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A note on using Concentration Inequalities for sampling
without replacement to bound future rewards

Mark Alexander Burgess
Australian National University, Canberra, ACT, 2600, Australia

Abstract

We show how some concentration inequalities for sampling without replacement
can be used for bounding future samples. This process can be extended to
bound the sum of future samples from multiple populations, and we analyse an
illustrative sample allocation problem.
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Many famous concentration inequalities are Chernoff bounds which extend
from the creation of upper bounds for the moment generating function of the
random variable in question. Usually concentration inequalities are developed
in the context of sampling with replacement, but there are some which utilise
martingale arguments to give additional refinement in the context of sampling
without replacement. The first and most notable martingale argument along
these lines was given by [1974], but recent refinements of this argument
have been given by [2013] and Bardenet and Maillard [2015].

What may not be obvious, is how these concentration inequalities which

are developed to bound the sample mean in the context of sampling without
replacement, can be used for bounding future samples in the context of sampling
with replacement, as we will show. The simple idea is to consider the past
and future samples in the context of sampling without replacement as if it

were a finite set, and then using concentration inequalities for sampling without
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replacement to characterise the future samples in terms of the past samples
without direct reference to the mean of the finite set.
We will be using an example upper bound for the moment generating func-

tion developed by Bardenet and Maillard [2015][Proposition 2.3]

Theorem 1. for i.i.d random variables X< <y, with average value p =
%Zfil X;, which are bounded a < X; < b, with Z), = %Zle(Xt — 1) as
the average of the first k of them above the mean, then for A > 0:

(b—a)

2 n
<

Bardenet and Maillard developed this bound in the context of sampling
specifically without replacement, but the proof relies only on the i.i.d of the

samples X; and the fact that their average is p (see [Appendix Al). We can

convert this into a bound for future rewards as follows:

Theorem 2. For n independant samples of a random variable X, X; (that is
bounded a < X <b) if A, is the average value of thoes samples, for anyy > 0,

the sum of m future samples S is probability bounded:

—9y2p2
P(S <mA, —y) <exp ((b —a)2(m+n)(n+ 1)m)

Proof. In the context of Theorem (1} if A, = %Z?:l X, is the average of the
first n values, and § = Y2 41
then Z,, = (1 —n/N)A, — S/N, hence:

logEexp(An((1 —n/N)A, — S/N)) < (b—a)?X*(n+1) (1 —n/N) /8
scaling A — AN/n and substituting N = m + n gives:

log Eexp(A(mA,—S)) < (b—a)?\2(m+n)(n+1)mn=2/8 (1)

X; is the sum of the remaining N — n terms,

We use this bound to create a Chernoff bound by Markov’s inequality:

P(mA, — S > y) = P(exp(A(mA, — 5)) > exp(A\y))

< Elexp(A(mA,, —S))] exp(—\y) = exp((b—a)* 2 (m+n)(n+1)mn=2/8—\y)
Minimising A, at A = 4n2y((b — a)?(m + n)(n + 1)m)~! giving the result. O

We now consider an extension and example problem for sampling from many

distributions:
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Theorem 3. For n; independent samples of random variables X; (each is
bounded aj < X; < bj) if Aj,, is the average value of the n; samples of random
variable X;, the sum S of all the m; future samples from each of the X; random

variables is probability bounded. For any y < Zj mjAjn,:

—2(2;miAjn; —y)?

bjfa]- 2
5, s (my 4 ) (n; + D

P(S <y) <exp

Proof. considering equation for any random variables X}, then the sum of its
future samples S; is:
log Eexp(A(m; A, — S;)) < (b — a;)*X2(m; + n;)(n; + 1)ym;n; % /8
Since the sampling of each of the random variables is independent then:
log Eexp(A Y, mjAn — AS) < 32 (bj — a;)° A2 (my +ny)(nj + 1)myn;?/8
Using Markov’s inequality in a similar way to the proof of Theorem 1 gives:
P(3; mjAjn, —S 2 2) < exp(X* 33, (bj—a;)? (my+n;) (nj+1)myn;? /8—Xz)
Minimising A occurs at A = z(3_,(b; — aj)?(mj+n;)(nj+ 1)771]»71]72/4)_1 which

then gives the required result after substituting y = >, m;A;n; — 2. O

Example 1. A small impoverished community is ordering test kits for a disease,
the community has a budget for 55 new test kits. There are multiple suppliers
and each have a different track record:

e Supplier A has supplied 30 test kits in the past, 10 of which were faulty.

e Supplier B has supplied 18 test kits in the past, 5 of which were faulty.

e Supplier C has supplied 50 test kits in the past, 17 of which were faulty.
How many test kits should be bought from each of the suppliers to ensure the

likelihood of getting less than 32 non-faulty kits is less than 40%?

We can solve this problem by considering Bernoulli random variables, and
running the possible integers m; to minimise the bound of Theorem
This occurs when m4 = 14, mp = 22, m¢c = 19 and P (S < 31) < 0.39911
This might not be the ideal way of solving this particular problem, but it perhaps
an unorthodox use for concentration inequalities designed for sampling without

replacement.



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 May 2020

Appendix A. A summary proof of Bardenet and Maillard’s bound

We present [Hoeffdings Lemma before giving a short proof of Theorem 1.

Lemma 1 (Hoeffding’s Lemma). For a random variable Y that has a mean of
zero and is of finite support on the interval a <Y < b, with width D = b — a,
and for any s > 0:  Elexp(sY)] < exp (§D?s?).

Lemma 2 (Martingale Step). For i.i.d random variables Y;, and Zj, = % Zzl Y;

is the average of the first k of them, then: E[Yii11|Zkt1...ZN] = Zk41

Proof. Consider that Y7,...,Y; 41 are all i.i.d variables equally constrained by
specification of the Zx11 ... Zn thus for all j < k + 1:
EYit1|Zks1 ... ZN) = E[Y;|Zky1 ... ZN]
thus E[Vis1| Zeta - Zn) = 75 S0 BV | Zig - ZW]
=Bl S0 YilZig . Zn) = ElZi1 | Zksr - ZN) = Zienn O

Proof of Theorem 1. Consider letting Y; = X; — u then
Zy =130 Vi = Zipr + 2 (Zisr — Yira)
= (Zix — Zi41) + (Zyyr — Zyy2) + -+ (Zn-1 — Zn)
= +(Zkg1 = Yir1) + 25 (Zrg2 = Yig2) + -+ 5 (Zn — Yn)
Thus: exp(sZn) = [[i2, exp (§(Zk1 — Yira))
By repeated application of the Law of total expectatimﬂ we get:
Elexp(sZ,)] = E [ NVR [exp (2(Zkst — Yis1)) | Zisa - - - ZNH
Because E[Yj, 11| Zk11 ... Zn] = Zg41 by Lemmal[2} then Zj 1 —Yj41 is a random
variable with a mean of zero bounded within a width b — a and hence amenable
for Hoeffding’s Lemmagiving: Elexp(sZ,)] < exp ((b —a)?s? Eg;nl #)
Using the approximation effectively utilised by Bardenet and Maillard [2015]:
N—-1 1

ven 7z < (n41)(1—n/N)n~? and letting A = sn gives the required result. [
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