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Abstract: We propose a novel data hiding method in an audio host with a compressive sampling
technique. An over-complete dictionary represents a group of the watermark. Each row of the
dictionary is a Hadamard sequence representing multiple bits of the watermark. Then, the singular
values of segment-based host audio in a diagonal matrix multiply by the over-complete dictionary
producing a lower size matrix. At the same time, we embed the watermark into the compressed
audio. In the detector, we detect the watermark and reconstruct the audio. This proposed method
offers not only hiding the information but also compressing the audio host. The application of the
proposed method is a broadcast monitoring and biomedical signal recording. We can mark and
secure the signal content by hiding the watermark inside the signal while we compress the signal
for memory efficiency. We evaluate the performance in terms of payload, compression ratio, audio
quality, and watermark quality. The proposed method can hide the data imperceptibly, in range
729-5292 bps with compression ratio 1.47-4.84 and perfect detected watermark.

Keywords: Compressive sampling, compressed sensing, watermark, data hiding, spread spectrum,
singular value decomposition, Hadamard.

1. Introduction

At present, the exchange of data and information in the internet network has increased very
dramatically. With more and more people accessing the internet and more and more content that can
be accessed, the size of the data accessed in a given time increases on an exponential scale. With the
increase in data access, more and more crimes related to data include data falsification, data theft,
claiming unilateral ownership of data, leaking data, deception of data, and many other crimes related
to internet data access. These problems have implications for the more losses experienced by data
owners, which also affect state losses. Losses suffered by the state causes harm to its people. So that
crime in the internet world only benefits certain parties and gives a big loss for the wider community.
Thus technology that provides security for data, including marking ownership rights to data and
hiding important data when sent over the internet, becomes mandatory to anticipate losses suffered
by the wider community.

With the more and more data content accessed, the greater the memory capacity needed, besides
assuming the network infrastructure does not increase, the network capacity also decreases due to
increased data traffic accessed, and power requirements on the network infrastructure also increase.
These conditions bring problems in how to access data efficiently so that we can save the infrastructure
and energy needs to minimum usage. One technique that can provide solutions to these problems is
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Compressive Sampling or Compressed Sensing (CS). This technique takes or picks up part of the data
or signal from the sensor and then sends the data from the sample, and the receiver can reconstruct it
back to the data as if it were authentic.

In this paper, we propose a technique for sampling audio signals and inserting or hiding data
into them at the same time, so that the sampled signals have a smaller size and at the same time there
is data inserted into the encoded data. With this technique, the signal stored in the cloud system from
recording results by sampling is smaller in size, and we can mark it with hidden data at the same
time. The broadcast monitoring application is an example of how to monitor signals in real-time and
stores the results into the cloud. Monitoring such signals is more efficient if partial signal sampling is
applied, such that the signal size becomes smaller than the original signal. At the same time, marking
or indexing is applied by hiding data on the signal at any given duration to secure the authenticity
of the monitored signal or to index the monitored signal by hiding its index on the encoded signal.
Another application example is the recording of biomedical signals in which one sampled them using
several sensors, and at the same time, embeds the ownership marking or index into the encoded signal.
Thus the recorded biomedical signal has a smaller size than the original size but does not reduce the
quality of the biomedical signal, and there is a marking that is inserted in the encoded signal to secure
the biomedical signal.

CS in the audio combining with the data hiding technique is a rare topic. The combination
of CS and data hiding makes it possible to compress the audio and, at the same time, to hide the
watermark. Hua in [1] and Xin in [2] formerly proposed the CS applications in the audio combining
with data hiding. In [2], Xin proposed an embedding method on host audio that is semi-fragile
zero-watermarking by decomposing the audio in the wavelet domain and applying the CS technique
to the audio wavelet coefficients without describing the audio reconstruction to determine the audio
quality after the embedding process.

Xin on [2] proposes an insertion method on audio that is semi-fragile by first decomposing audio
in the wavelet domain and applying the CS technique to the audio wavelet coefficient. Watermarks
inserted in the measurement vector utilize positive and negative signs on the matrix elements. The
result is that the inserted watermark is resistant to damage samples from the signal. But this paper
does not explain the function of CS in terms of reducing signal size. Xin only explained CS techniques
as a technique of inserting data with the properties of semi-fragile.

Griffin, in [3], proposed the CS method to compress the sinusoidal signal. Griffin investigated
whether CS can be used to compress sinusoidal audio at a low speed because audio models like this
have a high degree of spacing in the frequency domain. In his proposed method, Griffin performed CS
techniques on single channels and multi-channel of audio signals with sinusoidal characteristics only.
Griffin stated that the research he did was not to develop audio compression techniques and compare
with existing compression techniques, but to find out how far CS was able to be applied in reducing
the size of audio files so that the application applied, in this case, was for wireless sensor networks.
Griffin can produce the smallest compression ratio by 5.4%. He applied spectral whitening first on the
new audio then applied the CS technique to the spectral results, so that produced a tiny compression
ratio with good quality of reconstruction results.

Fakhr on [4] proposed an insertion method using CS techniques by first thinning the host
audio and watermark signals using Walsh Hadamard Transform (WHT), Discrete Cosine Transform
(DCT) and Karhunen-Loeve Transform (TLC). Watermark extraction and audio host are done by
reconstruction L1 minimization. Fakhr claimed that the technique could withstand MP3 attacks at the
lowest rate of 64 kbps with an 11 bps watermark payload, and the highest payload at 172 bps against
additive noise attacks. But Fakhr uses CS not for compression techniques but as an insert technique.
Fakhr uses MP3 attacks as compression to reduce the size of the audio signal after embedding a
watermark.

In [1], Hua proposed a data hiding technique which combined with CS synthetically. Suppose we
define an over-complete dictionary A € RP*”, an uncompressed vector z € R"*!, a watermark bit to
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be inserted as b € {—1,+1}, a watermark code sequence w € R"*!, a compressed vector y € RP*1
and « as gain control of the watermark, then we have

y = A(z + abw), 1)

Hua inserted b as the additional operation to z after multiplied by aw. In this paper, we embed
the watermark bits into the over-complete matrix A. Then we multiply A to the diagonal matrix from
the singular values of host audio.

The data hiding technique proposed in this paper is multiple orthogonal codes on Spread
Spectrum (SS) based as formerly introduced by Xin on [5] in time domain embedding and continued
by Xiang in DCT domain embedding on [6] and [7]. We use the Hadamard code as the sequence
for multiple bits of the watermark due to its best code performance [8]. The matrix A consists of p
Hadamard sequences that represent p groups of multiple bits.

One of the signal sparsity techniques is a shrinkage technique on Singular Value Decomposition
(SVD) output. This SVD technique truncates U, S, and V with specific rank as also described in [9], [10],
and [11]. This shrinkage technique yields a more compressed signal as the CS output, but certainly
decreases the quality of the reconstructed signal. In this paper, we decompose a host signal using
SVD. Then, the output of SVD, i.e., U, S, and V, are truncated at a specific rank. We transformed the
truncated singular matrix S, to compressed domain Y via an over-complete dictionary containing
SS-based data hiding A. Thus, the ready matrices to be transmitted to the detector are U,, Y, and V.
Then, in the receiver, firstly, we detect dictionary A containing the hidden data. We can extract the
hidden data from the detected dictionary. Not only can we take back the hidden data, but also we can
get the reconstructed signal to the original domain. Note that the process on the receiver needs only
the compressed domain signal, such as U,, Y, and V,. There is no dictionary and original data needs
for data detection and signal reconstruction.

We organize the rest of this paper as follows. Section II describes the sparsity of singular value and
CS technique for the audio compression. Section III explains the mathematics model and derivation of
audio watermarking including the embedding, the extraction, the audio reconstruction process and
the effect of the noisy environment to this proposed method. Section IV discusses the result of the
simulation, while Section V reports the conclusion of this paper.

2. Sparse Singular Value and CS technique

The host signal in the form of a vector x = [x, xp, - - - x1] € R1*L is converted to a 2-dimensional
matrix X € RM*M where L = M?. The conversion to a 2-dimensional matrix X is applied in such a
way that it produces

X1 XM+1 o XM(M-1)+1
X2 XM+2 ot XM(M-1)+2

N I @
XM XoM cee X p2

The SVD process of X obtains orthogonal matrices U € RM*M '§ ¢ RMXM and V € RM*M where
the relationship is described as
X =USV7, (3)

where S is a sparse diagonal matrix having M non-zero elements in diagonal of the matrix as M singular
values. For compression needs, U, S, and V can be truncated or reduced to U, = U[1,., M;1,..,r| €
RMxr 'S = S[1,..,7;1,.,r] € R™,and V, = V[1,., M;1,..,r] € R™M*" with r < M. Then, we apply
CS acquisition S, as

Y = AS,, (4)
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where A € RP*" is an over-complete dictionary containing SS-based encoded watermark, Y € RP*" is
an output of CS acquisition with smaller size than S. The truncated matrix S, has the form of

0 oy v 0
5: = A I ®)
0 0 cee Oy

where 0y, 02, ..., 0y are the singular value elements. The matrix A is described later in Subsection 3.1.
Finally, we have three matrices to be transmitted, that is Uy, V;, and Y. From this result, we can
calculate the Compression Ratio (CR) as the comparison between the original signal length and the

transmitted signal length as
Lx M?
CR=—"—=—+———
Lr  2Mr+ pr’ ©)
where Ly is the elements number of X, that is M2 and Ly is the total number of the transmitted
elements Uy, Y, and Vy, i.e. 2Mr + pr.

We can calculate the reconstructed audio matrix with the same size as X in the form of

X1 XM+l XM(M—-1)+1
N 2 fmi2 o Mot
T
X, =US, V., = | i . . , 7)
JeM XAZM s sz

where X; € RM*M byt its element values are slightly different than X. The r value controls the signal
quality and the signal compression ratio. If r is lower, then the compression ratio is higher but the
signal quality is worse. Finally, we can get X = [£1, 2, - - - £)2] as a reconstructed or decompressed
version of the signal by converting back 2 dimensions matrix X to a vector or one dimensional signal
%, thus we can calculate the signal quality by comparing x and %.

3. Data Hiding Model

3.1. An Overcomplete Dictionary with SS-based Content

In this proposed method, firstly, we convert the audio host to the frequency domain using DCT in
the process before applying insertion and compression. In the audio receiver, after being reconstructed
or decompressed, the reconstructed audio is re-converted to the time domain with IDCT. The DCT and
Inverse DCT (IDCT) formulations used for this method are in the following equation [12]

Np—1 n— _
X(k) =w(k) Y x(n)cos (n(Z L (k 1)> 8

n=0 ZNP
2 N”‘llka m(2n —1)(k—1) .
) = 5y 3 10X cos (TR0 ), ©)

where X(k) is the audio signal in the DCT domain, x(n) is the audio signal in the time domain, and
Ny is the number of DCT points. While /(k) is defined in the following equation

1 se7

1) — \/N,lfk 0

(k) 5 - (10)
7ﬁN,1f1§k§Np*1
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In this paper, the orthogonal code mapping to multiple bit watermarks is a Hadamard sequence
which taken from the Hadamard matrix. Denote the Hadamard matrix H, € {—1, +1}"*" generated

by [13,14] as
H H
H = | " 12, (11)
[Hr\z _Hr\Z

where Hy = [1]. Assume H,(j) is a vector from j-th row of H,, then the orthogonal Hadamard sequence
pPjs where j = 1,2, ..., r, are obtained from

p; = H:(j). (12)

Let Ag € {—1,+1}P*" be an SS-based content matrix, where p < r and p;, € R1*" is a Hadamard
sequence associated with the watermark bits in i-th row of Ay, and t; = {f1, 1, ..., tp} be the set of
Hadamard sequence indices where i is a row index of Ag. Thus A contains p:; as

AO = . ’ (13)

where semicolon from (13) restrict each py, to the different row. Since there are p rows of Ay, there are
p Hadamard sequences in Aj. Thus, we have an over-complete dictionary A € RP*"

1
A=-A,, (14)
520

with unit norm of its columns: ||, ||% =1, wherem=1,2,..,r.

A Hadamard sequence represents multiple watermark bits. Assume that there are Ny watermark
bits for a Hadamard sequence, then there are N, different Hadamard sequence possibilities, where
Np = 2Ns_ Note that the length of a Hadamard sequence and also the row of matrix A is r bits, thus
r = N due to the square size of Hadamard matrix as (11). Denote w, as a watermark vector in i-th
segment of the watermark with a vector index or a Hadamard index t;, then

Wi = [wti<1) Wt; (2> wti(NS)]/ (15)

where wy,(I) € {—1,+1} and | = 1,2,.., N;. In multi bit SS, the watermark vector wy, is mapped
to a Hadamard sequence p;,. For example, if we have 3 bits watermark in a Hadamard sequence,
or N5 = 3 bits, then N, = 2Ns = 8 bits, thus all watermark possibilities and their mapping to
Hadamard sequences are displayed in Table 1. If we have 2 segments or 2 vectors of watermark
wy = [—1,+1,—1] and wy, = [+1,—1, —1], then using Table 1 we get t; = 3 and f, = 5, thus
py =p3 ={+1,+1,-1,-1,+41,+1,-1, -1} and p;, = p5s = {+1,+1,+1,+1,-1,-1,—-1,—1}.

The over-complete matrix Ay contains pN; bits of watermark for the host with length M? thus we
can compute watermark payload C in bps as

_ PNst

C=50

(16)

where F is the host signal sampling rate in sample/s. Due to Ns = [log, N, | = [log, r|, thus (16) will
be as
C— p[log, r|Fs
M2
Once A is generated from the associated watermark bits, it is embedded into S; using matrix
multiplication in (4). The result Y is not only a matrix with a smaller size than S;, but also it is

(17)
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Table 1. Watermarks and Hadamard sequences Example for Ns = 3, N, = 8 and r = 8
Index (t;) Watermark Bits (w;) Hadamard Sequence (py,)
1 {-1,-1,-1} {+1,+1,+1,+1,+1,+1,+1,+1}
2 {-1,-1,+1} {+1,-1,+41,-1,+1,-1,+1,-1}
3 {-1,+1,-1} {+1,+1,-1,-1,+1,+1,-1,-1}
4 {-1,+1,+1} {+1,-1,-1,+1,+1,-1,-1,+1}
5 {+1,-1,-1} {+1,+1,+1,+1,-1,-1,-1,-1}
6 {+1,-1,+1} {+1,-1,+1,-1,-1,41,-1,+1}
7 {+1,+1,-1} {+1,+1,-1,-1,-1,-1,+1,+1}
8 {+1,+1,+1} {+1,-1,-1,+1,-1,+1,+1,-1}
U -~ U,
Host SV S Reducing | S Y  Encoded and
oS . . Clng r C a
—_— —» Dec > i > = .
Audio DCT Deuqmposﬂ Size Y=AS, Watermm‘ked Audio
on
\4 _ v,
> ',
A

Watermark | Multibit SS
Encoding

Figure 1. Watermark Embedding and Audio Encoding

embedded by the watermark bits. The matrix S; is a diagonal matrix whose size is reduced from the
original one S. From (4), (5) and (13), the equation Y = AS; can be exploited as

Yt | 431 oo 0 -+ 0
A pt 0 0y e 0

=000 0 (18)
ytp Ptp 0 0 s Of

where y;, € R*" is a vector of matrix Y at row i which also corresponds to py; and 01,02, ..., 0y are
singular value elements of S;. Each row of A or py, is a vector with size 1 x r. S, is a diagonal matrix
with size X r. Thus, we can simplify (18) to the following equation

yh P+, St
e || e (19)
y.tp pt,; St
Then, we can have the following simple vector expression
yt; = Pt;Sr. (20)

3.2. Data and Dictionary Detection

Once we get the compressed and watermarked signal Y or y;, it is transmitted to the receiver,
thus we get the received signal Y’ or y’. The received signals along y’ are U, and V} as described in
Subsection 2. One can choose whether to decompress the signal or to extract the watermark. Anyway,
to decompress the signal, we need A or py, using (22) for reconstructing y; to get S;. Itis clear that,
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Table 2. Embedding Process
Step1: Read a host signal x(n) and transform it into frequency domain by DCT L-point
obtaining X (k)
Step2:  Reshape X(k) in L sample it to 2-D square matrix producing X with size M x M
Step3: Decompose X to U, S, and V using SVD
Step4: Reduce Matrix Size of U, S, and V with rank r to Uy, S, and V;
Step5: Generate A matrix containing p Hadamard sequences by mapping each multi
watermark bits to an associated random Hadamard sequence using (13)
Step 6:  Apply CS acquisition to A and S; by (4) producing Y
Step7:  Transmit the compressed signal with hidden data represented using Uy, Y and V,
v A U,
Encoded and . > OMP S, T | . X .| Reconstructed
Watermarked Audio >|A Detection *| Reconstruction v > SVDRee. >|[DCT Audio

Figure 2. Watermark Detection and Audio Decoding

either to extract the watermark or to decompress the signal, extracting A from y/ is the first thing to
be applied in the receiver since the compression and the data hiding process is blind. Once we get A,
then we can extract the data or we can reconstruct y; with detected A to obtain S. using (37), (39), (40)
and (41). Thus, we can use SVD reconstruction to S., U, and V. for obtaining a square matrix or X}
using (7). Finally, we get the reconstructed signal x’ by converting the 2 dimensions matrix X}, to the
vector x'.

Table 3. Detection and Reconstruction Process

Step1:  Detect t; from Y’ using (22) for extracting the hidden data

Step2:  Associate detected t; to p;; and form A using (13)

Step3: Reconstruct Y’ using A by (37), (39), (40) and (41) to obtain S/,

Step4: Reconstruct Uy, S, and V; by SVD reconstruction to obtain decompressed signal in 2-D
matrix X} by (7)

Step5:  Reshape 2-D matrix X} to 1-D matrix obtaining X’ (k)

Step 6:  Transform X’ (k) to time domain by IDCT L-point obtaining the reconstructed signal
x'(n)

For p;, detection, we need to correlate ygi to p]-T as

Kij =

YiP; |, (21)
wherei=1,2,.,pand j = 1,2,.., Np,. From (21), there is an index of j whose the correlation Kjjis the
highest, that is j = t. Thus, the formula to detect the correct index of Hadamard sequence embedded
into y;. is
t; = argmax ‘y,’gipjT‘ . (22)
je{12...Ny}
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Since we can detect t;, we decode the detected Hadamard code to the associated watermark bits
according to one to one mapping between the index, the Hadamard code, and the associated watermark
bits. For detection proving needs, Assume there is no attack, then y; =y:,. Thus, (21) is

Kjj = ‘ytipﬂ . (23)

Substituting (20) into (23) results in
Kij = ‘PtiSrP]T‘ . (24)

Assume that t; = j, thus py;, = p; then (24) is an autocorrelation as

Ky = ’ijrp]T’ . (25)

Assume that p; consists of such elements as

pi=lm e Wil (26)
therefore (24) becomes
T -
Pi o 0 - 0 |pj
A N e N 1 @)
Pj 0 0 - o] P

By a matrix multiplication operation, (27) is described as

r
Ko = |phor+phoa+- -+ phov| = Y pioil. (28)
i=1
Since ¢; > 0 and p]%_ > 0 for all j and all 7, then (28) becomes
r
Ko=) pioi>0. (29)
i=1
If pt, = px and py; # pj, then (24) is a cross-correlation as
Ke = PkSerT’
T —
Pr| |oo O - O |pj
B sz 0 oy e 0 P]Z (30)
Pk, i 0 0 e oy p]r
= P Pjro1 + P02+ + i Py
r 31)
= Pkipjigi .
i=1

Since py is mutually orthogonal with p;, it is confirmed that K; is comparable to K. with the following
inequality
K, > K, (32)
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which means that the autocorrelation of the same Hadamard sequence is still much higher than
the cross-correlation of the different Hadamard sequence on the singular value intervention. It
confirms that the Hadamard sequence can be detected successfully, thus from (22) ¢; is detected for
ti = {t1,ta, ..., tp} then we can obtain the associated watermark bits W, = {W,, Wy,, ..., Wi, }, and also
all Hadamard sequences pt, = {p+,, Pt,, ---Pt, } which form A using (13) and (14) as

, (33)

where p is the row number of A. This procedure assures that there is no dictionary needed to detect
the hidden data and also to reconstruct the signal. Since the associated watermark bits W;, are detected.
Thus we can calculate Bit Error Rate (BER) as a robustness parameter. The following equation is a BER
formula

(34)

where w; is the original watermark bit, ; is the detected watermark bit, and L, is the total number of
watermark bits.

3.3. Security Model

Hadamard matrix is easily generated as described in (11). Anyone can attempt with the Hadamard
matrix to reconstruct the dictionary for detecting the hidden data and also to reconstruct the audio.
This leads insecure watermark bits hidden in the host audio, accordingly we apply a procedure to
secure the Hadamard matrix as also discussed in [15-17]. The Hadamard matrix is multiplied by
-1 at the row and the column of the matrix in a random manner. Denote /; € {1,r} as an integer
random permutation value where i = 1,2, ..., N, and N is the number of generated integer random
permutation value. Denote H; as a secured Hadamard matrix, Hs () as a vector from j-th row of Hs,
H/(j) as a vector from j-th column of H;, then the security model of Hadamard matrix after initial
definition Hy; = H,, is defined as

H,(I;) = —H,(l;)

HI(1) = ~HI(]) )

The above procedure is repeated N; times from /1 to Iy;. Thus, with the secured Hadamard matrix, (12)
is replaced by

P = H; (j). (36)

Note that H; is not only needed on the embedding process but also in the detection/extraction process.
However, it is not needed to pass H; to the detector directly. We only pass /; as the integer random
permutation value to the detector as the security key. By the procedure (35), Hs can be generated in
the detector using /; as the key. According to [15,16], the modified Hadamard matrix combination
using (35) has (r12")? possibilities. For example, if = 16, the number of modified Hadamard matrix is
1.88 x 10% possibilities. If the simulation needs 1 second to run detection and reconstruction process
using 1 Hadamard matrix, then it needs 1.88 x 10%¢ seconds or 5.962 x 10?8 years using all Hadamard
matrix possibilities. It confirms that this proposed security model is appropriate and meets the security
requirement for the embedding and compression process.

3.4. Signal Reconstruction

Once A is obtained, S, reconstruction is simply solved by Orthogonal Matching Pursuit (OMP)
[18], [19]. The reconstruction process is carried out on each column of Y in sequence with Aasa
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dictionary. Let y,; as a vector taken from m-th column of Y, then for a general case we can find the row
position of the strongest atom as
gm = argmax A\Tym. (37)
i€{1.2,..,p}
For a specific case, i.e., a singular matrix solution as the reconstructed one, the position of the highest
atoms are indeed known, then (37) can be simplified as

qm = m. (38)

Denote a, as a vector taken from r-th column of K, then we take a column of A which makes a strongest
atom as
V =a,,. 39)

We reconstruct a non-zero element of S, in column m by
-1
Sqm = (vTv) VY. (40)

This reconstruction procedure including (37), (39), and (40) is repeated r times with the increment of m,
thus obtaining

sy 0 - 0

R 0 s 0

S=|. | (41)
O O SQV

Then, the next step is to form the signal by SVD reconstruction, as described in (7). Thus, finally, we
can compute the signal quality.

3.5. Noisy Environment

Note that the compressed and watermarked audio in this paper is the coded audio. A human
cannot directly listen to the coded audio without decoding it first. It means that the signal processing
attacks against the coded audio are not the same as the attacks against the real audio signal. The signal
processing attacks against the real audio signal were standardized in the Stirmark benchmark [20].
However, the Stirmark benchmark is not appropriate for the robustness evaluation of this proposed
method except for the additive noise attack. The additive noise attack is the signal processing attack
in which we can generally use to evaluate the watermarking-compression robustness. In the real
situation, this additive noise attack in the receiver happens due to the existing thermal condition of
the hardware. In this subsection, we describe mathematically how our proposed method is robust
to additive noise attack. If the compressed and watermarked signal y; is under an additive noise
environment, then (23) becomes

= ’ (yi +ny) p; ‘
= ’ pt,Sr+1n;) p; ’ (42)
= ‘ rP] +n1p] ‘
Assume py; = p; then (42) becomes
Kij = |piSip] +nip] |- (43)

Because n; is independent to p]-T, thus p erp]-T > n,-pjT, then (43) becomes

Ki ~ |pSip] | = K. (44)
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Thus, we confirm that the data inserted with the proposed method can be detected even in the additive
noise environment. The performance evaluation of the proposed method, when attacked by additive
noise, depends on the power ratio between host audio and the additive noise represented by Signal to
Noise power Ratio (SNR) with the following formula

r
2
‘;1 v
SNR = 10log,, | 5— (45)
L
i=1
where i is row index at y and n, y; is the signal after compressed using CS at row i, ; is noise at row i
and r are the number of rows from y.

4. Discussion

In this paper, there is more than one work to do in the signal processing environment. The first
work is to encode the watermark into the secure Hadamard code. The second work is to make the host
audio to be a sparse signal. The third work is to hide the coded watermark into the sparse signal by CS
acquisition. Thus, there are two objects for performance analysis, such as the detected watermark and
the reconstructed audio from the detected sparse signal. From the embedded watermark relative to
the length of the host audio, we can calculate the watermark payload, as described in (17). We can
also calculate the CR of sparse technique and CS performance as described in (6) from the host audio
length relative to the coded and compressed audio.

Mathematically, we can simply determine the trade-off parameters between the watermark
payload and the CR as presented in (17) and (6) respectively. In (17) and (6), there are three same
parameters affecting the payload and the CR, such as M, r and p, where M is the square root of the
host audio length or the row/column number of the diagonal matrix (S), 7 is the row/column number
of the truncated diagonal matrix (S;) and p is the sample number of the compressed signal or the row
number of the output of CS acquisition (Y). First, we can see that p, r and M? have different position
in (17) and (6). In (17) p and r position are in the numerator which means the decrease of p and r
cause the lower payload. In (6) p and r position are in the denumerator which means the decrease of p
and r cause the higher CR. Parameter M? also has different position. This case certainly is a trade-off
between payload and CR which we can find the moderate value of p and r to produce high payload
and high CR.

The relation between three parameters p, r and M is such that p < r < M. Referring to (6), the
above relation causes the denumerator pr < 2Mr if M has a high value, thus

M M

CR =~ M 2
Note that CR for compression must be more than 1, thus M/2r > 1 or ¥ < M/2. This means that the
minimum truncation for compression is applied at a half of diagonal matrix § € RM*M obtaining

(46)

M M .
Sr € R2 * 2. Consequently, the relation of the three parameters becomes

per<i (47)

Thus we can exploit those three parameters in the above relation. Next, we find possible p and r value
such that (17) reaches the maximum payload. The position of parameter p and r are in the numerator
of (17), thus r should be set to maximum value or M/2 in order to obtain maximum payload and p
should be set to approximate to r. Certainly, setting r to the maximum value or M /2 obtains minimum
CR, then we have to be careful setting r parameter since it controls the trade-off between C and CR.
Due to its position, p parameter should be to the maximum value for reaching the maximum payload.
The maximum value of p is r. If p = r, then CS acquisition, as described in (4), produces an output
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Figure 3. Finding feasible M and r to obtain payload>20 bps and CR>1

with the same size to the input of CS. This condition is still acceptable when CR from (6) is more than
1. CS acquisition still contributes to the watermarking process.

Figure 3a displayed the payload versus CR with M € {34,66,98,---,482} and r €
{0.01M,0.02M, - - - ,0.5M}. All possibilities of the r and M combination with the restriction (47)
are plotted as the magenta dots in Figure 3b. Blue dots in Figure 3a means the mapping between
payload using Equation (17) and CR using Equation (6) where p = r, whereas magenta plus signs
means the mapping between the payload and CR where p = 1. The red vertical dotted line means the
minimum CR or 1. The green horizontal dash line means the minimum payload or 20 bps [21]. Thus
the area with feasible payload and CR is the right side of the red vertical dotted line and the top side
of the green horizontal dash line. We see that many blue dots have a higher payload and CR than the
magenta plus signs, which means the payload and CR with p = r has many possibilities to reach much
higher ones than the payload and CR with p = 1. The payload and CR mapping displayed in the blue
dots where payload > 20 bps and CR > 1 in Figure 3a are obtained from r and M in blue circle in Figure
3b, thus we set p = r for the experiment in the next section where r and M combination values are
selected from the blue circle in Figure 3b.

5. Experimental Result

We assess several evaluations in this section by simulations. The evaluation aspects of the
proposed method include audio quality, security, watermark quality, watermark payload, and
compression ratio level aspect. The simulations run on ASUS notebooks using Matlab with the
following specifications, Advanced Micro Devices (AMD) Fx with 12 compute cores, 16 GB Random
Access Memory (RAM), and Windows 10 operating system. There are 50 mono audio host files
as the clips tested with the different genres of music, sampling rate 44.1 kHz and 16 bits audio
quantization. All clips are in the original wave files and licensed as the free audio files for research
[22]. The simulation output in this section shows the average of the simulation result. The evaluated
performance parameters are such as the audio quality, the watermark robustness, the watermark
payload, and CR. Objective Difference Grade (ODG) represents the audio quality using Perceptual
Evaluation of Audio Quality (PEAQ) [23]. Parameter C represents the watermark payload in bps as
described at (16). Parameter BER represents the watermark robustness in (34). CR represents the
compression ratio, as explained in (6).
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We measure the audio quality between the original host audio and the reconstructed audio. The
reconstructed audio quality is affected by two factors, such as the truncation of the diagonal matrix
and the CS acquisition. The truncation of the diagonal matrix gives worse quality to the audio than the
CS acquisition due to the loss of the audio signal information. The audio quality represented by ODG
has a range from -4 to 0, which -4 means the worst audio quality or the distortion is very annoying, -3
means the distortion is annoying, -2 means the distortion is slightly annoying, -1 means the distortion

is perceptible but not annoying and 0 means the best audio quality or the distortion is imperceptible
[23].

5.1. Audio Quality Performance in Relation with r, M, Payload and Compression Ratio

From Section 4, we select M and r values to obtain CR > 1 and payload > 20 bps using
p = r as displayed in Figure 3b with the blue circle symbol. Using the selected M and r from
M € {34,66,98,---,482} and r € {0.01M,0.02M, --- ,0.5M}, we apply the simulation on 5 clips
as the hosts. The simulation consists of the embedding process, the data detection process, and
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the audio reconstruction process. It calculates the BER between the detected watermark and the
original watermark, and it finally calculates the audio quality from the reconstructed audio in the ODG
performance parameter. The simulation results are displayed in Figure 4a and 4b. From the simulation
using all combination parameter M and r with 5 clips, we get a perfect watermark detected without
any errors or BER=0 on average. Figure 4a shows the trade-off relation between CR and payload with
a negative exponential relation. Red star symbols mean the mapping between CR and payload with
ODG > -1, while blue dot symbols mean the mapping between CR and payload with ODG < -1. We
also plot the blue dots and the red stars in Figure 4b, in the relation between ODG and M. We can say
that the longer the length of audio processed for embedding and compression causes the worse the
reconstructed audio quality. For the above case with 5 selected clips, good reconstructed audio quality
or ODG2> -1 are obtained when M<128 samples with certain values of r.

Table 4. 10 Highest Table 5. 10 Highest Table 6. 10 Highest
ODG Payload Compression Ratio

r M ODG C CR r M ODG C CR r M ODG C CR
8 -0.02 275625 1.60 20 -029 826875 1.23 30 -0.99 196  7.03
7 002 275625 1.60 19 -029 826875 1.23 29 -0.99 196  7.03
5 -0.03 483333 1.11 18 -0.29 826875 1.23 27 -0.99 225  6.53
10 -0.03 1764  2.08 17 -029 826875 1.23 28 -0.99 225  6.53
9 -0.03 1764 208 16 -0.29 8268.75 1.23 25 -094 26095 6.04
6 -0.03 4900 1.12 24 032 826875 1.14 26 -094 26095 6.04

12 -0.04 551250 1.45
11 -0.04 551250 145
10 -0.04 551250 1.45
12 -0.05 1225 2.57

23 032 826875 1.14
22 -032 826875 1.14
21 -032  8268.75 1.14
20 -032 826875 1.14

23 -0.82 30625 554
24 -0.82 30625 554
22 -0.68 36447 5.04
21  -0.68 36446 5.04

N WWWRNNDNNNDDNDDN
AN\ O U1 U1 U1 U1 Ul
NINNDNDNMNNMNDNMNDNMNNDDNDDN

The required M parameter does not have to be large until 482 samples, but only up to 128 samples
to achieve audio quality with ODG >-1. Figure 4b shows the results. Also, large M values have a long
impact on the time processing of the insertion, detection, and reconstruction. Therefore, we apply
the same simulation as the simulation displayed in Figure 4a and 4b using more detail M and 7, i.e.,
M e {5,6,..,128},r € {1,2,..,,64} which is similar to r € {0.0156M, 0.0234M], ...,0.5M} and 50 clips.
We average the audio quality results from 50 clips, and all watermarks are perfectly detected. The
simulation results are displayed in Figure 4c and 4d. From Figure 4d, there are much more options
of M from 5 to 128 obtaining the results with ODG > -1. The simulation as displayed in Figure 4c,
also obtains the high CR (up to 7.03), and the high payload (up to 8296 bps). To explore which M and
r obtaining the above result, we also capture the simulation results into the table. Table 4, 5 and 6
respectively display 10 highest ODG, payload and CR with certain M and r. This simulation results
generally show that we can control the audio quality, payload, and CR by adjusting the M and r
parameters.

We apply the simulation using 50 clips with M = 32 and r € {1,2,...,,16} which is similar to
r € {0.03M,0.06M, ...,0.5M} to see how the audio truncation affects the performance parameters.
Figure 5a displays the simulation result. This case also produces perfect detected watermark or BER=0
on average. Three performance parameters, i.e., ODG, CR, and payload as y-axis, are displayed in one
figure after averaged, and the x-axis is the normalized rank or r/M €& {0.03, 0.06, ..., 0.5}. The black
line with the right triangle symbol shows the average ODG producing -1.16 to -0.16. The blue line
with a square symbol shows the payload of an embedded watermark in bps, obtaining 172.26 to 44100
bps. The red line with a circle symbol means the CR of the encoded audio resulting from 0.20 to 7.53.
The red horizontal line with the dashdot symbol means the minimum CR or CR=1. We can see that
increasing the normalized rank represented by r/ M, raises the ODG and the watermark payload but
lower the CR of encoded audio. If the CR with the red line and circle symbol is less than the minimum
CR, then it means the CS process does not compress the audio signal overall; instead, it increases the
length of the encoded signal. In this case, we can select the normalized rank less than 0.2 or /M < 0.2
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to keep the CR to be more than 1. In more detail, we can limit minimum r/ M such that ODG>-1, i.e,,
r/M > 0.1. Thus, the selected range of normalized rank is [0.1, 0.2] obtaining the watermark payload
with the range [729, 5292] bps, the compressed ratio with the range [1.47,4.84] and ODG with the range
[—0.94, —0.74]. The r/ M restriction for this case keeps the reconstructed audio in good audio quality
with high payload and CR>1.

5.2. Complexity and Computational Time

The major components of the proposed data hiding and compression method in this paper consist
of DCT, the multi bits SS mapping, Singular Value Decomposition, and CS acquisition process in the
embedding and multi bits SS de-mapping, SVD reconstruction, audio decoding via CS reconstruction
and IDCT. Each component has a different complexity. The SVD process to obtain U € RM*M,
S € RM*M and V € RM*M from X € RM*M has a complexity of O(M3) [24]. When we need to get
X from U, S and V as (3), its complexity is O(M?37) [25]. DCT and IDCT described in (8) and (9)
has a complexity of O(N’%) where Ny, is the number of the DCT point and N, = M in this case. The
CS acquisition in (4), which is also the multi bits SS embedding, has a complexity of O(pr?). The
multi bits SS detection, as described in 22, has a complexity of O(r3). Finally, the audio reconstruction
by OMP approach in (40) has a complexity of O(p?r). Due to the relation p < r < M, the highest
computational cost is found in the Singular Value decomposition, i.e., O(M3), thus the complexity of
overall components is dominated by the SVD. This finding confirms the reason to use the lower M
value. However, we still need to check the computational time by the simulation to find out a proper
M value to avoid a very long processing time.

We apply the simulation to find out the computational time, which should represent the
complexity of the embedding and the detection stage. In the simulation, we apply parameter M
from 16 to 1024 with multiple of power of 2, parameter r = 0.125M, r = 0.25M and r = 0.5M. We
use 10 clips in the simulation, and we average the time processing result. The result is displayed
in Figure 5a. The processing time exponentially increases when M raises. Parameter v/ M has no
significant impact on the computational time. From this figure, lower M is recommended due to the
low computational time. Moreover, as confirmed in Subsection 5.1, the lower M has a significant
impact on the reconstructed audio quality.
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Figure 6. BER in relation with N;j and r Using Different Hadamard Matrix Between Encoding and
Decoding

5.3. Security Analysis

In Section 3.3, there are two parameters having impact to the model security, i.e., N; as the number
of generated integer random permutation value and r as the row and column number of the diagonal
matrix after truncated, Sy. The original Hadamard matrix is denoted as H,, and the secured Hadamard
matrix is denoted as Hs. We apply the simulation using vary r and Nj to understand how much r and
N affect the security performance. In the real situation, one can try to break the security model by
using the original Hadamard matrix for detecting the watermark and reconstructing the audio due to
the simplicity of the Hadamard matrix generation. With the secured Hadamard matrix in the encoder,
we apply the decoding by the original Hadamard matrix to analyze the strength of the security model.
If the security model works well, the detection watermark should ideally be damaged, or the BER
should be near to 0.5.

In the simulation, we assume p = r = 20 and M = 128 samples. N; varies from 0 to r. Parameter
N; is zero, meaning that H; = H,. We use 5 clips for analysis by calculating the average BER after the
watermark detection process. We apply the simulation in 100 iterations for each clip. The simulation
result is shown in Figure 6a. The worst detected watermark is obtained when Nj is a half of » and
the perfect watermark is detected when N; = 0 and N; = r = 20. We can limit accepted minimum
BER for restricting the value of N;. We choose BER=0.4 as the safe minimum BER because we can
still interpret the digital visualization from the detected watermark with BER<0.3 [26]. Therefore, we
choose N; > 6 or generally N; > 0.3r as the minimum value of N; and N; < 14 or generally N; < 0.7r
as the maximum value of N; to keep the detected watermark uninterpretable when one try to detect
the watermark by the original Hadamard matrix.

Figure 6b shows the relation between BER and r and comparing the detected watermark quality
using the different N;/r. The simulation was applied in 50 clips via 10 iterations for each clip. The
range of r is [6,30]. The worst watermark is detected when N;/r = 0.5. The detected watermark
quality is better when N;/r decreases and as the value of r increases. When N;/r = 0.3, most of the
BER values are more than 0.4. This result confirms the restriction N; in the range [0.3r,0.77].
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5.4. Noisy Environment

In the noisy environment, our proposed method is robust to additive noise attack as confirmed
mathematically in Section 3.5. Nevertheless, it is necessary to know how robust the method if the
additive noise attacks the encoded audio by simulation. We analyze the detected watermark quality
represented by BER and the reconstructed audio quality represented by ODG as two performance
parameters affected by the additive noise. In the simulation we use 50 clips with 50 iterations for each
clip, M =23, r = 6 and p = r. The additive noise parameter or the input parameter for the simulation
is SNR, as described in (45), whose range is 0 to 40 dB. ODG and BER as the performance parameters
obtained are averaged before displayed in Figure 7. Decreasing the noise power or increasing the SNR
raise the reconstructed audio quality or ODG and the detected watermark quality or BER.

We embed the watermark image with the letters "ITB" and resolution 20 x 35 to understand the
interpretation of the value of BER. The detected watermarks are displayed in Table 7 with various BER.
We use one selected clip as the audio host using parameter M = 256, = 100 and p = r. The original
watermark image is shown at the very bottom of Table 7 since its BER is zero. We use the additive noise
as the attack with various SNR from 0 to 55 dB. The detected watermark is interpretable as "ITB" when
the SNR of the noise is more than 25 dB, or its BER is less than 10%. Thus, the maximum acceptable
BER for the detected watermark is up to 10%. In Figure 7, BER less than 10% can be achieved on SNR
10 dB and above. It means that the detected watermark is already interpretable when the noise power
is still half of the signal power. Also, ODG is already more than -1. These results confirm the robust
proposed method of additive noise. The reconstructed audio is also robust to the additive noise since
the ODG already achieves more than -1 when the SNR is still 10 dB.

10° : . : : . : 06 SNR BER (%) Detected Watermark
& |=one i 0 24.1 =58
o 1™ 5 18.7 #Th
|08 10 17.4 &Th
) 15 14.3 %Th
; " 1o 20 11.7 £Th
5 ) 8 25 8.8 £Th
0 30 6.1 iTh
By 35 5.7 iTh
10% \ 40 5.6 iTh
‘ | 45 3.6 iTh
108 N N I I N B s 50 0.4 ITH
’ ’ ° ® SNR%O(dE) ® * * 0 55 0 ITH

Figure 7 & Table 7. Additive Noise Effect and The Detected Watermark in Certain SNR

5.5. Method Comparison to References

As described in Section 1, there are several references related to this proposed method. We
propose a new method with more benefits than the mentioned references. Our proposed method can
be used for both audio watermarking or audio steganography with compression due to the controllable
parameter between the payload, the audio quality, and the compression ratio. Besides, our proposed
method produces the encoding audio, which cannot be attacked by a general signal processing attack,
i.e., Stirmark benchmark, except the additive noise as described in Section 3.5. Table 8 displays the
comprehensiveness comparison between our proposed method and the previous references, which
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Table 8. Comprehensiveness Comparison
Ref. Hiding Method Audio Audio  Robustness Payload Compression
Reconstruction  Quality Ratio
[1] Watermark Projection X X Vv X X
[2] Semifragile Zero Watermarking  x X N4 X X
[3] - vV v X X v
[4] Basis Pursuit Denoising Vv Vv Vv Vv X
Proposed Multibits Spread Spectrum Vv N4 Vv N4 4

also used CS as the embedding or compression method and the audio as the object to embed or to
compress. From the previous reference in Table 8, The reference [3] proposed the audio compression
scheme only. The reference [2] proposed the hiding method only. The reference [1] and [4] proposed
the hiding method and the compression to the audio but did not analyze all performance parameters.

6. Conclusion

In this paper, we propose and report a novel audio watermarking method with CS technique
which attempts to insert the watermark into the host audio and simultaneously compresses the audio
that has been inserted by the watermark so that the watermarked audio has a smaller size. We also
provide the security aspect of this proposed method using a secure Hadamard matrix. The proposed
method works well in a noiseless and noisy environment by mathematical derivation. Parameter
performance, such as payload, CR, ODG, and BER, are reported in this paper. The experimental result
shows that the proposed method presents the high imperceptibility property with payload in the range
729-5292 bps and compression ratio 1.47-4.84. There is a trade-off relation between payload and CR.
We can choose the performance, specifically adapting to requirement needs.
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CS Compressed Sensing / Compressive Sampling
WHT  Walsh Hadamard Transform

DCT Discrete Cosine Transform

TLC Karhunen-Loeve Transform

MP3 Motion Picture Experts Group Audio Layer 3
SVD Singular Value Decomposition

CR Compression Ratio
IDCT  Inverse DCT
SS Spread Spectrum

BER Bit Error Rate

OMP  Orthogonal Matching Pursuit

SNR Signal to Noise power Ratio

ODG  Objective Difference Grade

PEAQ  Perceptual Evaluation of Audio Quality
AMD  Advanced Micro Devices

RAM  Random Access Memory
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