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Abstract

We show how some concentration inequalities for sampling without replacement

can be used for bounding future samples. This process can be extended to

bound the sum of future samples from multiple populations, and we analyse an

illustrative sample allocation problem.
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Many famous concentration inequalities are Chernoff bounds which extend

from the creation of upper bounds for the moment generating function of the

random variable in question. Usually concentration inequalities are developed

in the context of sampling with replacement, but there are some which utilise

martingale arguments to give additional refinement in the context of sampling

without replacement. The first and most notable martingale argument along

these lines was given by Serfling [1974], but recent refinements of this argument

have been given by Riggs et al. [2013] and Bardenet and Maillard [2015].

What may not be obvious, is how these concentration inequalities which

are developed to bound the sample mean in the context of sampling without

replacement, can be used for bounding future samples in the context of sampling

with replacement, as we will show. The simple idea is to consider the past

and future samples in the context of sampling without replacement as if it

were a finite set, and then using concentration inequalities for sampling without
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replacement to characterise the future samples in terms of the past samples

without direct reference to the mean of the finite set.

We will be using an example upper bound for the moment generating func-

tion developed by Bardenet and Maillard [2015][Proposition 2.3]

Theorem 1. for i.i.d random variables X1≤,i≤N , with average value µ =

1
N

∑N
i=1Xi, which are bounded a ≤ Xi ≤ b, with Zk = 1

k

∑k
t=1(Xt − µ) as

the average of the first k of them above the mean, then for λ > 0:

logE exp(λnZn) ≤ (b− a)2

8
λ2(n+ 1)

(
1− n

N

)
Bardenet and Maillard developed this bound in the context of sampling

specifically without replacement, but the proof relies only on the i.i.d of the

samples Xi and the fact that their average is µ (see Appendix A). We can

convert this into a bound for future rewards as follows:

Theorem 2. For n independant samples of a random variable X, Xi (that is

bounded a ≤ X ≤ b) if An is the average value of thoes samples, for any y ≥ 0,

the sum of m future samples S is probability bounded:

P(S ≤ mAn − y) ≤ exp

(
−2y2n2

(b− a)2(m+ n)(n+ 1)m

)
Proof. In the context of Theorem 1, if An = 1

n

∑n
i=1Xi is the average of the

first n values, and S =
∑N

i=n+1Xi is the sum of the remaining N − n terms,

then Zn = (1− n/N)An − S/N , hence:

logE exp(λn((1− n/N)An − S/N)) ≤ (b− a)2λ2(n+ 1) (1− n/N) /8

scaling λ→ λN/n and substituting N = m+ n gives:

logE exp(λ(mAn−S)) ≤ (b−a)2λ2(m+n)(n+1)mn−2/8 (1)

We use this bound to create a Chernoff bound by Markov’s inequality:

P(mAn − S ≥ y) = P(exp(λ(mAn − S)) ≥ exp(λy))

≤ E[exp(λ(mAn−S))] exp(−λy) = exp((b−a)2λ2(m+n)(n+1)mn−2/8−λy)

Minimising λ, at λ = 4n2y((b− a)2(m+ n)(n+ 1)m)−1 giving the result.

We now consider an extension and example problem for sampling from many

distributions:
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Theorem 3. For nj independent samples of random variables Xj (each is

bounded aj ≤ Xj ≤ bj) if Aj,nj
is the average value of the nj samples of random

variable Xj, the sum S of all the mj future samples from each of the Xj random

variables is probability bounded. For any y ≤
∑

j mjAj,nj
:

P (S ≤ y) ≤ exp

 −2(
∑

j mjAj,nj
− y)2∑

j
(bj−aj)2

n2
j

(mj + nj)(nj + 1)mj


Proof. considering equation 1 for any random variables Xj , then the sum of its

future samples Sj is:

logE exp(λ(mjAn − Sj)) ≤ (bj − aj)2λ2(mj + nj)(nj + 1)mjn
−2
j /8

Since the sampling of each of the random variables is independent then:

logE exp(λ
∑

j mjAn − λS) ≤
∑

j(bj − aj)2λ2(mj + nj)(nj + 1)mjn
−2
j /8

Using Markov’s inequality in a similar way to the proof of Theorem 1 gives:

P(
∑

j mjAj,nj
−S ≥ z) ≤ exp(λ2

∑
j(bj−aj)2(mj+nj)(nj+1)mjn

−2
j /8−λz)

Minimising λ occurs at λ = z(
∑

j(bj −aj)2(mj +nj)(nj + 1)mjn
−2
j /4)−1 which

then gives the required result after substituting y =
∑

j mjAj,nj − z.

Example 1. A small impoverished community is ordering test kits for a disease,

the community has a budget for 55 new test kits. There are multiple suppliers

and each have a different track record:

• Supplier A has supplied 30 test kits in the past, 10 of which were faulty.

• Supplier B has supplied 18 test kits in the past, 5 of which were faulty.

• Supplier C has supplied 50 test kits in the past, 17 of which were faulty.

How many test kits should be bought from each of the suppliers to ensure the

likelihood of getting less than 32 non-faulty kits is less than 40%?

We can solve this problem by considering Bernoulli random variables, and

running the possible integers mj to minimise the bound of Theorem 3.

This occurs when mA = 14,mB = 22,mC = 19 and P (S ≤ 31) ≤ 0.39911

This might not be the ideal way of solving this particular problem, but it perhaps

an unorthodox use for concentration inequalities designed for sampling without

replacement.
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Appendix A. A summary proof of Bardenet and Maillard’s bound

We present Hoeffding’s Lemma before giving a short proof of Theorem 1.

Lemma 1 (Hoeffding’s Lemma). For a random variable Y that has a mean of

zero and is of finite support on the interval a ≤ Y ≤ b, with width D = b − a,

and for any s > 0: E [exp(sY )] ≤ exp
(
1
8D

2s2
)
.

Lemma 2 (Martingale Step). For i.i.d random variables Yi, and Zk = 1
k

∑i=1
k Yi

is the average of the first k of them, then: E[Yk+1|Zk+1 . . . ZN ] = Zk+1

Proof. Consider that Y1, . . . , Yk+1 are all i.i.d variables equally constrained by

specification of the Zk+1 . . . ZN thus for all j < k + 1:

E[Yk+1|Zk+1 . . . ZN ] = E[Yj |Zk+1 . . . ZN ]

thus E[Yk+1|Zk+1 . . . ZN ] = 1
k+1

∑k+1
j=1 E[Yj |Zk+1 . . . ZN ]

= E[ 1
k+1

∑k+1
i=1 Yi|Zk+1 . . . ZN ] = E[Zk+1|Zk+1 . . . ZN ] = Zk+1

Proof of Theorem 1. Consider letting Yi = Xi − µ then

Zk = 1
k

∑k
i=1 Yi = Zk+1 + 1

k (Zk+1 − Yk+1)

= (Zk − Zk+1) + (Zk+1 − Zk+2) + · · ·+ (ZN−1 − ZN )

= 1
k (Zk+1 − Yk+1) + 1

k+1 (Zk+2 − Yk+2) + · · ·+ 1
N−1 (ZN − YN )

Thus: exp(sZn) =
∏N−1

k=n exp
(
s
k (Zk+1 − Yk+1)

)
By repeated application of the Law of total expectation1 we get:

E[exp(sZn)] = E
[∏N−1

k=n E
[
exp

(
s
k (Zk+1 − Yk+1)

)
|Zk+1 . . . ZN

]]
Because E[Yk+1|Zk+1 . . . ZN ] = Zk+1 by Lemma 2, then Zk+1−Yk+1 is a random

variable with a mean of zero bounded within a width b− a and hence amenable

for Hoeffding’s Lemma 1 giving: E[exp(sZn)] ≤ exp
(

(b− a)2s2
∑N−1

k=n
1

8k2

)
Using the approximation effectively utilised by Bardenet and Maillard [2015]:∑N−1

k=n
1
k2 ≤ (n+1)(1−n/N)n−2 and letting λ = sn gives the required result.
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1that E[A] = E[E[A|B]] hence for function f that E[Af(B)] = E[E[A|B]f(B)], and so on
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