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Abstract: Advances in cosmology and astronomical observations over the last two decades have   

revealed significant tensions and many ambiguities within the standard model of cosmology of a 

spatially flat Universe, the lambda cold dark matter model. Moreover, the recent Planck Legacy 2018 

(PL18) release has confirmed the presence of an enhanced lensing amplitude in the cosmic micro-

wave background (CMB) power spectra, which prefers a positively curved early Universe with a 

confidence level higher than 99%. This paper addresses the study of a quantum mechanism that 

could replace the concept of dark matter and energy by considering a primordial curvature as pre-

ferred by the PL18 release while yielding the present-day spatial flatness. The implied primordial 

curvature is incorporated as the background curvature to extend the field equations in terms of the 

brane-world modified gravity. The Universe evolution is modelled by utilizing a new wavefunction 

of the Universe that propagates in the bulk with reference to the scale factor of the early Universe 

and its radius of curvature upon the emission of the CMB, which revealed both positive and negative 

solutions. This characteristic implies that a pair of entangled wavefunctions was created and evolved 

in opposite directions as a manifestation of distinct matter and antimatter sides of the Universe. The 

wavefunction indicates a nascent hyperbolic expansion away from early energy is followed by a first 

phase of decelerating expansion during the first ~10 Gyr, and then, a second phase of accelerating 

expansion in reverse directions, whereby both sides free-fall towards each other under gravitational 

acceleration. The predicted background curvature evolution demonstrates the fast orbital speed of 

outer stars owing to external fields exerted on galaxies as they travelled through earlier conformally 

curved spacetime. Finally, the wavefunction predicts an eventual phase of rapid spatial contraction 

that culminates in a Big Crunch, signaling a cyclic Universe. These findings reveal that early plasma 

could be separated and evolved into distinct sides of the Universe that collectively and geometrically 

inducing its evolution, physically explaining the effects attributed to dark matter and energy.  

Keywords: Duality; Antimatter; Brane-World Modified Gravity. 

1. Introduction  

The Planck Collaboration released in 2018 the most thorough spectrum of the cosmic 

microwave background (CMB), the first light in the Universe. The Planck Legacy 2018 

(PL18) release has confirmed the presence of an enhanced lensing amplitude in the CMB 

power spectra, which prefers a positively curved early Universe with a confidence level 

higher than 99% [1,2]. Although the spatial flatness could be recovered by combining the 

CMB lensing and baryon acoustic oscillation (BAO) data, concerns were raised regarding 

the reliability of this combination because the curvature parameter tension between these 

sets of data was measured to be 2.5 to 3σ [3]. In contrast, the closed Universe can naturally 

elucidate the anomalous lensing amplitude, aid a large-scale cut-off in primaeval density 

fluctuations [1] and agree with low CMB anisotropy observations [4,5].  

Despite the successes of the lambda cold dark matter model, it masks large areas of 

ambiguity [6]. It was built based on unclear ingredients, namely, inflation, dark matter 

and energy, which have not been identified or fully understood despite extensive research 

efforts over decades [7–9]. It leaves numerous enigmas including the inferred baryon 

asymmetry, the fine tuning and coincidence problems, etc [10–12]. Moreover, advances in 

cosmology and enhanced accuracy of observations have revealed inconsistencies among 

key parameters of the model; notably, the Hubble tension at 4 to 6σ [13,14].  
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This paper addresses the study of a quantum mechanism that could replace the con-

cept of dark matter and energy by considering a primordial curvature as preferred by the 

PL18 release while yielding a present-day spatial flatness. The primordial curvature and 

its evolution over the conformal time is incorporated to extend the field equations in terms 

of brane-world modified gravity in order to approach the problems of accelerated expan-

sion and fast orbital speed of outer stars from a new perspective. This paper is organised 

as follows. Section 2 presents extended field equations, Sections 3 and 4 discuss the Uni-

verse model and its evolution. Section 5 presents spiral galaxy formation and rotation. 

Section 6 discusses the Universe minimal radius. Finally, Section 7 concludes this work 

and suggests future works.  

2. Field Equations for Conformally Curved Spacetime 

The recent PL18 release has preferred a positively curved early Universe, that is, is a 

sign of a background curvature or a curved bulk. To incorporate the bulk curvature and 

its evolution over conformal time, a modulus of spacetime deformation, 𝐸𝐷, is introduced 

based on the theory of elasticity [15]. The modulus can be expressed in terms of the bulk 

resistance to the localized curvature that is induced by celestial objects by using Einstein 

field equations or in terms of the bulk field strength by using the Lagrangian formulation 

of the energy density exists in the bulk as a manifestation of vacuum energy density as 

𝐸𝐷 =
𝑇𝜇𝜈 − 𝑇𝑔𝜇𝜈/2 

𝑅𝜇𝜈/ℛ
=
−ℱ𝜆𝜌ℱ

𝜆𝜌

4𝜇0
 (1) 

where the stress-energy tensor 𝑇𝜇𝜈 of trace 𝑇 signifies the stress while the strain is signi-

fied by Ricci curvature tensor 𝑅𝜇𝜈 as the change in the curvature divided by the scalar of 

the bulk curvature ℛ. ℱ𝜆𝜌 is the field strength tensor and 𝜇0 is vacuum permeability. By 

incorporating the bulk influence, the Einstein–Hilbert action can be extended to 

 𝑆 = 𝐸𝐷∫[
𝑅𝜇𝜈𝑔

𝜇𝜈

ℛ𝜇𝜈�̃�
𝜇𝜈
+
𝐿𝜇𝜈𝑔

𝜇𝜈

ℒ𝜇𝜈�̃�
𝜇𝜈
 ] √−𝑔 𝑑4𝜌 (2) 

As the modulus, 𝐸𝐷, is constant with regards to the cloud-world action under the constant 

vacuum energy density condition, and by considering the expansion of the bulk over the 

conformal time owing to the Universe expansion (scale factor evolution) and its implica-

tion on the field strength of the bulk, a dual-action concerning the conservation of energy 

on global (bulk) and local (cloud-world) scales can be introduced as 

                                                                                  𝑆 = ∫ [
−ℱ𝜆𝜌�̃�

𝜆𝛾ℱ𝛾𝛼�̃�
𝜌𝛼

4𝜇0
]√−�̃�

 

𝐵

 ∫ [
𝑅𝜇𝜈𝑔

𝜇𝜈

ℛ𝜇𝜈�̃�
𝜇𝜈
+
𝐿𝜇𝜈𝑔

𝜇𝜈

ℒ𝜇𝜈�̃�
𝜇𝜈
]

 

𝐶
√−𝑔 𝑑4𝜌 𝑑4σ (3) 

where 𝑅𝜇𝜈 is Ricci curvature tensor representing the localized curvature induced in the 

bulk by a celestial object that is regarded as a 4D relativistic cloud-world of metric 𝑔𝑢𝑣 

and Lagrangian density 𝐿𝜇𝜈 whereas ℛ𝜇𝜈 is the curvature tensor of 4D bulk of metric �̃�𝜇𝜈 

and Lagrangian density ℒ𝜇𝜈  as its internal stresses and momenta reflecting its curvature. 

The action can be further extended in terms of quantum wave interactions as follows 

                                             𝑆 = ∫ [
−ℱ𝜆𝜌�̃�

𝜆𝛾ℱ𝛾𝛼�̃�
𝜌𝛼

4𝜇0
]√−�̃�

 

𝐵

∫ [
𝑅𝜇𝜈𝑔

𝜇𝜈

ℛ𝜇𝜈�̃�
𝜇𝜈
]√−𝑔

 

𝐶

∫ [
𝑝𝜇𝑝𝑣𝑞

𝜇𝜈

𝜋𝜇𝜋𝑣𝑔
𝜇𝜈
+
𝐿𝛼𝛽𝑞

𝛼𝜆𝐿𝜆𝛾𝑞
𝛽𝛾

𝓃ℒ𝜇𝜈𝑔
𝜇𝜈

]
 

𝑄
√−𝑞 𝜗2𝑑12𝜌    (4) 

where 𝐿𝛼𝛽𝐿
𝛼𝛽 are Lagrangian densities of two entangled quantum fields of a metric 𝑞𝜇𝜈 

and four-momentum 𝑝𝜇𝑝
𝜈  whereas 𝜋𝜇𝜋

𝑣  are the four-momentum of vacuum energy 

density of a Lagrangian density ℒ𝜇𝜈𝑔
𝜇𝜈, 𝜗2 is a dimensional-hierarchy factor and 𝓃 is a  

proportionality constant. 
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By applying the principle of stationary action for the Equation (3) in [16] yields  

𝑅𝜇𝜈

ℛ
−
1

2

𝑅

ℛ
𝑔𝜇𝜈 −

𝑅ℛ𝜇𝜈

ℛ2
+
𝑅(𝒦𝜇𝜈 −

1
2
𝒦�̂�𝜇𝜈) − ℛ(𝐾𝜇𝜈 −

1
2
𝐾�̂�𝜇𝜈)

ℛ2
=
�̂�𝜇𝜈

𝒯𝜇𝜈
  (5) 

As visualized in Section 5, these field equations can be interpreted as describing the 

flow and interaction of a 4D relativistic cloud-world of intrinsic 𝑅𝜇𝜈 and extrinsic 𝐾𝜇𝜈 

curvatures and the 4D conformal bulk of intrinsic ℛ𝜇𝜈 and extrinsic 𝒦𝜇𝜈 curvatures. The 

equations can indicate that the induced curvature, 𝑅, of the cloud-world over the bulk 

background (existing) curvature, ℛ, equals the ratio of the cloud-world imposed energy 

density and its flux, �̂�𝜇𝜈, to the bulk vacuum energy density and its flux, 𝒯𝜇𝜈, throughout 

the expanding/contracting Universe. Because ℛ𝜇𝜈/ℛ = ℛ𝜇𝜈/ℛ𝜇𝜈�̃�
𝜇𝜈 = �̃�𝜇𝜈, which reflects 

the bulk intrinsic curvature, and by transforming the boundary term of the bulk as in [16], 

comparing Equation (1) with Einstein field equations and then substituting to Equations 

(5), the field equations can be simplified to  

     𝑅𝜇𝜈 −
1

2
𝑅�̂�𝜇𝜈 − (𝐾𝜇𝜈 −

1

2
𝐾�̂�𝜇𝜈) =

8𝜋𝐺ℛ 
𝑐4

�̂�𝜇𝜈  (6) 

where �̂�𝜇𝜈 = 𝑔𝜇𝜈 + 2�̃�𝜇𝜈 + 2�̿�𝜇𝜈  is the conformally transformed metric tensor counting 

for the contributions of the cloud-world metric, 𝑔𝜇𝜈, in addition to the contribution from 

the intrinsic and extrinsic curvatures of the bulk based on �̃�𝜇𝜈 and �̿�𝜇𝜈 respectively. The 

effective Newtonian parameter 𝐺ℛ reflect the bulk curvature and can accommodate its 

evolution over the conformal time against constant 𝐺  for a special flat spacetime case. 

�̂�𝜇𝜈 ≔ (2𝐿𝜇𝜈 − 𝐿�̂�𝜇𝜈) − (2𝑙𝜇𝜈 − 𝑙�̂�𝜇𝜈) is an extended conformal stress-energy tensor that is 

defined by including the Lagrangian density of the energy density and flux of the cloud-

world, 𝐿𝜇𝜈, and the electromagnetic energy flux from its boundary, 𝑙𝜇𝜈, over conformal 

time whereas the term (𝐾𝜇𝜈 − 𝐾�̂�𝜇𝜈/2) represents the corresponding extrinsic curvature 

of the cloud-world’s boundary. The field equations could remove the singularities and 

satisfy a conformal invariance theory. In addition, by applying the principle of stationary 

action for Equation (4) in [16], the equations in terms of quantum wave interactions are 

                                                                          �̂�𝜇 −
1

2
�̂�𝜈𝜉𝜇𝜈 − (𝐽

𝜇𝐴𝜇 −
1

2
𝐽𝜇𝐴𝜈𝜁𝜇𝜈) =

1

2

ℏ𝐺ℛ
𝑐2𝑔𝑅

�̂�𝜇  (7) 

where �̂�𝜇 is the momentum operator, �̂�𝜇 is the stress-energy (gravitational) operator and 

𝜉𝜇𝜈 = 𝑞𝜇𝜈 + 2�̃�𝜇𝜈 + 2�̿�𝜇𝜈  is the conformally transformed metric tensor counting for the 

contributions of the quantum cloud’s metric, 𝑞𝜇𝜈, in addition to the contribution from the 

intrinsic and extrinsic curvatures of the parent-world given by �̃�𝜇𝜈 and �̿�𝜇𝜈 metrics, re-

spectively. Accordingly, the quantized field equations are 

                                                                          𝑖ℏ𝛾𝜇𝜕𝜇𝜓 −
1

2
𝑖ℏ𝛾𝜇𝜕𝜈𝜉𝜇𝜈𝜓 − (𝐽

𝜇𝐴𝜇 −
1

2
𝐽𝜇𝐴𝜈𝜁𝜇𝜈)𝜓

 =
1

2

ℏ

𝑥𝜇
𝑅𝜕𝑅𝜓  (8) 

These field equations reduce to quantum electrodynamics for undeformed configuration 

of the quantum cloud in a flat spacetime background as presented in [16], where 𝛾𝜇 are 

Dirac matrices and 𝜕𝑅𝜓 is part of the gravitational operator based on a plane wavefunc-

tion, 𝜓 = 𝐴𝑒−𝑖(𝜔𝑡−𝑘𝑥), which can be expressed by utilizing Equation (7) as 

                                                                  𝜓 = 𝐴 𝑒𝑥𝑝
−𝑖𝑅2

2𝑀𝑐2
 𝑇𝜇𝑥

𝜇 (9) 

where 𝑇𝜇 is the stress-energy of the quantum cloud while the gravitational field strength 

of the parent cloud-world of mass 𝑀 and at radius 𝑅 is 𝑔𝑅 = 𝑀𝐺ℛ/𝑅
2. 
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3. Early Universe Closed Metric Model 

The Friedmann–Lemaître metric is the standard cosmological metric model, which 

assumes an isotropic and homogenous Universe [17,18], where the isotropy and homoge-

neity of early Universe plasma based on the CMB are consistent with this metric. The PL18 

preferred a closed early Universe; thus, the plasma reference radius of curvature 𝑟𝑃 upon 

the emission of the CMB and the corresponding early Universe scale factor 𝑎𝑃 at the ref-

erence cosmic time 𝑡𝑝 are incorporated to reference this metric shown in Figure 1. 

      
 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1. The hypersphere of a positively curved early Universe plasma upon the CMB 

emissions. 𝑟𝑝 is the reference radius of the intrinsic curvature and 𝑎𝑝 is the reference 

scale factor of the early Universe. �̂�𝑢 and 𝑡𝑣 are the normal and tangential vectors on the 

manifold boundary respectively regarding the extrinsic curvature. 

The four-dimension spacetime interval of the referenced metric tensor 𝑔𝜇𝜈 is 

𝑑𝑠2 = 𝑐2 𝑑𝑡2 −
𝑎2

𝑎𝑝
2

(

 
𝑑𝑟2

1 −
𝑟2

𝑟𝑝
2 
+ 𝑟2 𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃 𝑑𝜙2

)

  (10) 

where 𝑎/𝑎𝑝 is a new dimensionless scale factor. At the reference imaginary time 𝜏𝑝, there 

is no conformal distortion yet, i.e., the global and local boundaries are the same. By using 

Christoffel symbols of the second kind for 𝑔𝑢𝑣 in Equation (10), the Ricci curvature tensor 

and scalar are (derivations in Appendix A): 

𝑅𝑡𝑡 = −3
�̈�

𝑎
, 𝑅𝑟𝑟 =

1

𝑐2
(
𝑎�̈�

𝑎𝑝
2
+
2�̇�2

𝑎𝑝
2
+
2𝑐2

𝑟𝑝
2
)/ (1 −

𝑟2

𝑟𝑝
2
), 

𝑅𝜃𝜃 =
𝑟2

𝑐2
(
𝑎�̈�

𝑎𝑝
2
+
2�̇�2

𝑎𝑝
2
+
2𝑐2

𝑟𝑝
2
) , 𝑅𝜙𝜙 =  

𝑟2𝑠𝑖𝑛2𝜃

𝑐2
(
𝑎�̈�

𝑎𝑝
2
+
2�̇�2

𝑎𝑝
2
+
2𝑐2

𝑟𝑝
2
), 

(11) 

                             The Ricci scalar curvature is 

𝑅 = 𝑅𝜇𝜈 𝑔
𝜇𝜈 = −

6

𝑐2
(
�̈�

 𝑎 
+
�̇�2

 𝑎2
+
𝑐2 𝑎𝑝

  2

𝑎2 𝑟𝑝
 2
). (12) 

where the dotes are time derivatives. 

a 
𝑟𝑝 

𝑟 

𝜃 

𝜙 

𝑎𝑝 

�̂�𝑢 𝑡𝑣⃗⃗⃗⃗   

𝑡𝑤⃗⃗⃗⃗⃗  
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By solving the field equations for a perfect fluid given by 𝑇𝜇𝜈 = (𝜌 + 𝑃/𝑐
2) 𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 

[19–21] and substituting Equations (10)-(12), the Friedmann equations that count for the 

plasma reference radius and reference scale factor are 

𝐻2 ≡
�̇�2

𝑎2
= 
8𝜋𝐺ℛ𝜌

3
 −
𝑐2𝑎𝑝

  2

𝑎2𝑟𝑝
 2

 (13) 

�̇� ≡
�̈�

𝑎
= −

4𝜋𝐺ℛ
3

(𝜌 + 3
𝑃

𝑐2
) 

(14) 

where 𝐻, 𝑃, and 𝜌 are Hubble parameter, pressure, and density respectively. By utilizing 

the imaginary cosmic time, 𝜏 = 𝑖𝑡, the referenced Friedman equations can be solved at the 

reference time 𝜏𝑝 by rewriting Equation (13) in terms of the conformal time in its para-

metric form, 𝑑𝜂 =
𝑎𝑝

𝑎
𝑑𝑡 (where ȧ =

𝑑𝑎

𝑑𝑡
); thus, 𝑑𝜂 =

𝑎𝑝

aȧ
𝑑𝑎:  

∫ 𝑑𝜂
𝜂

0

= ∫ 𝑎𝑝

2𝜋

0

(
8𝜋𝐺𝑝𝜌𝑝𝑎𝑝

  3

3
𝑎 −

𝑐2𝑎𝑝
  2

𝑟𝑝
2
𝑎2)

−1/2

 𝑑𝑎 
(15) 

where 𝜌 = 𝜌𝑝𝑎𝑝
3/𝑎3 [22]. By integrating, the dimensionless scale factor evolution is 

𝑎(𝜂)

𝑎𝑝
=
𝐺𝑝𝑀𝑝
𝑐2𝑟𝑝

(1 − 𝑐𝑜𝑠
𝑐

𝑟𝑝
𝜂) (16) 

where 𝑀𝑝 =
4

3
𝜋 𝜌𝑝𝑟𝑝

  3 is the early Universe plasma mass. The gravitational radius of early 

Universe is 𝐺𝑝𝑀𝑝/𝑐
2. The amplitude of Equation (16) can be rewritten in terms of early 

Universe energy density 𝐸𝑝  (total energy) and the modulus 𝐸𝐷  representing vacuum  

energy density by using Equations (1) as follows 

𝑎(𝜂)

𝑎𝑝
=
𝐸𝑝
6𝐸𝐷

(1 − 𝑐𝑜𝑠
𝑐

𝑟𝑝
𝜂) (17) 

Additionally, the evolution of the imaginary cosmic time 𝜏(𝜂) can be obtained by inte-

grating the scale factor over the expansion speed 𝐻𝜂 while initiating at the reference im-

aginary time 𝜏𝑝 with the corresponding spatial scale factor 𝑎𝑝. By rewriting Equation 

(17) in terms of the Hubble parameter at 𝜏𝑝 as 𝑑𝜏 = 𝑖
𝑑𝑎(𝜂)

𝐻𝑎𝑝
, gives 

∫ 𝑑𝜏
𝜏

𝜏𝑃

= 𝑖∫
𝐸𝑝

6𝐻𝜂𝐸𝐷 
(1 − 𝑐𝑜𝑠

𝑐

𝑟𝑝
𝜂)𝑑𝜂

𝜂

0

 (18) 

By performing the integration, the imaginary time evolution is 

𝜏(𝜂) = 𝑖
𝐸𝑝

6𝐻𝜂𝐸𝐷 
(
𝑐

𝑟𝑝
𝜂 − 𝑠𝑖𝑛

𝑐

𝑟𝑝
𝜂) + 𝜏𝑝 (19) 

According to the law of energy conservation, the covariance divergence of the stress-en-

ergy tensor vanishes, ∆𝑣𝑇
𝑢𝑣, thus, 

�̇�

a
𝑇𝑢
𝑢 + 3

�̇�

a
𝜌 − 𝑖

∂𝜌

∂𝜏
= 0, 3 (𝜌 +

𝑃

𝑐2
) 
�̇�

a
− 𝑖

∂𝜌

∂𝜏
= 0. By com-

bining these outcomes, integrating, and substituting the spatial scale factor rate in Equa-

tion (17) to their outcome, the matter density evolution is  

𝜌 (𝜂) = 𝐷𝑝 (1 − 𝑐𝑜𝑠
𝑐

𝑟𝑝
𝜂 )

−3

 (20) 

where 𝐷𝑝 is a constant.  
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According to Equation (14), the acceleration/deceleration of the Universe expansion, �̈� , 

relies on the evolution in both the Universe’s density and its scale factor. By rewriting 

Equation (14) in terms of the Hubble parameter rate, �̇�, by its definition at 𝜏𝑝 as  

∫ �̇�𝜂

𝐻

𝐻𝑃

= ∫ −
4𝜋𝐺𝑝𝐷𝑝 

3𝑎𝑝
(1 − 𝑐𝑜𝑠

𝑐

𝑟𝑝
𝜂 )

−3

𝑑𝜂
𝜂

0

 
(21) 

By integrating using the Weierstrass substitution, the Hubble parameter evolution is 

𝐻𝜂,𝑚 = 𝐻𝑚 (
1

3
𝑐𝑜𝑡3

𝑐

2𝑟𝑝
𝜂 + 𝑐𝑜𝑡

𝑐

2𝑟𝑝
𝜂) + 𝐻𝑝 (22) 

where 𝐻𝑚 and 𝐻𝑝 are integration constants. The Hubble parameter evolution for radia-

tion-only can be obtained by using Equations (14) and the procedure of Equation (20): 

𝐻𝜂,𝑟 = 𝐻𝑟 (
1

5
𝑐𝑜𝑡5

𝑐

2𝑟𝑝
𝜂 +

2

3
𝑐𝑜𝑡3

𝑐

2𝑟𝑝
𝜂 + 𝑐𝑜𝑡

𝑐

2𝑟𝑝
𝜂) + 𝐻𝑝 (23) 

where  𝐻𝑟 is a constant. The quantized field equations in Equation (8) can be interpreted 

as conceptualizing that a 4D conformal bulk, as a manifestation of vacuum energy, em-

beds a 4D relativistic cloud-world representing a celestial object of a conventional time 

flow that in turns encapsulates 4D relativistic quantum clouds and so forth. As quantum 

time is quantized in the conventional time, analogously, the latter should be quantized in 

the conformal time. The early Universe metric can be expressed in terms of conformal time 

as 𝑑𝑠2 = 𝑎2 𝑎𝑝
2⁄ (𝑐2𝑑𝜂2 − 𝑑𝑟2 (1 − 𝑟2 𝑟𝑝

2)⁄⁄ − 𝑟2 𝑑𝜃2 − 𝑟2𝑠𝑖𝑛2𝜃 𝑑𝜙2) . The wavefunction 

of the Universe could be obtained by utilizing the quantized field equations as  

                            𝑖ℏ𝛾𝜇𝜕𝜇𝜓 −
1

2
𝑖ℏ𝛾𝜇𝜕𝜈

𝑎2

𝑎𝑝
2
(𝑐2 − (1 −

𝑟2

𝑟𝑝
2
)

−1

− 𝑟2 − 𝑟2𝑠𝑖𝑛2𝜃)𝜓 − (𝐽𝜇𝐴𝜇 −
1

2
𝐽𝜇𝐴𝜈𝜁𝜇𝜈)𝜓 =

1

2

ℏ

𝑥𝜇
𝑅𝜕𝑅𝜓     (24) 

where 𝜂 = 𝑎𝑝𝑡/𝑎 is the conformal time. Also, The wavefunction with respects to its ref-

erence value 𝜓𝑝 can be obtained by using the scale factor and imaginary time evolution:  

             
𝜓(𝜂)

𝜓𝑝
= ∓

𝐸𝑝
6𝐸𝐷 

((1 − 𝑐𝑜𝑠
𝑐

𝑟𝑝
𝜂)

2

+
𝑐2

𝐻𝜂
  2𝑎𝑝

 2
(
𝑐

𝑟𝑝
𝜂 − 𝑠𝑖𝑛

𝑐

𝑟𝑝
𝜂)

2

)

1/2

𝑒𝑥𝑝 𝑐𝑜𝑡−1|𝐻𝜂|
𝑎𝑝 − 𝑎𝑝 𝑐𝑜𝑠 𝑐𝜂 𝑟𝑝⁄

𝑐2𝜂 𝑟𝑝⁄ − 𝑐 𝑠𝑖𝑛 𝑐𝜂 𝑟𝑝⁄

 

  (25) 

where 𝐸/6𝐸𝐷 in denotes a new dimensionless energy parameter as the ratio of the early 

Universe energy density 𝐸𝑝 to the vacuum energy density 𝐸𝐷. 

 

4. Evolution of the Universe  

The positive and negative solutions of the wavefunction 𝜓𝐿  imply that matter and 

antimatter of the plasma evolved in opposite directions. The evolution of the Universe 

according to the wavefunction for both matter and radiation-only in addition to the light 

cone are shown in Figure 2a; where only the positive solution of one Universe side is 

shown due to their symmetry. A chosen mean evolution value of the Hubble parameter 

of ~70 km∙s-1∙Mpc-1 and a phase transition of expansion at an age of ~10 Gyr were ap-

plied to tune the integration constants of the model; the predicted energy density param-

eter is ~1.16. Further, the Hubble parameter evolution and its rate shown in Figure 2b. 
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According to the wavefunction (Figure 2a, orange curve), the cosmic evolution can be in-

terpreted as comprising three distinct phases. Firstly, matter and antimatter sides expand 

in opposite directions away from early plasma during the first phase perhaps due to the 

phenomenon of plasma drift in the presence of electromagnetic fields. The expansion 

speed shown in Figure 2b (blue curve) starts with a hyperbolic rate at the nascent stages, 

then, the rate decreases due to gravity between the two sides, until it reached its minimal 

at the phase transition at an age of ~ 10 Gyr. 
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 (a)  (b) 

Figure 2. (a) Evolution of the wavefunction of matter of one side of the Universe, radiation only wavefunction, in 

addition to the straight line of light cone (diagram is not to scale). (b) The Hubble parameter 𝐻 evolution and its rate.  

However, the matter wavefunction reverses its direction in the second phase with both 

sides of matter and antimatter entering a state of free-fall towards each other at gravita-

tional acceleration possibly causing current accelerated expansion; the Hubble parameter 

starts to increase in this phase.  

Figure 3a shows a visualization of the wavefunction possibility explaining the dark 

flow while the apparent Universe geometry due to the gravitational lensing effects in Fig-

ure 3b is possibility matching the SLOAN Digital Sky Survey data virtualization [23]. 

  

               

Figure 3. (a) A schematic 2D spatial and 1D temporal dimensions of the predicted cosmic topology of both sides where 

the expansion at the first phase is away from the early plasma while the second phase is corresponding to the reversal 

of the expansion direction. The future third phase corresponds to a spatial contraction leading to a Big Crunch. (b) The 

apparent topology during the first and second phases caused by the gravitational lensing effects. 
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According to mechanics, the minus sign of the expansion speed in the second phase 

(Figure 2b, blue curve) indicates an opposite direction. In addition, the opposite signs of 

the acceleration (Figure 2b, green curve) and the speed in the first phase indicate a slowing 

down while the matching signs in the second phase indicate the speed of expansion is 

increasing. Interestingly, the matter wavefunction predicts a final phase of spatial contrac-

tion that appears after ~18 Gyr, which could be because of the future high concentration 

of matter/antimatter at both sides that culminates in a Big Crunch, signaling a cyclic Uni-

verse. On the other hand, the radiation-only according to its wave function, which prop-

agates faster than matter, is predicted to pass from a side to another side (See Figure 2a, 

blue curve), which could explain why the CMB can be observed even though matter 

moves much slower than light.  

Regarding the present space-time flatness, the simulation of the congruence of space-

time worldlines coupled with an initial flat or positive curvature has produced a curved 

geometry in the first phase, which is in agreement with the PL18 release [1,3] where the 

ends of the worldlines are not equal at any age during the first phase shown in Figure 4a. 

Conversely, at the accelerated expansion phase in the reverse directions, the simulation of 

the worldlines coupled with initial positive curvature produced equal worldlines or a flat 

spacetime as shown in Figure 4b. 

       
 

(a) 

 

 
                  (b) 

Figure 4. Evolution of spacetime worldlines at (a) early and (b) present Universe.  

This is because that the worldlines that propagate the furthest due to initial curvature at 

the first phase, take longest paths at the second phase due to the reverse directions and 

vice versa. Further, Figure 5 shows 3D spatial and 1D temporal view of the dual Universe. 

 

 

 

 

 
                           (a)  (b) 

Figure 5. A schematic in 3D spatial and 1D temporal dimensions of both Universe sides. (a) 1st (b) 2nd and 3rd phases. 
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5. Galaxy Formation, Evolution, and Rotation under External Fields 

Observations from the Deep Extragalactic Evolutionary Probe 2 Survey of a large 

sample of disk galaxies found that the motion of galaxies was steadily getting in order 

with their rotation velocity increasing over the last eight billion years [24,25]. In addition, 

galactic rotation curves were found to be influenced by external fields [26] and follow the 

baryonic Tully-Fisher relation [27,28]. On the other hand, several studies reported that 

some galaxies are missing dark matter [29–31]. To get insights from these observations 

while aiming to present a new galaxy formation scenario considering the background cur-

vature as preferred by the PL18 release by utilizing the extended field equations as 4D 

relativistic Cloud-World that flows and spins through the 4D conformal bulk of a curva-

ture evolving over the conformal time. The wavefunction showed the early Universe ex-

panded hyperbolically at nascent stages.  

The entire contribution comes from the boundary term when calculating the black 

hole entropy using the semiclassical approach [10,11]. Applying this concept and by re-

arranging the field equations for this setting as 

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 −

𝑅ℛ𝜇𝜈

ℛ
=
8𝜋𝐺ℛ 
𝑐4

�̂�𝜇𝜈 −
𝑅(𝒦𝜇𝜈 −

1
2
𝒦�̂�𝜇𝜈) − ℛ(𝐾𝜇𝜈 −

1
2
𝐾�̂�𝜇𝜈)

ℛ2
= 0    (26) 

Equation (26) gives 

        𝑅𝜇𝜈 =
1

2
𝑅𝑔𝜇𝜈 + 𝑅

ℛ𝜇𝜈

ℛ
=
1

2
𝑅(𝑔𝜇𝜈 + 2�̃�𝜇𝜈) =

1

2
𝑅𝑔𝜇𝜈(1 + 2Ω

2) = 0         (27) 

where �̂�𝜇𝜈 = 𝑔𝜇𝜈 + 2�̃�𝜇𝜈  and �̃�𝜇𝜈 = ℛ𝜇𝜈/ℛ = ℛ𝜇𝜈/ℛ𝜇𝜈�̃�
𝜇𝜈  is the conformal bulk metric, 

which can be expressed as proportional to cloud-world metric 𝑔𝜇𝜈  as �̃�𝜇𝜈 = 𝑔𝜇𝜈Ω
2  by  

utilizing Ω2, the conformal transformation function. The conformally transformed metric 

�̂�𝜇𝜈 = 𝑔𝜇𝜈(1 + 2Ω
2) can be expressed as 

                   𝑑𝑠2 = −𝐴(𝑟)(1 + 2Ω2(𝓇, 𝑟))𝑐2𝑑𝑡2  + 𝑆2(𝐵(𝑟)(1 + 2Ω2(𝓇, 𝑟))𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃 𝑑𝜙2)  (28) 

where 𝐴 , 𝐵, 𝑆 and Ω2 are functions of the radius 𝑟; 𝑆 is a dimensionless conformal scale 

factor. The derived conformal metric in Appendix B is  

                  𝑑𝑠2 = (1 −
𝑟𝑠 

𝑟
−
𝓇𝑝
𝓇
)

(

 −𝑐2𝑑𝑡2 + 𝑆2 (
𝑑𝑟2

1 +
𝑟𝑠
2 
𝑟2
− 2

𝑟𝑠 
𝑟

+
𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2

1 −
𝑟𝑠 
𝑟
−
𝓇𝑝
𝓇

)

)

    (29) 

This metric reduces to the Schwarzschild metric in a flat background (𝓇 → ∞). In the case 

of PI18’s preferred early Universe positive curvature, the gravitational potential of the bulk 

can be expressed in terms of the early Universe plasma of mass, 𝑀𝑝, and 𝓇  denoting the 

radius of curvature of the bulk, where the bulk’s potential decreases with the Universe 

expansion and vanishes in the flat spacetime background (𝓇 → ∞). The minus sign of Ω2 

reveals a spatial shrinking through evolving in the conformal time, which agrees with the 

vortex model that can occur due to the high-speed spinning. The metric can be visualized 

by using Flamm's approach as 

 𝒲(𝓇, 𝑟)  = ∓∫

√(
𝑟𝑠 
𝑟 −

𝑟𝑠2 
𝑟2
−
𝓇𝑝
𝓇 )

(1−
𝑟𝑠 
𝑟 )

  𝑑𝑟 = ∓√𝑟𝑠(𝑟 − 𝑟𝑠 )−𝓇𝑝
𝑟2

𝓇
+ 𝒪 + 𝐶  (30) 

where 𝐶 is a constant and 𝒪 denotes less significant terms.  
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The visualization of Equation (30) of this scenario of the galaxy formation as a forced 

vortex due to the curvature of the background is shown in Figure 6, the evolution of the 

4D cloud-world of metric 𝑔𝜇𝜈 through its travel and spin in the conformal space-time of 

the 4D bulk of metric �̃�𝜇𝜈.    

  

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 6. The hypersphere of a compact core of a galaxy (the red-orange 4D cloud-world) along with its travel and 

spin through the conformal spacetime (the blue-purple 4D bulk representing the bulk of distinctive curvature 

evolving over the conformal time. 
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This scenario of galaxy formation indicates that the core of the galaxy forms a central 

event horizon leading to opposite traversable wormholes spatially shrinking through the 

conformal time in the bulk. The galaxy and its core form at the same process while the gas 

clouds outside the core would form the spiral arms where the fast-rotating core induces 

frame dragging [34]. This could explain the formation of supermassive compact cores with 

a mass of ~109 M⊙ at just 6% of the current Universe age [35]; thus, it could solve the black-

hole hierarchy problem. Further, the observation of the superluminal motion in the x-ray 

jet of M87 [37] could be travel through these traversable wormholes (vortices). These find-

ings are consistent with the observations of high-energy structures perpendicular to the 

central plane of the disk galaxies [38,39]. Additionally, orbiting a vortex can explain the 

orbit of the G2 cloud that just faced drag forces [41].  

To evaluate the influence of the spinning momentum and the curvature of the back-

ground on the core of the galaxy and the surrounding gas clouds (the spiral arms), a fluid 

simulation was performed based on Newtonian dynamics by using the Fluid Pressure and 

Flow software [40]. In this simulation, the fluid was deemed to represent the space-time 

continuum throughout incrementally flattening curvature paths representing conformal 

curvature evolution to analyze the external momenta exerted on objects flowing through-

out the incrementally flattening curvatures. The momenta yielded by the fluid simulation 

were used to simulate a spiral galaxy as a forced vortex (under external fields).  

 

 

 

 

 

Figure 7. (a) External fields exerted on a galaxy due to the space-time conformal curvature evolution. Green curves 

represent the curvature of space-time worldlines. Blue curves represent the simulated space-time continuum flux. (b) 

Simulation of spiral galaxy rotation. Blue represents the slowest tangential speeds and red represents the fastest speeds. 

The simulation shows that the tangential speeds of the outer parts of the spiral galaxy are 

rotating faster in comparison with the rotational speeds of the inner parts, which is consistent 

with observations of galaxy rotation. Since the rotation speed only depends on the galaxy 

mass and the background curvature, the findings are consistent with the baryonic Tully-

Fisher relation and the detected external fields.  
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6. Early Universe Boundary Contribution 

In the case of a closed early Universe, as preferred by PL18 [1,3,43], the gravitational 

contributions of the early Universe plasma boundary for high energy limits can be ob-

tained by using the boundary term in the extended field equations. At the reference im-

aginary time 𝜏𝑝, there is no conformal transformation. Therefore, the global 𝒦𝜇𝜈 and the 

local 𝐾𝜇𝜈 boundaries are the same. Accordingly, the boundary term in the extended field 

equations reduces to  

                       
𝑅 − ℛ

ℛ
(𝒦𝜇𝜈 −

1

2
𝒦�̂�𝜇𝜈) =

8𝜋𝐺𝑡 
𝑐4

𝑇𝜇𝜈 (31) 

For smooth hypersphere of early plasma, the induced metric �̂�𝜇𝜈 on its boundary is  

[�̂�𝜇𝜈] = 𝑑𝑖𝑎𝑔 (−𝑐
2,
𝑎2(𝑡)

𝑎𝑝
2
𝑅2,
𝑎2(𝑡)

𝑎𝑝
2
𝑅2𝑠𝑖𝑛2𝜃), (32) 

where 𝑅 is the extrinsic radius of curvature [32]. The extrinsic curvature tensor can be 

obtained by utilising the formula 𝒦𝑢𝑣 = −𝑡𝑣⃗⃗⃗⃗  . ∇𝑢�̂�𝑢 . Due to the smoothness of the hy-

persphere, the covariant derivative reduces to a partial derivative as 𝒦𝑢𝑣 = −𝑡𝑣⃗⃗⃗⃗  𝜕�̂�𝑢/𝜕𝑡𝑢⃗⃗⃗⃗⃗ 

[32]. The extrinsic curvature tensor at 𝜏𝑝 is 

[𝒦𝜇𝜈] = 𝑑𝑖𝑎𝑔 (0,−
𝑎2(𝑡)

𝑎𝑝
2
𝑅,− 

𝑎2(𝑡)

𝑎𝑝
2
𝑅𝑠𝑖𝑛2𝜃) (33) 

The trace of the extrinsic curvature is 𝒦 = 𝒦𝜇𝜈𝑞
𝜇𝜈 = 2/𝑅. To convert the extrinsic curva-

ture into intrinsic as follows 2/𝑅 ≡ 2/𝑟 𝑝
 2. 

The bulk curvature of early Universe plasma boundary at 𝜏𝑝 is ℛ𝑝 = 1/𝑟 𝑝
 2. On the 

other hand, the Ricci scalar curvature 𝑅𝑝 at 𝜏𝑝 can be written in terms of the difference 

between kinetic and potential energy densities whereby substituting Friedmann equa-

tions in Equations (13) and (14) into the Ricci scalar curvature in Equation (12) as 

𝑅𝑝 =
6𝐺𝑝 
𝑐2

(
4𝜋𝑃𝑝
𝑐2

−
4𝜋𝜌𝑝
3
) (34) 

By solving the boundary term for a perfect fluid given by 𝑇𝜇𝜈 = (𝜌 +
𝑃

𝑐2
) 𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 [19], 

and then substituting Equations (31) - (33) into the boundary term in Equation (31) as 

6𝐺𝑝 
𝑐2

(
4𝜋𝑃𝑝
𝑐2

−
4𝜋𝜌𝑝
3
) −

1
𝑟 𝑝
 2

1/𝑟 𝑝
 2 

(
−𝑐2

 𝑟 𝑝
 2
) = 8𝜋𝐺𝑝𝜌𝑝 (35) 

 By multiplying both sides by early Universe plasma volume 𝑉𝑝, yields 

𝑟𝑝
  =

4𝐺𝑝 𝑃𝑝𝑉𝑝

𝑐4
 (36) 

The reference radius of curvature 𝑟𝑝
  > 0 because any reduction in the early plasma vol-

ume causes an increase in its pressure, which can realise a singularity-free paradigm. The 

smallest possible reference radius of the early Universe plasma due to its boundary grav-

itational contributions can reveal that the early Universe expansion upon emission of the 

CMB could mark the beginning of the Universe from a previously collapsed one. This in 

agreement with the wavefunction prediction of an eventual phase comprising rapid spa-

tial contraction that culminates in a Big Crunch, signalling a cyclic Universe. 
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7. Conclusions and Future Works 

In this study, the background curvature is incorporated to extend the field equations 

where a closed early Universe model is considered by utilizing a referenced Friedmann–

Lemaître metric model incorporating the scale factor of the early Universe and its radius 

of curvature upon the emission of the CMB. The evolution of the Universe from early 

plasma is modelled by utilizing a new wavefunction of the Universe. The wavefunction 

revealed both positive and negative solutions. This characteristic implies that a pair of 

entangled wavefunctions was created and evolved in opposite directions as a manifesta-

tion of distinct matter and antimatter sides of the Universe.  

The wavefunction indicates a nascent hyperbolic expansion away from early energy 

is followed by a first phase of decelerating expansion during the first ~10 Gyr, and then, 

a second phase of accelerating expansion in reverse directions, whereby both sides free-

fall towards each other under gravitational acceleration. This can explain the effects at-

tributed to dark energy and the observed dark flow wheras dark energy was found either 

not constant or the Universe is expanding faster than estimated by the standard model. 

Additionally, the wavefunction predicted an eventual phase of rapid spatial contraction 

that culminates in a Big Crunch, signaling a cyclic Universe.  

The predicted background curvature evolution demonstrated the fast orbital speed 

of outer stars owing to external fields exerted on galaxies as they travelled through earlier 

conformally curved spacetime. This can explain the effects attributed to dark matter. The 

evolution of 𝐺ℛ could explain the galaxy formation without involving dark matter where 

it was larger during the first phase of expansion.  

The simulated spacetime worldlines during the decelerating phase were found to be 

flattened during the accelerating phase due to the reverse direction of the continuum 

worldlines. This can explain the current spacetime flatness. The radiation only worldlines 

predicted to pass from one side to another, which can explain why CMB radiation can be 

observed even though matter moves much slower than light while the apparent cosmic 

topology is possibly in accordance the SLOAN Digital Sky Survey data.  

The wavefunction predicted a final phase of spatial contraction leading to a Big 

Crunch, signalling a cyclic Universe while the derived smallest possible radius of the early 

Universe plasma due to its boundary gravitational contributions can reveal that the early 

Universe expansion upon emission of the CMB could mark the beginning of the Universe 

from a previous collapse one. These findings reveal that early plasma could be separated 

and evolved into distinct sides of the Universe that collectively and geometrically induc-

ing its evolution, physically explaining the effects attributed to dark matter and energy. 

Finally, this theoretical work will be tested against observational data in future works.  
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Appendix A 

The referenced metric and its inverse are  

𝑔𝜇𝜈 =

(

 
 
 
 
 
 
 
 
 
𝑐2 0 0 (1  0

2𝑎𝑝
𝑎  
) 0

0 −

(
𝑎2

𝑎𝑝
2)

(1 −
𝑟2

𝑟𝑝
2)

0 0

0 0 −(
𝑎2

𝑎𝑝
2
) 𝑟2 0

0 0 0 −(
𝑎2

𝑎𝑝
2
)𝑟2𝑠𝑖𝑛2𝜃 

)

 
 
 
 
 
 
 
 
 

 

 

 

 

(A.1) 

𝑔𝑢𝑣 =

(

 
 
 
 
 
 
 
 
 
 

1

𝑐2
0 0 (1  0

2𝑎𝑝
𝑎  
) 0

0 −

(1 −
𝑟2

𝑟𝑝
2)

(
𝑎2

𝑎𝑝
2)

0 0

0 0
−1

(
𝑎2

𝑎𝑝
2) 𝑟

2

0

0 0 0
−1

(
𝑎2

𝑎𝑝
2) 𝑟

2𝑠𝑖𝑛2𝜃
 

)

 
 
 
 
 
 
 
 
 
 

 

 

 

 

(A.2) 

 

The Ricci curvature tensor 𝑅𝑢𝑣 is solved using the Christoffel symbols of the second kind 

which is given by 𝛤   𝜇𝜈
𝜌
=
1

2
𝑔   
𝜌𝜆(𝜕𝜇𝑔𝜆𝜈 + 𝜕𝜈𝑔𝜆𝜇 − 𝜕𝜆𝑔𝜇𝜈) for the referenced metric tensor 

𝑔𝜇𝜈. The non-zero Christoffel symbols are: 

Γ   11
0 =

𝑎�̇� 

𝑐2𝑎𝑝
2 (1 −

𝑟2

𝑟𝑝
2)

 

 
 
(A.3) 

Γ    22
0 =

𝑟2𝑎�̇� 

𝑐2𝑎𝑝
2
 

 

(A.4) 

Γ    33
0 =   

𝑟2𝑎�̇� 𝑠𝑖𝑛2𝜃

𝑐2𝑎𝑝
2

 

 

(A.5) 

Γ    11
1 =

r

𝑟𝑝
2 (1 −

𝑟2

𝑟𝑝
2)

 
 

(A.6) 

Γ    22
1 = −r(1 −

𝑟2

𝑟𝑝
2
) 

 

(A.7) 
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Γ    33
1 = −r𝑠𝑖𝑛2𝜃 (1 −

𝑟2

𝑟𝑝
2
) 

 

(A.8) 

Γ    01
1 = Γ    02

2 = Γ    03
3 = Γ    10

1 = Γ    20
2 = Γ    30

3 =
�̇�

𝑎
 

 

(A.9) 

Γ    12
2 = Γ    21

2 = Γ    13
3 = Γ    31

3 =
1

𝑟
 

 

(A.10) 

Γ   33
2 = −𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠𝜃 (A.11) 

Γ   23
3 = Γ   32

3 = 𝑐𝑜𝑡  𝜃 (A.12) 

 

The Ricci curvature tensor given by 𝑅𝜇𝜈
 = 𝜕𝜆𝛤   𝜇𝜈

𝜆 − 𝜕𝜈𝛤   𝜇𝜆
𝜆 + 𝛤   𝜇𝜈

𝜌
𝛤   𝜌𝜆
𝜆 − 𝛤   𝜇𝜆

𝜌
𝛤   𝜌𝜈
𝜆 . The non-

zero components are solved as follows. 

The 𝑡 − 𝑡 component is 

𝑅 𝑡𝑡
 = 𝑅 00

 = −𝜕0Γ   01
1 − 𝜕0Γ    02

2 − 𝜕0Γ    03
3 − Γ    01

1 Γ    10
1 − Γ    02

2 Γ    20
2 − Γ    03

3 Γ    30
3  (A.13) 

𝑅 𝑡𝑡
 = −3𝜕𝑡

�̇�

𝑎
 − 3 (

�̇�

𝑎
)
2

= −3
 �̈�𝑎 −  �̇�2

𝑎2
− 3

 �̇�2

𝑎2
= −3

�̈�

𝑎
 

 

(A.14) 

The 𝑟 − 𝑟 component of the Ricci tensor is 

𝑅𝑟𝑟
 = 𝑅11

 = 𝜕0Γ  11
0 − 𝜕1Γ   12

2 − 𝜕1Γ    13
3 + Γ    11

0 Γ    02
2 + Γ    11

0 Γ    03
3 − Γ    10

1 Γ    11
0

+ Γ    11
1 Γ    12

2 + Γ    11
1 Γ    13

3  
(A.15) 

𝑅𝑟𝑟
 = 𝜕𝑡

𝑎�̇� 

𝑐2𝑎𝑝
2 (1 −

𝑟2

𝑟𝑝
2)
− 2𝜕𝑟

1

𝑟
+

𝑎�̇� 

𝑐2𝑎𝑝
2 (1 −

𝑟2

𝑟𝑝
2)

�̇�

𝑎
+ 2

r

𝑟𝑝
2 (1 −

𝑟2

𝑟𝑝
2)

1

𝑟
− 2

1

𝑟2
 

 

(A.16) 

𝑅𝑟𝑟
 =

𝑎�̈�

𝑐2𝑎𝑝
2 (1 −

𝑟2

𝑟𝑝
2)
+

�̇�2

𝑐2𝑎𝑝
2 (1 −

𝑟2

𝑟𝑝
2)
+

�̇�2

𝑐2𝑎𝑝
2 (1 −

𝑟2

𝑟𝑝
2)
+

2

𝑟𝑝
2 (1 −

𝑟2

𝑟𝑝
2)

 

 

(A.17) 

𝑅𝑟𝑟 =

(
𝑎�̈�
𝑎𝑝
2 +

2�̇�2

𝑎𝑝
2 +

2𝑐2

𝑟𝑝
2 )

𝑐2 (1 −
𝑟2

𝑟𝑝
2)

 

 

(A.18) 

The 𝜃 − 𝜃 component is 

𝑅𝜃𝜃
 = 𝑅22

 = 𝜕0Γ   22
0 + 𝜕1Γ   22

1 − 𝜕2Γ    23
3 + Γ    22

0 Γ    01
1 + Γ    22

0 Γ    03
3 + Γ    22

1 Γ    11
1

+ Γ    22
1 Γ    13

3 − Γ    20
2 Γ    22

0   − Γ    21
2 Γ    22

1 − Γ    23
3 Γ    32

3  

 

(A.19) 
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𝑅𝜃𝜃
 = 𝜕𝑡

𝑟2𝑎�̇� 

𝑐2𝑎𝑝
2
− 𝜕𝑟  r (1 −

𝑟2

𝑟𝑝
2
) − 𝜕𝜃 cot(𝜃) +

𝑟2𝑎�̇� 

𝑐2𝑎𝑝
2

�̇�

𝑎
−  r (1 −

𝑟2

𝑟𝑝
2
)
1

𝑟
− cot2(𝜃) 

 

(A.20) 

𝑅𝜃𝜃
 =

𝑟2𝑎�̈� 

𝑐2𝑎𝑝
2
+
𝑟2�̇�2 

𝑐2𝑎𝑝
2
+ (3

𝑟2

𝑟𝑝
2
− 1) + csc2(𝜃) +

𝑟2�̇�2 

𝑐2𝑎𝑝
2
− (1 −

𝑟2

𝑟𝑝
2
) − cot2(𝜃) 

 

(A.21) 

𝑅𝜃𝜃
 =

𝑟2𝑎�̈� 

𝑐2𝑎𝑝
2
+ 2

𝑟2�̇�2 

𝑐2𝑎𝑝
2
+ (2

𝑟2

𝑟𝑝
2
) − 1 + csc2(𝜃) − cot2(𝜃) 

 

(A.22) 

𝑅𝜃𝜃 =
𝑟2

𝑐2
(
𝑎�̈�

𝑎𝑝
2
+
2�̇�2

𝑎𝑝
2
+
2𝑐2

𝑟𝑝
2
) 

 

(A.23) 

The 𝜙 − 𝜙 component is 

𝑅𝜙𝜙
 = 𝑅33

 = 𝜕0Γ   33
0 + 𝜕1Γ   33

1 + 𝜕2Γ    33
2 + Γ    33

0 Γ    01
1 + Γ    33

0 Γ    02
2 + Γ    33

1 Γ    11
1

+ Γ    33
1 Γ    12

2 − Γ    30
3 Γ    33

0   − Γ    31
3 Γ    33

1 − Γ    32
3 Γ    33

2  

(A.24) 

𝑅𝜙𝜙
 = 𝜕𝑡

𝑟2𝑎�̇� 𝑠𝑖𝑛2𝜃

𝑐2𝑎𝑝
2

− 𝜕𝑟  r𝑠𝑖𝑛
2𝜃 (1 −

𝑟2

𝑟𝑝
2
) − 𝜕𝜃𝑠𝑖𝑛

 𝜃 𝑐𝑜𝑠𝜃 + 2
𝑟2𝑎�̇� 𝑠𝑖𝑛2𝜃

𝑐2𝑎𝑝
2

�̇�

𝑎

−  r𝑠𝑖𝑛2𝜃 (1 −
𝑟2

𝑟𝑝
2
)

r

𝑟𝑝
2 (1 −

𝑟2

𝑟𝑝
2)
−  r𝑠𝑖𝑛2𝜃 (1 −

𝑟2

𝑟𝑝
2
)
1

𝑟

−
�̇�

𝑎

𝑟2𝑎�̇� 𝑠𝑖𝑛2𝜃

𝑐2𝑎𝑝
2

+ r𝑠𝑖𝑛2𝜃 (1 −
𝑟2

𝑟𝑝
2
)
1

𝑟
+ 𝑠𝑖𝑛𝜃  𝑐𝑜𝑠𝜃 co𝑡𝜃 

 

 

(A.25) 

𝑅𝜙𝜙
 = 𝑅33

 =
𝑟2𝑎�̈�𝑠𝑖𝑛2𝜃

𝑐2𝑎𝑝
2

+
𝑟2�̇�2𝑠𝑖𝑛2𝜃

𝑐2𝑎𝑝
2

− 𝑠𝑖𝑛2𝜃 (1 + 3
𝑟2

𝑟𝑝
2
) + 𝑠𝑖𝑛2𝜃 − 𝑐𝑜𝑠2𝜃

+
𝑟2�̇�2𝑠𝑖𝑛2𝜃

𝑐2𝑎𝑝
2

− 𝑠𝑖𝑛2𝜃 (
𝑟2

𝑟𝑝
2
) + 𝑐𝑜𝑠2𝜃 

 

(A.26) 

𝑅𝜙𝜙
 = 𝑅33

 =
𝑟2𝑎�̈�𝑠𝑖𝑛2𝜃

𝑐2𝑎𝑝
2

+ 2
𝑟2�̇�2𝑠𝑖𝑛2𝜃

𝑐2𝑎𝑝
2

+ 2𝑠𝑖𝑛2𝜃
𝑟2

𝑟𝑝
2
 

 

(A.27) 

𝑅𝜙𝜙 =  
𝑟2𝑠𝑖𝑛2𝜃

𝑐2
(
𝑎�̈�

𝑎𝑝
2
+
2�̇�2

𝑎𝑝
2
+
2𝑐2

𝑟𝑝
2
) 

 

(A.28) 

The Ricci scalar curvature is 

𝑅 = 𝑅𝜇𝜈 𝑔
𝜇𝜈 = −

6

𝑐2
(
�̈�

 𝑎 
+
�̇�2

 𝑎2
+
𝑐2 𝑎𝑝

  2

𝑎2 𝑟𝑝
 2
)     

\(A.29)     

where the dotes are time derivatives. 
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Appendix B 

The conformally transformed metric �̂�𝜇𝜈 = 𝑔𝜇𝜈(1 + 2Ω
2) can be expressed as 

                   𝑑𝑠2 = −𝐴(𝑟)(1 + 2Ω2(𝑟, 𝓇))𝑐2𝑑𝑡2  + 𝑆2(𝐵(𝑟)(1 + 2Ω2(𝑟, 𝓇))𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃 𝑑𝜙2)  (B.1) 

where 𝐴  and 𝐵 are functions of the cloud-world radius 𝑟, 𝑆2 is a dimensionless confor-

mal scale factor. By performing the coordinate transformation as follows 

                      𝑑𝑠2 = −(𝐴(𝜆) + 2𝐴(𝜆)Ω2(𝜆, 𝓇))𝑐2𝑑𝑡2 + (𝐵(𝜆) + 2𝐵(𝜆)Ω2(𝜆, 𝓇))𝑑𝜆2 + 𝜆2𝑑𝜃2 + 𝜆2𝑠𝑖𝑛2𝜃 𝑑𝜙2         (B.1) 

where the conformal function Ω2 is a function of the bulk radius of curvature 𝓇 and it 

can be influenced by the cloud-world radius. The Christoffel symbols of this metric are 

   𝛤00
1 =

�̇�(1 + 2Ω2) + 4𝐴Ω̇

2(𝐵 + 2𝐵Ω2)
, 𝛤01

0 =
�̇�(1 + 2Ω2) + 4𝐴Ω̇

2(𝐴 + 2𝐴Ω2)
,     𝛤11

1 =
�̇�(1 + 2Ω2) + 4𝐵Ω̇

2(𝐵 + 2𝐵Ω2)
   

 (B.2) 𝛤22
1 =

−𝜆

(𝐵 + 2𝐵Ω2)
 ,     𝛤33

1 =
−𝜆𝑠𝑖𝑛2𝜃

(𝐵 + 2𝐵Ω2)
 , 𝛤21

2 = 𝛤12
2 =

1

𝜆
 

𝛤33
2 = − 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ,     𝛤32

3 = 𝛤23
3 =

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
   

where the sign   ̇is a total derivative of the function. The Ricci tensor components are 

𝑅𝑡𝑡
 = −

�̈� (1+ 2Ω2 + 4Ω̇)+ 4𝐴Ω̈ + 4Ω̇�̇�

2 (𝐵+ 2𝐵Ω2)
+
(�̇� (1+ 2Ω2)+4𝐴Ω̇

  
) (�̇� (1+ 2Ω2)+ 4𝐵Ω̇)

4 (𝐵+ 2𝐵Ω2)
2   

   

 

(B.3) 

 

 

 

 

(B.4) 

 
 
 

 
 

 (B.5) 

 

 

(B.6) 

 

                       +
(�̇� (1+ 2Ω2)+ 4𝐴Ω̇

 
)
2

4 (𝐴+ 2𝐴Ω2) (𝐵+ 2𝐵Ω2)
−
1

𝜆

�̇� (1+ 2Ω2)+ 4𝐴Ω̇

(𝐵+ 2𝐵Ω2)
 

𝑅𝑟𝑟
 =

1

2
( 
�̈� (1+ 2Ω2 + 4Ω̇)+ 4𝐴Ω̈ + 4Ω̇�̇�

(𝐴+ 2𝐴Ω2)
−
(�̇� (1+ 2Ω2)+4𝐴Ω̇)

2

2 (𝐴+ 2𝐴Ω2)
2 )                     

          −
(�̇� (1+ 2Ω2)+ 4𝐴Ω̇) (�̇� (1+ 2Ω2)+ 4𝐵Ω̇)

 

4 (𝐴+ 2𝐴Ω2) (𝐵+ 2𝐵Ω2)
−
1

𝜆

�̇� (1+ 2Ω2)+ 4𝐵Ω̇

𝐵 + 2𝐵Ω2
  

𝑅𝜃𝜃
 =

1

(𝐵+ 2𝐵Ω2)
−

𝜆

2 (𝐵+ 2𝐵Ω2)
(
�̇� (1+ 2Ω2)+ 4𝐵Ω̇

(𝐵+ 2𝐵Ω2)
 −

�̇� (1 + 2Ω2)+4𝐴Ω̇

(𝐴+ 2𝐴Ω2)
 ) − 1 

𝑅𝜙𝜙
 =

𝑠𝑖𝑛2𝜃

(𝐵+ 2𝐵Ω2)
−

𝜆𝑠𝑖𝑛2𝜃

2 (𝐵+ 2𝐵Ω2)
(
�̇� (1+ 2Ω2)+ 4𝐵Ώ

(𝐵+ 2𝐵Ω2)
 −

�̇� (1+ 2Ω2)+ 4𝐴Ω̇

(𝐴+ 2𝐴Ω2)
 ) − 𝑠𝑖𝑛2𝜃 
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By substituting Ricci tensor components in Equation (7) gives 

(�̇�(1 + 2Ω2) + 4𝐴Ω̇)(𝐵 + 2𝐵Ω2) + (𝐴 + 2𝐴Ω2)(�̇�(1 + 2Ω2) + 4𝐵Ω̇) = 0 (B.8) 

Equation (16) yields 

𝐵 + 2𝐵Ω2 =
𝑘

𝐴 + 2𝐴Ω2
 (B.9) 

where 𝑘 = 1 + 4Ω2 + Ω4 for the conformal metric by considering the bulk curvature.  

By applying the weak-field limit: �̂�𝜇𝜈 ≈ 𝜂𝜇𝜈 + ℎ̂𝜇𝜈, as follows  

Γ𝑡𝑡
𝑖 =

1

2
∫𝜕𝑖ℎ̂𝑡𝑡 =

1

𝑐2
∫𝜕𝑖𝜑 

(B.10) 

where 𝜑 is the Newtonian gravitational potential. By integrating both sides 

�̂�𝑡𝑡 = −𝐴(1 + 2Ω
2) = −(𝜂𝑡𝑡 +

2𝜑𝑐
𝑐2 

+
2𝜑𝑏
𝑐2 
) 

(B.11) 

where 𝜑𝑐 = −𝐺𝑀/𝜆 is the gravitational potential of the cloud-world’s spherical mass 

and 𝜑𝑏 that arises from the integration can be interpreted as the gravitational potential 

resulting from the bulk curvature, which can be expressed, using the same Newtonian 

analogue, in terms of the mass of the early Universe plasma of preferred positive curva-

ture, 𝑀𝑝, and the bulk curvature radius 𝔯 as 𝜑𝑏 = −𝐺𝑝𝑀𝑝/𝓇. The metric should yield 

only the gravitational potential of the cloud-world when there is no bulk curvature 

(Ω2 = 0) and (𝜑𝑏 = 0); hence, 𝐴 = (1 + 2𝜑𝑐/𝑐
2 ); consequently, the conformal function 

is Ω2 = 𝜑𝑏/𝐴𝑐
2. By performing the coordinate retransformation and combining Equa-

tions (17 - 19) yield    

         Ω2 = −
𝐺𝑝𝑀𝑝
𝓇𝑐2 

 (1 −
2𝐺𝑀

𝑟𝑐2 
)
−1

,          𝐴 = 1 −
2𝐺𝑀

𝑟𝑐2 
,              𝐵 =  (1 −

2𝐺𝑀

𝑟𝑐2 
)
−1

 (B.12) 

where the conformal function Ω2 relies on the gravitational potential of the bulk while its 

influence is inversely proportional to cloud-world potential. In the case of PI18’s preferred 

early Universe positive curvature, the gravitational potential of the bulk can be expressed 

in terms of the early Universe plasma of mass, 𝑀𝑝, and 𝓇  denoting the radius of curva-

ture of the bulk, where the bulk’s potential decreases with the Universe expansion and 

vanishes in the flat spacetime background (𝓇 → ∞). The minus sign of Ω2 reveals a spatial 

shrinking through evolving in the conformal time, which agrees with the vortex model 

that can occur due to the high-speed spinning. By substituting Equations (20) to Equation 

(8), the conformally metric �̂�𝜇𝜈 = 𝑔𝜇𝜈 + 2�̃�𝜇𝜈 = 𝑔𝜇𝜈(1 + 2Ω
2) is 

The metric is  

                  𝑑𝑠2 = (1 −
𝑟𝑠 

𝑟
−
𝓇𝑝
𝓇
)

(

 −𝑐2𝑑𝑡2 + 𝑆2 (
𝑑𝑟2

1 +
𝑟𝑠
2 
𝑟2
− 2

𝑟𝑠 
𝑟

+
𝑟2𝑑𝜃2 + 𝑟2𝑠𝑖𝑛2𝜃𝑑𝜙2

1 −
𝑟𝑠 
𝑟
−
𝓇𝑝
𝓇

)

)

   
 

(B.13) 

This metric reduces to the Schwarzschild metric in a flat background (𝓇 → ∞).  
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