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Abstract: Post-mortem characterisation is a pivotal tool to trace back to the origin of structural 

failures in modern engineering analyses. This work presents a comparison of both the crack 

propagation profiles and the rupture roughness profiles based on areal parameters for total fracture 

area. Notched and smooth samples made of weather-resistant structural steel (10HNAP), popular 

S355J2 structural steel and aluminium alloy AA2017A under bending, torsion, and combined 

bending-torsion are investigated. After the fatigue tests, fatigue fractures are measured with an 

optical profilometer, and the relevant surface parameters are critically compared. The results show 

a great impact of the loading scenario on both the local profiles and the total fracture areas. In this 

work, the results of both approaches (local and total fracture zones) for specimens with different 

geometries are investigated. For all specimens, measured texture parameters decreased in the 

following order: total area, rupture area, and propagation area. 

Keywords: Surface metrology; surface topography; bending-torsion fatigue; fatigue fracture. 

 

1. Introduction 

Post-mortem analysis is a fundamental engineering procedure to identify the damage 

accumulation mechanisms associated with the fatigue failure. This analysis may provide important 

clues to improve the materials performance, or to evaluate both structural and mechanical properties, 

as well as to mitigate the damage mechanisms [1–3]. 

Much research connected with surface metrology has been focused on extensive investigations 

in which 3D surface roughness parameters have been presented in light of the relationship between 

surface properties and operation properties [4–8]. Although this analysis provides useful information, 

post-failure fractographic surface examinations allow the cause of failure in materials to be 

determined [9–12]. Researchers have studied the characteristics of fractured surfaces using 

observational tools, from macro to nanoscale [13–17]. Unfortunately, even though the advanced 

methods such as optical coherence tomography [18], scanning acoustic microscopy [19] or energy 

response approach which base on strain energy density histories during variable loading [20,21] are 

described in the literature, usually simple-fracture qualitative analysis investigation, conducted with 

usage of scanning electron microscopy, are employed for evaluation a surface fractures resulting due 
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to impact [22,23], tensile strength [24,25], fatigue [5,19], ultra-high fatigue [26], adhesion testing [27] 

or even wear damage description [28,29]. However, limited papers study the profile and surface 

roughness usage as a tool for fatigue fracture characterization. 

Moreover, there are few papers devoted to the quantitative analysis of fracture surfaces in 

elements undergoing combined bending-torsion loading histories [30–33]. Therefore, the present 

paper aims to study the bending-torsion fatigue fractures in order to establish the dependence 

between the loading scenario and the characteristic features of their surfaces. Work in the open 

literature describes the influence of loading conditions on topography of fracture surfaces via either 

local terms, i.e. crack propagation and rupture [34–38], or based on the analysis of the total area of 

fracture [39,40]. In this work, the results of both approaches (local and total fracture zones) for 

specimens with different geometries are compared for three materials. For different loading scenarios 

(which encompass bending, torsion, and bending-torsion) 2D and 3D surface texture measurement 

methods are adopted, and the main results are critically compared. 

2. Materials and Methods of Measurement  

2.1. Materials and specimens 

The material grades studied in the present research were: (a) the 10HNAP weather-resistant 

structural steel [39]; (b) the S355J2 structural steel [41]; and (c) the 2017A-T4 aluminium alloy [42]. 

The components manufactured from tested metal alloys are popular in machine building industry, 

therefore, can undergo the fatigue. The nominal chemical composition and mechanical properties are 

summarized, respectively, in Tables 1 and 2. 

 

Table 1. Chemical composition of the tested alloys (wt.%). 

Element 10HNAP  S355J2 AA2017A-T4 

C 0.115 0.21 - 

Si 0.41 0.42 0.45 

Mn 0.71 1.46 0.65 

P 0.082 0.019 - 

S 0.028 0.046 - 

Cr 0.81 0.09 0.10 

Ni 0.50 0.04 - 

Cu 0.30 0.17 4.15 

Zn - - 0.50 

Mg - - 0.69 

Ti - - 0.20 

Al - - Balance 

Fe Balance Balance 0.70 

 

Table 2. Main mechanical properties of the tested alloys. 

Material properties 10HNAP S355J2 AA2017A-T4 

Ultimate tensile stress, σu (MPa) 566 535 480 

Yield stress σy, MPa 418 357 382 

Elongation A10 (%) 30.1 21 23 

Reduction of area RA (%) 36.5 50 50 

Young’s modulus E (GPa) 215 210 72 

Poisson’s ratio ν 0.29 0.30 0.32 
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Specimens used in the experimental fatigue campaign are depicted in Figure 1, and comprised: 

(a) cylindrical 10HNAP steel specimens with a circumferential V-notch (see Fig. 1a); specimens with 

a circular cross-section (see Fig. 1b); and 2017A-T4 aluminium rectangular cross-section specimens 

with a V-notch (Fig. 1c). Both V-shaped configurations had external, unilateral, sharp and blunt one-

sided notches, with radius r = 0.2 mm, 5 mm, 10 mm and 22.5 mm and notch-angles of 60º. 

 

Figure 1. Specimen geometries: (a) V-notched circular cross-section specimen made of 10HNAP steel; 

(b) smooth circular cross-section specimen made of S355J2 steel; and (c) V-notched rectangular cross-

section specimen made of 2017A-T4 aluminium alloy (dimensions in millimeters). 

2.2. Loading histories 

All specimen geometries were tested under combined bending-torsion, bending and torsion 

(except geometry b). For the 10HNAP steel samples, stationary and ergodic random loadings had a 

normal probability distribution and wide-band frequency spectra from 0 to 60 Hz. In the case of mixed 

loading, nominal normal stress amplitudes were equal to nominal shear stress amplitudes, i.e. σa=τa. 

Fatigue tests of S355J2 steel specimens encompassed non-proportional bending-torsion histories with 

different ratios of the maximum shear stress to the maximum normal stress, i.e. λ=τmax/σmax. In the case 

of the 2017A-T4 aluminum alloy specimens, tests have conducted under different bending-to-torsion 

amplitudes ratios. The stress ratios (R) used in this experimental campaign were R = -1, -0.5, 0 [32]. 
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2.3. Surface parameter measurement and calculation 

Fracture surface analysis was performed using an optical 3D test stand facilitating the acquisition 

of data sets at a high depth of focus [43,44]. The failed specimens were observed under 10x 

magnification using an Alicona G4 InfiniteFocus accordingly to the procedure described in the previous 

work [45]. The above-mentioned measurement device, exhibited in Figure 2, is operated via the IF-

MeasureSuite software, while the measurement of surfaces features was conducted through the 

MountainsMap software. Fatigue fracture surfaces were measured for local (propagation and rupture) 

profiles and for total areas Figure 3 shows examples of the propagation areas and main surface 

parameters as well as rupture areas and main texture parameters observed in the experiments for the 

three metal alloys studied here.  

 

Figure 2. InfiniteFocus IF G4 measurement device used in surface metrology. 

  

a) d) 
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b) e) 

  

c) f) 

Figure 3. Propagation area view of the specimen made of: (a) 10HNAP steel; (b) S355J2 steel; and (c) 

2017A-T4 aluminium alloy. Rupture area view of the specimen made of: (d) 10HNAP steel; (e) S355J2 

steel; and (f) 2017A-T4 aluminium alloy. 

It is known that the microrelief of fatigue fracture surface is determined by the material properties 

and the stress intensity factor in the tip of initial crack; therefore, the parameters of the microrelief 

depend on the stress amplitude and the fatigue crack length. When testing ductile materials, the height 

of the fracture profile usually increases with increasing crack length, and at the stage of the fatigue crack 

propagation, three zones with different roughness are found: the initial zone with a predominant shear 

microrelief, the zone with striation microrelief and the zone of accelerated crack growth, in which 

striations and dimples are observed. With an increase in the stress amplitude, the size of the zones 

changes, the zone with striations decreases, and the zone of rupture grows. When testing brittle or 

quasi-brittle materials, the height of the fracture profile often decreases with increasing crack length as 
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a result of formation of facets of cleavage or intergranular fracture [46,47]. Overall, there are obvious 

differences in topography either for propagation or rupture, particularly the coarser areas. Ra (Eq. (1)) 

averages all peaks and valleys of the roughness profile and then neutralizes the few outlying points, so 

that the extreme points have no significant impact on the final results. As far as the Sa is concerned, as 

expressed in Eq. (2), it represents the mean height of the surface, according to the ISO 25178 standard. 

Their functionality is analyzed later in the work. 

𝑅𝑎 =
1

𝑙𝑟
∫ |𝑧(𝑥)|𝑑𝑥

𝑙𝑟

0

 (1) 

𝑆𝑎 =
1

𝐴
∬ |𝑧(𝑥, 𝑦)|𝑑𝑥𝑑𝑦
𝐴

  (2) 

3. Results and discussion 

Figure 4 shows representative surface texture measurement results for both local profiles (in 

terms of propagation and rupture) and for total areas. In fact, as anticipated in the previous figure, 

the comparison of the different evaluated parameters for the three materials shows important 

differences.  

 

a) b) 

 

c) 

Figure 4. Fractures with marked crack propagation profile, rupture roughness profile, and extracted 

total area for exemplary specimens made of: (a) 10HNAP steel; (b) S355J2 steel; and (c) 2017A-T4 

aluminium alloy. 
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Some specific features of the tested specimens initially noticed in the measurement results were 

analysed at this point. For further analysis, Ra and Sa were selected from R- and S- parameters. These 

parameters demonstrated the best fit, evident dependence on the loading condition, and widespread 

use, regardless of the measuring technique. 

Figure 5 presents an extract of all analysed results Ra and Sa, by type of loading. Without 

qualifying the method and place of measuring the fractured surface, it can be seen that generally, the 

highest values occur for a mixed-mode loading and the lowest for torsion. 

 

 

Figure 5. Results Ra and Sa by type of loading. 

Figures 6a-c present the results of all specimens divided into three analysed ways of identifying 

the fracture, i.e. total area, propagation profile, and rupture profile, respectively. For the results of 

measurements of the total fracture surface Sa parameter (likewise Ra for propagation profile), the 

highest values as well as the greatest dispersion were obtained for bending-torsion. The 10HNAP 

specimens are the exception. For this case, the torsion Ra parameter had the highest values (see Table 

3). In the case of torsion, for which only measurements of samples (a) and (c) were taken, the latter 

take the lowest values. 
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a)           b) 

 

c) 

Figure 6. Surface parameters for the investigated fracture areas: (a) total area; (b) propagation 

profile; and (c) rupture profile. 

Table 3. List of maximum and minimum values of surface parameters for individual reference area. 

Method 

Specimen  

 

 

10HNAP S355J2  2017A  

Total area max. BT  BT BT 

Propagation profile max. BT BT BT 

Rupture profile max. T  BT BT 

Total area min. B  B T 

Propagation profile min. B B T 

Rupture profile min. B B T 

BT: Bending-torsion; T: torsion; B: bending 
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Table 4. Median extremum for individual reference areas. 

Reference area /median extremum bending bending-torsion torsion 

Total area MIN. MAX.  

Propagation profile MIN.  MAX. 

Rupture profile MIN.  MAX. 

 

In statistical terms, the dependence of surface parameters on the type of loading was presented 

using box plots with, among other things, percentiles. On each box (see Fig. 7), the central mark 

indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 

respectively. The whiskers extend to the most extreme data points not considered outliers, and the 

outliers are plotted individually using the '+' symbol.  

 
a)                                         b) 

 
c) 

 

Figure 7. Box plots for results: (a) total fracture area; (b) propagation profile; (c) rupture profile. 

As we can see in Figure 7a, the median Sa for all bending specimens is approximately 100 μm. 

The minimum value is about 10 μm, and the maximum value is about 550 μm. For bending-torsion 

and torsion, respectively, these values are median Sa 340 μm and 150 μm, minimum value 110 μm 

and 100 μm, and maximum value 750 μm and 270 μm. Next, taking into account only the medians 

for propagation area (Figure 6b), Ra expressed in micrometres equals about 5 for bending, 10 for 

bending-torsion, and 28 for torsion loadings. For rupture area, the measurements are 7 μm, 14 μm 

and 21 μm. Table 4 summarises the medians extremum of measurement results for all specimens 

broken down into reference area and loading scenario. Clear and evident relationships between the 

size of surface parameters for individual analysed fracture zones are shown in Figures 2-6. In 

summary, these relationships can be expressed as: total area > rupture area > propagation area. 

5. Conclusions 
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This study presents methods for metrological characterisation and comparison of fatigued 

fractures using post-failure measurements. Combining various techniques and fields of science 

ensure a more complete analysis of the issue. Investigation of the entire fracture surface taking into 

account various factors gives greater opportunities to find the causes of failures. The proposed 

methodologies were tested under different loading histories, namely bending, torsion, and combined 

bending-torsion; and different materials (structural steels and aluminium alloy); and specimen 

geometries (smooth and notched samples). Defects can be associated with the formation of 

propagation area, rupture area and total fracture area due to fundamentally different mechanisms 

and driving force for the process zone evolution and the crack advance. However based on the 

undertaken analysis and comparisons, the following general conclusions can be drawn: 

• Entire total area method is more universal and burdened with less error than the subjective 

method of measurement in individual fracture zones for various shape-types of fatigue-

tested samples; 

• This method is suitable for assessment and supplements the testing of materials damaged as 

a result of fatigue loads, for various shapes of the tested detail; 

• Both profile and areal surface parameters are essential for fatigue fracture mechanism 

characterization. However, if we compare profiles R- roughness and areal S- roughness 

parameters, the latter give complete information, because a single line cannot identify pits or 

valleys, and shows the relationship between surface function. 3D measurements give far 

more comprehensive information than 2D profiles or sections; 

• For both zones (propagation and rupture), median of Ra grows along with the increase in the 

proportion of torsional loadings. Otherwise, for total area, the mixed mode caused the 

highest average Sa value, and this conclusion can be considered appropriate given the greater 

accuracy of this method. This is also confirmed by the results for the individual types of 

specimens; 

• For all specimens, measured texture parameters decreased in the following order: total area, 

rupture area, and propagation area. 

Further research should focus on the suitability of entire total area method for a wider range of 

metallic and composite materials, and types of loadings. 
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