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Abstract-Digital phase plane is presented in this paper. For constant input second order
digital systems with arbitrary initial conditions for arbitrary quantizaters, this digital
phase plane shows, in plot form, the state trajectory and the asymptotic stability, including
the existence and the position of arbitrary period limit cycles.

1. Introduction

Many papers have been presented to discuss limit cycles (LC) due to finite word length in
digital systems. Here, digital systems should be IIR filters or digital control systems. LC
may cause the linear stable system unasymptotic stable. Now, the parameter regions in
which the systems will be asymptotic stable have been presented Xu et al [3], Premaratne
et al [5], Bose et al [7], Tran-Thong et al [11], and Lepschy et al [15]. Detailed discussions
about the bounds of LCs can be found in Bauer et al [6], Munson et al [12], and Green et al
[13]. While, nonzero input digital systems have not received widespread attention. Due to
the nonlinearity of LCs, the asymptotic stability of a zero input digital system does not
guarantee the asymptotic stability of the same system with nonzero input. Also the effects
of initial condition on LCs have not been discussed. LCs still cannot be accurately
calculated. As to these problems above, this paper introduces Digital Phase Plane, which
shows, in plot form, the asymptotic stability of constant input second order digital systems,
without need for calculation.
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2. Digital Phase Plane

An n-order constant input digital system is described by

)(...)()(...)1()( 01 mkuakuankxbkxbkx mn  (1)

where x(k) is the state, u(k) =… = u(k-m) = u is the constant input, and mn aabb ,...,,,..., 01 are

the parameters of the system. Suppose one quantizater is applied, (1) can be implemented
in the following way
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According to (2), provide 0nb , (1) can be written as,
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From (3), (4), and (5), a digital phase space can be obtained to show the relations among
the states of (2). For a second order digital system (SODS), this digital phase space is
reduced to a plane named as Digital Phase Plane (DPP). Following is the procedure to
produce DPP. In (2), let n = 2, the SODS is obtained as

ppQuAkxbkxbQkxQ  ][])1()2()1([)]([ 21  . (6)

If let 1)1(,3.0,2.0 21  Abb , then, (6) becomes

ppQukxkxQkxQ  ][])2(3.0)1(2.0[)]([  (7)

and (5) becomes
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where )2(),1( 21  kxxkxx (9)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2020                   



3

.1,0    (10)

pi indicates p =i. For instance, p3 means p=3. As two values of  as in (10) are taken for
each pi, (8) produces a pair of equations. They describe the relations among 21 , xx and u
corresponding to this pi. Since u is constant input, this pair of equations represents two
lines in 12 xx  plane. They are,
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As pi takes through all the values in (3), a group of such lines are produced. If the lines are
drawn in 21 xx  plane, it is the DPP for (7), as shown in Figure 1.
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Figure 1. DPP for (7).

In Figure 1, some definitions are,

1) The area between the LBL of pi and the UBL of pi, and because of (4), including the
LBL of pi is known as State Stripe pi. It is obviously

])1([ 2211 uAxbxbQpi  , ipStripeStatexx  ),( 21 . (12)

Here, (12) is true not only for (7), but also for (6).
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2) pi is State Stripe pi value.
3) 12 xx  (13)

is known as Balance Line I.

4) The Balance Line I value is defined as
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5) An integer point IP = ),( 21 xx means that both 1x and 2x are integers.

In DPP, the states of (6) will go with following relation.

Corollary 1: If ),( 21 xx is a point on the state trajectory of (6), then

))(,())1(),1(( 121 kxpkxkx i , ipStripeStatekxkx  ))(),(( 21 (15)

3. Limit Cycles in Digital Phase Plane

If a period I LC happens in (2), its steady state will be

)()( kxIkx  , I  1. (16)

(16) means any steady state in stable digital systems is a LC. Now some results about LC
are reached.

Corollary 2: In DPP, a period I LC existing in (6) is represented by I integer points which
construct a close trajectory.

A stable (6) exists J steady states, or according to (16), exists J LCs, J  1. Provide the jth

steady state is a period Ij LC. Then, according to Corollary 2, in DPP, it is represented as

}),(,),,{( 212111 jIjIjj
th

jj
xxxxLCj  , Jj 1 . (17)

Theorem 1: In DPP, an integer point IP = ),( 21 xx represents a period 1 LC existing in (6),
if and only if

ipxx  21 , ipStripeStatexx ),( 21 . (18)

Theorem 2: In DPP, two integer points IP1 = ),( 21 xx and IP2 = ),( 12 xx represent a period
2 LC existing in (6), if and only if
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Based on (18), the IP representing a period 1 LC is always on Balance Line I. In (19), IP1
and IP2 symmetrize to Balance Line I; when 21 xx  , Theorem 2 becomes Theorem 1.

4. Stability and Initial Condition Effects in Digital Phase Plane

Provide Balance Line II: 12 xx  , Balance Line III: 01 x . They are shown in Figure 2.
The Balance Line II value and the Balance Line III value are also defined by (14).
Following are the conclusions about the stability of (6) in DPP.
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(a) Balance Line II. (b) Balance Line III.

Figure 2. Balance Lines for (6).

Theorem 3: For the system ])1()2()1([)]([ 21 uAkxbkxbQkxQ  , if 0  exists, and
all of the following Sl inequalities in DPP

lSiilv px
1

||


 ,    valueLineBalancexxx ilvvv :

is true, the system is linear stable.

Theorem 4: For the system ])1()2()1([)]([ 21 uAkxbkxbQkxQ  , if 0  exists, and
any of the following Sl inequalities in DPP

lSiilv px
1

||


 ,    valueLineBalancexxx ilvvv :
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is true, the system is unstable.

In the above two theorems, ),( 21 bb parameter area l, 51  l ; xv is as in (14);

])1([ 2211 uAxbxbQpil  ; ),( 21 xx Balance Line il ; and

in parameter area 1: }0,1{ 21  bb , IIIIIS  21111 ,,2 

in parameter area 2: }0,11{ 21  bb , IIIS  122 ,1 

in parameter area 3: }0,1{ 21  bb , IIIIS  23133 ,,2 

in parameter area 4: }0,0{ 21  bb , IS  144 ,1 

in parameter area 5: }0,0{ 21  bb , IIS  155 ,1  .

Based on above discussion, the stability and LC in (6) are determined by the geometry
structure of DPP which can be adjusted by 2211 1,1 bLxbLx  , as defined in (a)
of Figure 1. The effects of initial condition will be explained in followings.

Corollary 3: If (6) is stable, the entire DPP can be divided into J parts which cover the
entire DPP, and are not overlapped. J comes from (17).

Corollary 4: Provide the entire DPP has been divided into J parts, then, a stable (6) with
initial condition which locates in the jth part will converge to the jth steady state or the jth LC.
In DPP, it means from (17),

partjxxxxxxLCjkxkx th
jIjIjj

th
k jj

 ))0(),0((},),(,),,{(|))(),(( 2121211121 

here Jj 1 .

5. Further Discussions in Digital Phase Plane

Detailed investigations reveal following facts

F1. The system ])1()2()1([)( 21 uAkxbkxbQkx  is asymptotic stable, if and only if: 1).
the system is linear stable and, 2).the system exists sole steady state which is a period 1 LC.

F2. Both the magnitude of the constant input and the quantizater applied will affect LCs,
or the asymptotic stability of digital systems;
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F3. J in (17) is determined by the parameters of system, quantizater applied, and the
constant input;

F4. in DPP, all LCs locate in circles. That is, from (17)

)),,((:)},(,),,{( 00212111 jjjj IIjIjIjj
th RxxCxxxxLCj   (20)

where J  j  1;
jIC is known as balance circle;  is the center of

jIC , and is on Balance

Line I. 0x is around the asymptotic stable state of (6). )(/ jI IBkR
j
 is the radius of

jIC .

)( jIB is named as balance function.

6. Conclusion

DPP gives, in plot form, solutions to the asymptotic stability of (6). Based on (15) and
Corollary 2, all LCs can be found in the circles of (20). Theorem 1 and Theorem 2 in this
paper could be applied to nonlinear systems. It also should be possible to apply this
technique to three or higher order digital systems.
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