafter). The transfer function (abbreviated 
‘TF’ in Fig.3) of the hidden layer is “tansig” (tangent S-type 
transfer function), which can converge quickly. The output 

layer transfer function is “purelin” (linear transfer function), 
which can make the network output arbitrary values. The 
training function is “traindx” (momentum BP algorithm with a 
variable learning rate), which has the fastest convergence speed 
for a medium-scale BP network. The learning function of the 
network is “learngdm” (gradient descent momentum learning 
function), which is used to calculate the change rate of weights 
and thresholds. The performance function of the network is the 
mean square error (MSE), which is a fast way to measure the 
"average error". 

Because of the difference in the magnitude range of the 
𝜎ୌୌ, cosሺ𝜙ሻ , cosሺ2𝜙ሻ , and 𝜃  values, either the network will 
not converge or the convergence speed will be very slow. 
Therefore, before training the network, the input values of 
𝜎ୌୌ, cosሺ𝜙ሻ , cosሺ2𝜙ሻ , and 𝜃 and the output value of ssws of 
the model are normalized, as shown in (4): 
 

𝑋௜ ൌ
𝑥௜ െ 𝑥୫୧୬

𝑥୫ୟ୶ െ 𝑥୫୧୬
 (4) 

 
where 𝑥௜  is the input or output data, 𝑥୫ୟ୶ and 𝑥୫୧୬ are the 

maximum and minimum values, respectively, of the input or 
output data, and 𝑋௜  is the normalized input or output. After 
normalizing the data, we can train the network using the 
designed neural network model. Notably, the retrieved 𝑆𝑆𝑊𝑆 
needs to be anti-normalized after training. 

Fig. 4 shows the histograms of collocated wind speeds and 
wind directions. The distribution of collocated wind directions 
is generally regular over 360 degrees, indicating they can cover 
various conditions from crosswind to upwind, which yield the 
lowest and highest radar backscatter of SAR, respectively. 
However, the distribution of wind speed is close to Rayleigh 
distribution, in which the cases of high wind speed (e.g., higher 
than 15 m/s) are greatly reduced. Such an unbalanced training 
dataset can have a significant impact on the training of the BP 
network. The training of a BP network ends according to 
whether the overall bias between the output and the true values 
is less than a set threshold. Therefore, using less training data 
with high wind speeds means that such data are taken into 
account less by the BP network when it tries to fit a nonlinear 
relationship among 𝜎ୌୌ, cosሺ𝜙ሻ , cosሺ2𝜙ሻ , 𝜃  and 𝑠𝑠𝑤𝑠 ; The 
majority of the training data are between 2 m/s and 15 m/s.  

We used a somewhat “tricky” method to solve this problem. 
We first randomly chose 80% data of the data  with wind speeds 
lower than 4 m/s, 40% of the data with wind speeds between 4 
m/s and 15 m/s, and 80% of the data with wind speeds higher 
than 15 m/s, which yielded a “pool” of training dataset (822,949 
data pairs), denoted 𝐷𝑎𝑡𝑎்ோ . Then, we arbitrarily adjusted 
these data by duplicating cases in high wind and discarding 
cases in low to moderate winds, whose histogram roughly fits a 
normal distribution, as shown by the dark gray bars in Fig. 4(a). 
They resulted in another training dataset (762,350 data pairs), 
denoted 𝐷𝑎𝑡𝑎்ோ_௡௢௥௠௔௟.  

The training of the neural network is terminated when it 
meets the requirements of MSE less than 0.001 or training times 
of 50,000 iterations. 
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(a) (b) 

Fig. 4. Histograms of the S1 SAR collocated sea surface wind speed (a) and wind direction (b). The dark gray bars present the distribution of the data (i.e. the 

𝐷𝑎𝑡𝑎்ோ_௡௢௥௠௔௟ described in main text) used for training the BP neural network. 

 

III. RESULTS AND ANALYSIS 

In this section, we first present verification of the trained 
network using both the training and testing datasets. 
Comparisons of the SAR retrieved ssws with in situ buoy data 
and the measurements from the icebreaker “XueLong” during 
its Arctic surveys in the summer season of 2017 - 2019 are also 
conducted.  

A. Verification of the training BP network for 𝑠𝑠𝑤𝑠 retrieval  

Fig. 5 shows the comparisons between the retrieved ssws and 
the collocated ASCAT wind speed based on the training and 
testing datasets.  

Fig. 5 (a): Verification of the training result of the trial using 
the 𝐷𝑎𝑡𝑎்ோ  directly for training the neural network. The 
training yields a zero bias. However, the saturation of SAR 
retrieved 𝑠𝑠𝑤𝑠 at approximately 24 m/s is distinctive, which we 
have known in the previous studies on SSW retrieval from SAR 
data on co-polarization using the GMF. Even using all the high 
wind cases in the collocated data pairs, the saturation problem 
cannot be solved.  

Fig. 5(b): Verification of the training result of another trial 
using 𝐷𝑎𝑡𝑎்ோ_௡௢௥௠௔௟ for training the neural network. Although 
the RMSE increases slightly from 1.17 m/s to 1.45 m/s, the S.I. 
reduces significantly to less than 10%, which is a good 
indication of data concentration. More importantly, the bias 
shows very limited dependence on 𝑠𝑠𝑤𝑠 , and the saturation 
does not appear, at least up to the highest 𝑠𝑠𝑤𝑠 of the collocated 
data pairs, approximately 32 m/s. 

 Fig. 5(c): Using the same neural network result of (b) but 
excluding the duplicated cases of the 𝐷𝑎𝑡𝑎்ோ_௡௢௥௠௔௟  from 
verification. The most distinct change in comparing (c) to (b) is 
that the bias increases from zero to 0.23 m/s. This is not 
surprising, as one can see that the amount of data pairs in (c) is 
only approximately 55% of that in (d), while the training of the 
neural network seeks an overall minimum bias.  

Fig. 5(d): Verification of the neural network result achieved 
in (b) by using the testing data, which consists of two parts: the 

collocated data that are not selected for the dataset 𝐷𝑎𝑡𝑎்ோ and 
the collocated data that belong to 𝐷𝑎𝑡𝑎்ோ  but not belong to  
𝐷𝑎𝑡𝑎்ோ_௡௢௥௠௔௟. Noting that remaining data that are not used for 
training the neural network are not regular in terms of their wind 
speed ranges; therefore, the data density in (d) does not change 
continuously. Comparing the verifications using the testing data 
and training data (Fig. 5(b)), the bias increases to 0.23 m/s, 
which indicates that the overall SAR retrievals are higher than 
the ASCAT wind speeds, whereas the RMSE reduces slightly 
to 1.25 m/s from 1.41 m/s. On the other hand, the verification 
using the testing dataset shows the bias in different wind speed 
ranges remains stable and saturation is not observed.  

The trained neural network (Fig. 5(b)) is consequently used 
to retrieve 𝑠𝑠𝑤𝑠  from the S1 HH-polarized data, and the 
retrieval is further validated by comparing it with in situ 
measurements.  

B. Comparison of the SAR-retrieved 𝑠𝑠𝑤𝑠  with in situ 
measurements 

The diagram shown in Fig. 6(a) is the comparison of the 
retrieved 𝑠𝑠𝑤𝑠  based on the BP neural network described 
above with the NDBC buoy measurements. All the anemometer 
measurements of wind speed (𝑈௠) at different heights (𝑍௠) 
above the sea surface are adjusted to that (𝑈ଵ଴) at the 10 m 
height (𝑍) using (4), assuming conditions of neutral wind [28]. 

 

𝑈ଵ଴

𝑈௠
ൌ

Inሺ𝑍 𝑍଴⁄ ሻ
Inሺ𝑍௠ 𝑍଴⁄ ሻ

 (5) 

 
where Z଴ is the roughness length has a value of 1.52 ൈ 10ିସ. 
The comparison with buoy measurements has a bias of 0.12 

m/s and an RMSE of 1.42 m/s. A recent study [29]shows that 
the retrieval of 𝑠𝑠𝑤𝑠  by S1 HH-polarized data using the 
CMODH [12] has a bias of 0.49 m/s and an RMSE of 2.05 m/s 
compared with buoy measurements. This suggests that the 
proposed machine learning-type retrieval method can also yield 
accurate estimates of 𝑠𝑠𝑤𝑠 but avoids the complicatedly tuning 
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of coefficients in the CMOD functions.  
Furthermore, we compared the ssws retrieved from S1 HH-

polarized data with the in situ measurements conducted by the 
XueLong icebreaker in its three times (2017, 2018, and 2019) 
surveys in the Arctic. Although only 23 data pairs were 

collocated, the valuable data are worth of examining. The bias 
is slightly high of -0.45 m/s, while the RMSE of 1.46 m/s is 
close to the result achieved in the comparison with NDBC buoy 
data.  

 
 

 
(a) 

 
(b) 

(c) (d) 
Fig.5 Comparison of the S1-retrieved 𝑠𝑠𝑤𝑠 with the collocated ASCAT using different training datasets (a) – (c) and the testing dataset (d). Referring to the main 
text for detailed explanations.  
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(a) (b) 
Fig.6 Comparisons of the S1-retrieved 𝑠𝑠𝑤𝑠 using the developed BP neural network with the NDBC buoy measurements (a) and with the in situ measurements 
acquired by the XueLong ice breaker during her Arctic survey (b).  

 

C. Uncertainty of ssws retrieval using the external ERA-5 
wind direction 

To produce a dataset of S1-derived SSW in the Arctic MIZ, 
we have to use a reanalysis SSW direction as an external input 
to the neural network, because it is uniform at both spatial and 
temporal scales. However, the reanalysis wind data may have 
biases, which can induce uncertainty in the 𝑠𝑠𝑤𝑠 retrieval. The 
SSW direction of the reanalysis model data is calculated based 
on its 𝑢 and 𝑣 components of the wind field. It is characterized 
that the ERA-5 has a zonal wind bias of approximately -0.1 m/s 
and meridional bias of approximately 0.25 m/s in high latitude 
region of 70°N [30]. As the detailed values of biases are not 
listed in [30], both numbers are roughly estimated based on  Fig. 
3 and Fig. 4 in that work. We used the ERA-5 wind direction 
data (with a grid size of 0.25° and available by each hour) as 
the input to the trained BP network, and the retrieval is applied 
to the 11,431 scenes. The results are denoted 𝑠𝑠𝑤𝑠ଵ. By adding 
the zonal (𝑢 component) and meridional (𝑣 component) wind 
bias of the ERA5 data to the original dataset and applying the 
same retrieval procedure, we obtained the 𝑠𝑠𝑤𝑠ଶ.Variations in 
∆𝑠𝑠𝑤𝑠 ൌ  |𝑠𝑠𝑤ଵ െ 𝑠𝑠𝑤ଶ|  with sea surface wind speed and 
azimuthal wind direction are shown in Fig. 7(a) and (b), 
respectively.  

∆𝑠𝑠𝑤𝑠 shows an overall increasing trend with wind speed. 
For an 𝑠𝑠𝑤𝑠 lower than approximately 19 m/s, the increasing 
trend is slight, and the mean ∆𝑠𝑠𝑤𝑠 is smaller than 0.20 m/s 
with the maximum standard deviation is of 0.25 m/s. When the 
𝑠𝑠𝑤𝑠  is high (i.e., higher than 20 m/s), the trend increases 
rapidly, and the largest mean ∆𝑠𝑠𝑤𝑠 reaches 0.38 m/s at a wind 
speed of 27 m/s. The reason for the decreased ∆𝑠𝑠𝑤𝑠 (in terms 
of both mean and standard deviation values) for a wind speed 
of 29 m/s is not clear. The number of collocated data in this bin 
is 4,185, which is comparable to that of neighbor bins, e.g., 
there are 6,359 and 6,727 in the bins of 25 m/s and 27 m/s, 
respectively.  

The variation in ∆𝑠𝑠𝑤𝑠  along with the azimuth wind 

direction (Fig. 7(b)) shows a periodic fluctuations, following a 
combination of sine and cosine functions of the azimuth wind 
angles. Under various wind direction conditions, the ∆𝑠𝑠𝑤𝑠 is 
generally lower than 0.15 m/s.  

 

 
(a) 

 

 
 (b) 

Fig.7 The variations in ∆𝑠𝑠𝑤𝑠 along with ERA-5 reanalysis sea surface wind 
speed and azimuth wind direction. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 May 2020                   doi:10.20944/preprints202005.0300.v1

https://doi.org/10.20944/preprints202005.0300.v1


 

7

D. Discrepancy in ssws retrieval from S1A and S1B data 

The twins S1A and S1B are identical sensors, but their 
radiometric calibration accuracy has discrepancies. Both 
sensors’ radiometric calibrations are verified independently. 
Based on point target measurements, the study in [21] shows 
that the overall absolute radiometric calibration accuracy of 
S1A co-polarization data for the Stripmap (SM), IW, and EW 
modes is of  0.43 dB (1𝜎). Another study on the independent 
verification of S1B calibration [31] suggests that the absolute 
radiometric calibration accuracy of the S1B co-polarization 
data in EW mode (based on the second and third beams of the 
five swath beams) is 0.30 dB.  This implies that the twin sensors 
do have some discrepancy in their radiometric calibration, 
although the difference is only approximately 0.13 dB.  
 

 
(a) 

 
(b) 

Fig.8 Comparisons of the SAR retrieved 𝑠𝑠𝑤𝑠 and the collocated ASCAT wind 
speed based on the S1A (a) and S1B(b) data. 

 
Fig.8 shows comparisons of the S1A and S1B retrieved 𝑠𝑠𝑤𝑠 

with the collocated ASCAT wind speed. We did not 

discriminate between training and testing data in the 
comparison. The number of the S1A collocations with the 
ASCAT data is approximately 4 times that of S1B collocations. 
In fact, the discrepancy between the 𝑠𝑠𝑤𝑠 retrievals by the two 
sensors is almost negligible. The correlation and S.I. of the two 
comparisons are identical. The bias suggests that the S1B 
retrieved 𝑠𝑠𝑤𝑠 is closer to the ASCAT 𝑠𝑠𝑤𝑠 than that from the 
S1A (0.17 m/s versus 0.24 m/s), while the RMSE values of 1.37 
m/s versus 1.26 m/s suggest that the S1A retrievals have better 
agreement with the ASCAT data than the S1B retrievals.  

IV. DISCUSSION 

The BP neural network is the basis of a few machine learning 
models, which is a good candidate for fitting nonlinear relations, 
making it suitable for deriving some geophysical parameters 
from satellite data. With respect to retrieving 𝑠𝑠𝑤𝑠  by 
spaceborne SAR data using a neural network, there are 
generally three sources of uncertainties.  

First, there is uncertainty about which inputs are used. For 
instance, in a previous study [24] the authors used inputs 
including radar backscatter of SAR alone and both radar 
backscatter and the collocated scatterometer wind direction. 
The retrieval results were significantly improved when the wind 
direction data were used as the input to the neural network 
(though the expression for inputting the wind direction is 
unclear). Thanks to long-term investigations on SSW retrieval 
by scatterometer and SAR, various GMFs have been proposed 
and the mathematical relationship (which may also be called 
physical) between radar backscatter and sea surface wind field 
is clear. Therefore, we decided to use four parameters 𝜎ୌୌ , 
cosሺ𝜙ሻ , cosሺ2𝜙ሻ , and 𝜃  as inputs to the network. In our 
experiments, it was found that the training of the BP neural 
network rapidly reaches convergency, which can be partially 
attributed to using appropriate input parameters.  

Second, determining the structure of the neural network is a 
challenge. Although it is well known that the BP neural network 
has three layers, the difficulty is the design of the number of 
hidden layers and neurons. We had no better choice than to test 
various combinations (e.g., the number of hidden layers was 
increased from 2 to 3, and then to 4) until the retrieval results 
(output) showed the best agreement with the collocated ASCAT 
wind speed which was based on the statistical parameters of 
bias and RMSE. We eventually determined the current structure 
of the BP neural network for 𝑠𝑠𝑤𝑠  retrieval from S1 HH-
polarized data. Nevertheless, designing the neural network to 
achieve the desired goals was difficult.  

Last, the distribution of 𝑠𝑠𝑤𝑠 is naturally unbalanced, and 
this problem cannot be fully solved by simply expanding the 
training dataset. In fact, our collocations of more than 1.7 
million are enough to represent various SSW conditions (e.g., 
as shown in Fig. 4) and we also tried various combinations of 
data in different wind speed ranges to consist of the training 
dataset. Once there is a large enough number of training data, 
the performance of the neural network becomes stable, and the 
results are generally unchanged even when more training data 
are added to the network (which may also induce overfitting). 
In the case of 𝑠𝑠𝑤𝑠 retrieval by spaceborne SAR, although the 
overall bias of zero is very good, it shows a clear dependence 
on wind speed, i.e., the underestimation trend becomes more 
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distinct with wind speed increasing. Compared with the fraction 
of low to moderate wind speed cases of the entire dataset, high 
wind speed cases (𝑠𝑠𝑤𝑠 larger than 15 m/s) are rare. These rare 
cases are often neglected by the neural network as “noise”, as 
the training process is terminated based on the overall minimum 
bias. By duplicating the high wind cases in the training dataset, 
we arbitrarily enhanced their weights in the neural network. The 
retrieval results based on both training and testing datasets 
suggest that this method can partially solve the problem of 
underestimation of 𝑠𝑠𝑤𝑠.  

Although the twins S1A and S1B have some discrepancies in 
their radiometric calibration, our analysis by comparing their 
respective retrievals suggests the discrepancy in retrievals is 
negligible. Since the S1 Instrument Processing Facility (IPF) 
version 2.90 (available from March 2018; referring to 
https://qc.sentinel1.eo.esa.int/ipf/), the noise vectors in both the 
range and azimuth directions have been provided in the EW 
mode data. Prior to the IPF version 2.90, only the noise vectors 
in the range direction were available in the EW data. This 
improvement in noise estimation may lead to a more accurate 
calibration of the EW mode data. However, we did not treat the 
EW mode data acquired before and after March 2018 separately 
in the development of the neural network. We found this 
improvement (providing noise vectors in the azimuth direction) 
in the noise estimation has a significant effect on the cross-
polarization data in EW mode [32], e.g., by reducing the 
scalloping effect in the azimuth direction. Nevertheless, along 
with more S1 EW data are being acquired, one may separate the 
two sensors’ data to develop their respective neural networks 
and compare the weights and biases of each neuron to figure out 
the discrepancy in their retrievals of 𝑠𝑠𝑤𝑠. 

Thus far, we have used the IMS sea ice cover data to mask 
the sea ice cover. Notably, that the IMS data are daily available, 
which is based on multi-sensor observations within one day, 
while SAR observations are a snapshot. Therefore, the sea ice 
cover observed by spaceborne SAR has discrepancies with the 
IMS data, because sea ice drifts. Fig. 9 shows a such case. 

 

 
(a) 

 
(b) 

(c) 
 
Fig.9. A case of S1 EW data acquired over the Barents Sea to demonstrate the 
combination of sea ice cover detection and SSW retrieval. (a) is a false-color 
composite image based on the HV and HH-polarized images (refer to the main 
text for details). (b) shows the discrimination of sea ice cover (yellow) and open 
water (purple) based on the EW data and (c) is the SSW map of the case, where 
the gray tone represents sea ice cover from the IMS data (note its discrepancy 
with the result in (b)). The color of the background is the retrieved 𝑠𝑠𝑤𝑠 using 
the developed BP neural network. The ERA-5 reanalysis wind field (colored 
arrows) in synoptic time is superimposed on the plot for comparison. The ERA-
5 wind direction data are used as input to the BP neural network. The Image ID 
of this case is 
S1A_EW_GRDM_1SDH_20180404T034739_20180404T034839_021312_0
24AC5_A80C.    

 
The S1 EW mode data were acquired in April 2018 over the 

Barents Sea. Fig. 9 (a) shows its false-color composite image 
based on three channels of HV (red), the difference between HV 
and HH (green) and the ratio of HV and HH (blue). Note that 
HV-polarized data of the EW mode over sea ice and open water 
areas are significantly disturbed by noise, and they should be 
denoised [32]. Based on the information in the three channels, 
we developed a deep-learning method (U-net) for 
discriminating sea ice cover and open water regions, as shown 
in Fig. 9(b), in which yellow represents sea ice cover with a 
spatial resolution of 200 m. While the algorithm is being tested 
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and adjusted for a large dataset of the S1 data acquired in the 
Arctic to achieve accurate results of sea ice cover, we currently 
used the IMS data to mask sea ice cover and conduct 𝑠𝑠𝑤𝑠 
retrieval based on the developed BP neural network, as shown 
in Fig. 9(c), in which the gray tone represents the sea ice cover 
from the IMS data. Comparing (c) with (b), one can observe 
that the IMS sea ice cover is larger than the SAR observation, 
which is reasonable, as sea ice drifts, and is particularly distinct 
in the MIZ. If open water areas are marked as sea ice cover, 
then we lose some information on SSW, as these areas are not 
used for retrieval. For areas that are sea ice cover as observed 
by SAR but they are not masked by the IMS (either due to the 
uncertainty of the IMS data or due to sea ice drifting over time), 
the following processing step of homogeneity test after sea ice 
masking can further discard these areas and avoid biased 
retrieval.     
   

V. CONCLUSION 

With the rapid retreat of sea ice in the Arctic, the MIZ is 
drawing more attention, as the interaction between sea ice and 
ocean dynamics is significant and may have feedback affecting 
seasonal sea ice retreat in the Arctic. Therefore, SSW data with 
high spatial resolution are highly desirable because of the lack 
of currently available ice and ocean remote sensing information 
from space for polar regions.    

In this study, we presented a method of retrieving 𝑠𝑠𝑤𝑠 from 
S1 EW data in HH polarization based on a BP neural network. 
Unlike over other sea areas where most acquisitions of the EW 
data are in the combination of VV and vertical-horizontal (VH) 
polarizations, the EW data acquired in the Arctic are 
combinations of HH and HV polarizations for intensive 
monitoring of sea ice.  

Based on the rather well-developed GMFs for retrieving 
SSW by spaceborne SAR data, we determined four parameters 
the radar backscatter 𝜎ுு

଴ , the sea surface wind direction in 
terms of cosሺ𝜙ሻ and cosሺ2𝜙ሻ, and the incidence angle 𝜃 to use 
as inputs to the neural network. The structure of the neural 
network was determined based on various trials. We duplicated 
the high wind cases in the training dataset to increase their 
influence on the network performance, which partially solved 
the problems of underestimating 𝑠𝑠𝑤𝑠 for wind speeds above 
approximately 16 m/s. Comparison of the retrieved 𝑠𝑠𝑤𝑠 by the 
testing dataset (1,319,321 data pairs) with the collocated 
ASCAT wind speed yields a bias of 0.23 m/s and an RMSE of 
1.25 m/s. Although the overall bias suggesting an 
overestimation than the ASCAT wind speeds, the stepwise 
comparison (indicated by the error bars in Fig. 5(d)) suggests 
the bias has a limited dependence on wind speeds. Moreover, 
the saturation of SSW retrieval generally found in SAR co-
polarization data using GMFs is not distinct in the retrievals (up 
to 𝑠𝑠𝑤𝑠 of approximately 30 m/s) using the BP neural network. 

We further compared the S1-derived 𝑠𝑠𝑤𝑠  with the 
independent NDBC buoy measurements, in which a bias of 0.12 
m/s and an RMSE of 1.42 m/s were obtained. Although data 
pairs of S1 collocated with the measurements of the XueLong 
icebreaker acquired in the Arctic surveys are limited, the 
comparison shows a similar RMSE value to that of the 
comparison with the NDBC buoy measurements.  

As our next step is to produce a sea surface wind field 
product based on the  S1 data acquired in the Arctic since its 
launch, and we have to use a reanalysis model wind direction 
data (which has uniform outputs in both space and time) as 
input to the developed BP neural network, we therefore 
preliminarily analyzed the effect of the bias of the ERA-5 
reanalysis wind model on the retrieval of the S1 𝑠𝑠𝑤𝑠. Up to 19 
m/s of 𝑠𝑠𝑤𝑠, the induced absolute error of retrieval is less than 
0.25 m/s. Along with the increase in wind speed, the increasing 
trend of the absolute error is obvious and can reach 0.38 m/s for 
the 𝑠𝑠𝑤𝑠 of 27 m/s. Interestingly, it is found that the induced 
absolute error has a periodic variation in azimuthal wind 
direction, roughly follows a combination of sine and cosine 
functions.   

The discrepancy in respective 𝑠𝑠𝑤𝑠  retrieval by S1A and 
S1B is almost negligible, which may be partially because that 
their collocations with ASCAT were combined in training the 
BP neural network. A separate training can probably avoid 
differing performance in the 𝑠𝑠𝑤𝑠  retrievals due to their 
discrepancy in radiometric calibration accuracy. Along with 
developing a robust method of discriminating sea ice and open 
water from S1 EW data, we will combine this method with SSW 
retrievals to obtain synergistic information on sea ice and ocean 
dynamic parameters in the MIZ of the Arctic.     

APPENDIX 

In the following, the processing steps for retrieving 𝑠𝑠𝑤𝑠 
from the S1 EW data using the developed BP neural network 
are provided. The MATLAB functions used are written in bold 
and italic.  

Step 1: Reading the S1 data and conducting radiometric 
calibration 

The digital number (DN) values (DN୧) of the S1 data are read 
from the Geotiff data and the calibration vector (A୧), noise 
vector (୧ ), latitude matrix (lat), longitude matrix (lon), 
incidence angle matrix (inc) and look angle (look_angle) are 
read from the annotation files (.XML). 

The S1 data are radiometrically calibrated using the 
following equation:  

𝜎ுு
଴ ሺiሻ ൌ

DN୧
ଶ െ ୧

A୧
ଶ  . (A1) 

 
At the same time, the matrices of 𝜎ுு

଴ , lat, lon and inc are 
interpolated to grids, where each grid has a size of 2 km by 2 
km.  

Step 2: Masking and homogeneity test 

We use the Global Self-consistent, Hierarchical, High-
resolution Geography Database (GSHHG) coastal line data [33] 
to mask the land area in the S1 images. Then, the IMS data are 
used to mask the sea ice cover. As mentioned in the main text, 
there are discrepancies in sea ice cover between SAR 
observations and IMS data. On the other hand, there may exist 
other features that disturb the sea surface and make the data 
unsuitable for SSW retrieval, we use the homogeneity factor 
[25] to exclude these grids from retrievals. The factor is defined 
as: 
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ξୌ ൌ ൭෍ meanതതതതതതത൫Φ෡ ୩൯
୩

൱

ିଵ

෍
varതതതതሺΦ෡ ୩ሻ

meanതതതതതതതሺΦ෡ ୩ሻ
୩

 (A2)

 
 And 

varതതതത൫Φ෡ ୩൯ ൌ
1
N

෍ሺΦ෡ ୩
୨ ሻଶ

୒

୨ୀଵ

െ meanሺΦ෡ ୩ሻଶ (A3)

 
We further divide each SAR subimage (2 km × 2 km) into 

2×2 subgrids to calculate the homogeneity factor, i.e. 𝑁 ൌ 2 in 
(A2) and (A3). The image power spectrum Φ෡ ୩ of each subgrid 
is estimated by FFT. The S1 subimage with a homogeneity 
factor ≤ 1.05 is used for 𝑠𝑠𝑤𝑠  retrieval. However, as this 
threshold is determined based on empirical experience (visual 
inspections), we have found that some retrievals are acceptable 
when their homogeneity factors are between 1.05 and 1.50. 
Therefore, the 𝑠𝑠𝑤𝑠 retrievals from the sub-images which have 
the homogeneity factor in this range ([1.05, 1.5]) are defined as 
“suspecting” results in the NetCDF product.   

 Step 3: Matching S1 data with the ERA-5 reanalysis wind 
model data 

Following the preprocessing in the above two steps, each S1 
subimage is temporally and spatially matched with the ERA-5 
reanalysis wind data. 

As the ERA-5 reanalysis wind model data is available each 
hour, the temporal difference between the S1 observation and 
the model is no larger than 30 minutes. With respect to temporal 
collocation, the 𝑢 and 𝑣 components of the ERA-5 wind data at 
the four (model) grids nearest to the S1 subimage are bilinearly 
interpolated to the location of the subimage. Based on the 𝑢 and 
𝑣  components, one can derive wind direction and the 
consequent azimuthal wind direction 𝜙 by taking into account 
the SAR looking angle.  

After matching the S1 observations with the ERA-5 
reanalysis wind data, each S1 subimage has four inputs 
available, i.e. 𝜎ுு

଴ , 𝜃, cosሺ𝜙ሻ and cosሺ2𝜙ሻ for the trained BP 
neural network, which compose an array in MATLAB:  

𝐴𝑟𝑟𝑎𝑦௜௡௣௨௧ ൌ ሾ𝜎ுு
଴   cosሺ𝜙ሻ cosሺ2𝜙ሻ  𝜃ሿ  

Step 4: Retrieval of 𝑠𝑠𝑤𝑠 using the BP neural network 

We applied the MATLAB function mapminmax to scale the 
input to the range ሾെ1,1ሿ: 

𝐴𝑟𝑟𝑎𝑦௜௡௣௨௧_௡௢௥௠ ൌ 𝑚𝑎𝑝𝑚𝑖𝑛𝑚𝑎𝑥ሺ𝐴𝑟𝑟𝑎𝑦௜௡௣௨௧ሻ (A4) 

Then, we applied the MATLAB function sim to retrieve the 
𝑠𝑠𝑤𝑠: 

𝑠𝑠𝑤𝑠௡௢௥௠ ൌ 𝑠𝑖𝑚ሺ𝐵𝑃௡௘௧, 𝑎𝑟𝑟𝑎𝑦௜௡௣௨௧೙೚ೝ೘ሻ (A5) 

The output of the neural network 𝑠𝑠𝑤𝑠௡௢௥௠ is a normalized 
retrieved sea surface wind speed and needs to be anti-
normalized to obtain the true wind speed. We set the 𝑚𝑖𝑛 and 

max values of normalizing the sea surface wind speed to be 0 
and 30. Note that setting of the maximum value of 30 m/s to 
normalize 𝑠𝑠𝑤𝑠 does not limit the retrievals cannot be over 30 
m/s as the network can output values of 𝑠𝑠𝑤𝑠௡௢௥௠ larger than 
1.0.  

The weights and biases of the trained BP neural network are 
stored in the matrix 𝐵𝑃௡௘௧, which are provided in the Table A1.  
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TABLE A1 
THE WEIGHTS OF NEURONS CONNECTING THE INPUT LAYER (ROW) AND THE FIRST HIDDEN LAYER (COLUMN) 

 Neuron 1 … … Neuron 4
Neuron 1 1.35799401462446 -1.10259316914732 0.335981355623764 0.272512797610827

… -2.36441248024990 1.03503460476278 0.543268223117868 -1.49702712335111
… -2.28049553757969 -0.464650444976570 0.317823811389357 -1.21443905897947
… -2.21693910117561 0.0383351731986321 0.282252861921783 -0.0613427064770843
… -0.270660648829750 1.41445838668801 0.668843417713446 0.496561569414443

Neuron 6 -1.60231069909676 -0.195465009443951 0.728880985579777 -1.10445019344022
 

THE WEIGHTS OF NEURONS CONNECTING THE FIRST HIDDEN LAYER (ROW) AND THE SECOND HIDDEN LAYER (COLUMN) 

 Neuron 1 … … … … Neuron 6
Neuron 1 1.1397920256150 1.89661266986153 -1.283773847885 0.085187536483929 -0.063459295262 -1.162136873516

… -0.198358601266 1.36394018568907 1.57253186821047 -1.148018805309 0.231112562654413 0.645796503500879
… -0.678142348763 -0.199461939342 1.01869958730975 1.46781374438703 -0.041822043747 -0.712885953434
… 0.1910453831996 1.14768330387281 0.498706446019045 0.452359997020326 1.19089307746359 -1.355978406219
… 0.3849750801359 -1.177105608704 1.54472685609111 0.632812104673446 0.100762037819503 0.704017088900113
… 0.5032146711624 -0.899832114283 1.03126116077854 -0.687996417608 0.578206049832177 0.009656430341968
… 1.0820875254610 0.627483501361421 1.97723402406411 0.885647029665893 -0.532557259337 -0.639919305010
… 0.5979511985770 1.24509069053319 0.415655062240200 -0.489321038622 0.912386007906291 -1.036934496026
… 0.6169216114075 -0.588978212579 2.32443511996747 -0.338686199388 -0.752987408030 -0.453853733339

Neuron 10 0.3488855414082 0.000244118790022 0.700448757317926 -2.273538016844 0.201986903576005 0.869807053825020
 
 

THE WEIGHTS OF NEURONS CONNECTING THE SECOND HIDDEN LAYER (ROW) AND THE THIRD HIDDEN LAYER (COLUMN) 

 Neuron 1 … … … … … … … … Neuron 10
Neuron 1 1.0387134

6707379 
-1.286728 
76290900 

-0.392615 
921447484 

-0.918542 
209953449

0.2233739
33854063

-0.324166 
732629374

-0.166188 
842209020

0.4237303
02842222 

1.0779886
7366136 

0.7406658
35665252

… -1.006663 
78061236 

0.0788090
379982044 

-0.034908 
183036705 

-1.281439 
44528808

-0.658215 
248375978

-0.770763 
163056224

0.0736626
773265441

0.1961303
52054691 

-0.242265 
264811827

1.1262639
6208120

… 0.3520905
41064823 

-1.105574 
73139957 

-0.393935 
445745547 

-1.407932 
33049740

1.1447989
7459074

0.2425887
48827192

-2.848675 
53200052

0.7604654
95635649 

-1.045264 
00804428

1.8286696
3454512

… -1.251848 
34604807 

-0.002921 
328603112 

0.7935489
42102038 

-0.413759 
943228806

-0.386891 
235719630

0.1837802
50647745

0.6056033
88328891

-0.445297 
473437239 

-0.558112 
568469832

0.2419876
49922061

… -1.005888 
44808547 

-1.275323 
39992951 

0.3562453
60443631 

-0.255098 
835380100

0.2359288
47743238

-0.120358 
788060656

-0.973247 
795963073

-0.677960 
006377093 

-0.347725 
829272019

-1.003807 
01043712

… -1.482462 
74565115 

1.6969135
7574192 

-0.045767 
538939816 

-1.034607 
07870829

-0.897943 
172841501

-0.533440 
548692554

0.4041267
14539928

0.0337563
000929784 

-0.026170 
987394873

-0.510112 
218260637

… -1.444093 
74386379 

-0.036753 
118357037 

-0.036414 
262633473 

-0.602262 
857817669

0.1857092
87142008

0.5960770
15455694

-0.741236 
406603249

-0.033596 
430450842 

1.4159200
4992181 

0.2496935
39119471

Neuron 8 -0.656092 
230151342 

-0.731203 
026026613 

0.1285923
07275371 

0.4586477
46149548

1.4556264
7650427

-0.465070 
471822353

-0.225582 
844718152

0.4680555
22497490 

0.7984297
73320449

0.6877344
03258738

 
THE WEIGHTS OF NEURONS CONNECTING THE THIRD HIDDEN LAYER (ROW) AND THE OUTPUT LAYER (COLUMN) 

 Neuron 1 … … … … … … Neuron 8
Neuron 1 0.4029406987 1.0722908532 1.8064761705 -0.514197995 0.3036328792 -0.974434882 0.7779415527 -1.026315289

 
THE BIAS OF NEURONS IN THE FIRST HIDDEN LAYER 

Neuron 1 … … … … Neuron 6
-2.20530861321237 1.70505319262913 1.40897518132112 1.53185999556214 -0.892858805540525 -1.28878524037813

 
THE BIAS OF NEURONS IN THE SECOND HIDDEN LAYER 

Neuron 1 … … … … … … … … Neuron 10 
-1.6383213 
9090154 

-1.5810461 
7255786 

0.78122489
0952619 

-0.6796223 
20647683 

0.15719104
5400725 

0.70699193
8763485 

0.50946988
4095470 

1.40529511
309813 

1.80579509
259162 

2.31071207
212034 

 
THE BIAS OF NEURONS IN THE THIRD HIDDEN LAYER 

Neuron 1 … … … … … … Neuron 8
-1.53076034415 
164 

1.308441784515
66 

-1.06924300491 
170 

0.225317438845
222

-0.14620232293
6459

-0.72731241228
6867

-0.75848764460 
7696 

-2.05859481314
414

 
THE BIAS OF NEURONS IN THE OUTPUT LAYER 

Neuron 1
0.577119828493821
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