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Abstract—Coronavirus disease 2019 (COVID-19) is a pandemic
infectious disease that has a severe risk of spreading rapidly.
The quick identification and isolation of the affected persons
is the very first step to fight against this virus. In this regard,
chest radiology images have proven to be an effective screening
approach for COVID-19 affected patients. Several AI-based solu-
tions have been developed to make the screening of radiological
images faster and more accurate in detecting COVID-19. In
this study, we are proposing a deep learning-based approach
using Densenet-121 to effectively detect COVID-19 patients. We
incorporated the transfer learning technique to leverage the
information regarding the radiology image learned by another
model (CheXNet), which was trained on a large radiology dataset
of 112,120 images. We have trained and tested our model on
the COVIDx dataset containing 13,800 chest radiography images
across 13,725 patients. To check the robustness of our model,
we performed both two-class and three-class classifications and
achieved 96.49% and 93.71% accuracy, respectively. To further
validate the consistency of our performance, we performed
patient-wise k-fold cross-validation and achieved an average
accuracy of 92.91% for three class tasks. Moreover, we performed
an interpretability analysis using Grad-CAM to highlight the
most significant image regions in making a prediction. Besides
ensuring trustworthiness, this explainability can also provide new
insights about the critical factors regarding COVID-19. Finally,
we developed a website that takes chest radiology images as
input and generates probabilities of the presence of COVID-19
or pneumonia and a heatmap highlighting the probable infected
regions. Source code for reproducing results and model’s weights
are available. 1

1. Introduction
On February 11, 2020, the World Health Organization

(WHO) defined the novel coronavirus (2019-nCoV) as Coron-
avirus Disease 2019 (COVID-19) as an epidemic disease. The
2019-nCoV is a new member of the Severe Acute Respiratory
Syndrome Coronavirus (SARS-CoV) family and is defined as
SARS-CoV-2. Though it started in Wuhan, Hubei Province,

1Code for reproducing is results available at https://github.com/mmiemon/
COVID-DenseNet and models’ weights can be found at https://bit.ly/
2YZwyk3

China, it had spread nationwide within a very short period and
turned into an outbreak [1]. Being concerned by the frighten-
ing levels of spread and severity, WHO characterized COVID-
19 as a pandemic in the month of March, and it became a
global issue as there are no specific vaccines or treatments
available for this virus. As it can infect people easily and can
spread from person-to-person very spontaneously, the quick
identification and isolation of the affected person is the very
first step to fight against this virus. Polymerase chain reaction
(PCR) is the primary method for detecting COVID-19 cases.
It can detect SARS-CoV-2 RNA from respiratory specimens
such as nasopharyngeal or oropharyngeal swabs [2]. Though
this method is the most effective one, it is very time consuming
and intensive lab work is required after the collection of the
samples to get the result.

Another approach is the examination of chest radiography
imaging (e.g., radiology or computed tomography (CT) imag-
ing), which can be conducted faster but an expert analysis
is needed to interpret the subtle differences. For removing
this bottleneck, many AI-based systems have been proposed
to detect COVID-19 from radiography images. Moreover, AI
solutions are much faster than traditional methods where radi-
ologists need to examine the images by hand. Some previous
works used AI solutions with CT images to detect COVID-
19 [3] [4]. But CT scans are more costly and in most cases
CT image dataset is not publicly available. On the other hand,
X-rays are more widespread, quicker and cheaper alternative.
Therefore, we choose chest X-ray images in our study. We
used publicly available COVIDx dataset [5] to train a deep
learning model which can efficiently detect COVID-19 from
chest X-ray images.

In our work, we have used the Dense Convolutional Net-
work (DenseNet) [6] of 121 layers as our model. DenseNet
makes the training of deep learning models manageable by
alleviating the vanishing gradient problem, increasing fea-
ture reuse, and decreasing parameter usage. It has attained
state-of-the-art performance in several computer vision tasks.
Moreover, DenseNet has been used successfully in disease
prediction from radiology images. In paper [7], DenseNet-121
was used to detect 14 kinds of diseases from chest radiol-
ogy images (CheXNet), and it achieved better performance
than practicing academic radiologists. Paper [8] also used
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DenseNet-121 for disease prediction from radiology images
of the ChestRadiology-14 dataset and further improved the
performance achieved by paper [7]. Being motivated by the
excellent performance of DenseNet on radiology images (e.g.
paper [7] and [8]), we used DenseNet-121 as our deep learning
model. Moreover, we initialized our model’s weights by the
weights of CheXNet [7]. Our intuition of using this transfer
learning technique was the utilization of the information
regarding radiology images present in the CheXNet pre-trained
model. Because CheXNet was trained on ChestRadiology-
14 [9] dataset which contains 112,120 frontal view radiology
images from 30,805 unique patients.

We trained our model on the COVIDx dataset [5] containing
13,800 chest radiography images across 13,725 patients. We
tested our model for two-class classification (COVID-19 and
non-COVID-19) and three-class classification ( COVID-19,
Pneumonia, and Normal). We achieved 96.49% accuracy for
two-class and 93.71% accuracy for three-class classification.
These results show that our model is capable of differentiating
COVID-19 radiology images not only from those of a healthy
person but also from those of other pneumonia patients.
To check the robustness and consistency of our model, we
performed 10-fold cross-validation where no two folds contain
COVID-19 images from the same patients (patient-wise cross-
validation) and achieved an average accuracy of 92.91%.

We used Gradient-weighted Class Activation Mapping
(Grad-CAM) [10] to visualize how our model works. Using
Grad-CAM, we created a heatmap for each input image,
highlighting the most significant region for which our model
makes a prediction. This feature ensures interpretability as
well as the trustworthiness of our model. It also works as a
safeguard that our model is not making predictions based on
inappropriate portions of the input radiology image. Moreover,
this will help doctors and clinicians to visualize the most
significant features and give insights about the critical factors
of COVID-19 patients.

It is important to develop a tool for allowing users to use
our model and generate predictions effortlessly. We developed
a web application [11], which adapts our model to provide
real-time predictions. We used TensorFlow.js for converting
our model to work in the browser. The web application also
generates heatmaps of the radiology images. A RESTful API
is implemented using Flask micro web framework, which is
used to create the heatmaps.

The rest of the paper is organized as follows. Section 2
provides the literature review on some state-of-the-art methods
developed for detecting COVID-19 in recent times. Section
3 presents our proposed method, which is followed by a
discussion on the experimental results in section 4. Finally,
section 6 concludes the paper.

2. Related Works
Computer vision [12] helps us building autonomous sys-

tems to perform tasks similar to the human visual system
and, in some cases, better performance than human vision.

One of the significant contributions of computer vision is in
better diagnosing, treatment, and prediction of diseases using
medical imaging data [13]. Deep neural network(DNN) has
a great capability in the image classification task [14] and
convolutional neural network(CNN, or ConvNet) [15] is one
of the most popular classes of DNN. AlexNet [16], VGG [17],
Inception [18], ResNet [19], DenseNet [6] are some of the
popular convulational networks.

AlexNet [16] architecture is composed of five convolutional
layers, followed by three fully connected layers. Instead of
the standard tanh or sigmoid function, it uses ReLU(Rectified
Linear Unit) for the non-linear part after each convolutional
and fully connected layers. ReLU is much faster in case of
training than the sigmoid function. It also solved the problem
of over-fitting by introducing the idea of a drop-out layer.

VGG16 and VGG19 architecture are from the VGG group.
Instead of large kernel-sized filters used in AlexNet, VGG16
and VGG19 use multiple 3X3 kernel-sized filters consecu-
tively. This multiple stacked smaller size kernel works better
than AlexNet because it increases the depth of the network and
provides the chance to learn more complex features at a low
cost. VGG16 contains 16 weight layers where VGG19 has 19.
In the VGG group, convolutional layers are followed by fully
connected layers. Also, all the hidden layers are equipped with
ReLU.

Inception is initially known as GoogleNet. Though VGG
is a good model, it takes an extensive computational cost
in terms of memory and time. Inception reduces the cost
by introducing a bottleneck layer(1X1 convolutional filter).
Also, it uses convolutions of different sizes like 5X5, 3X3,
1X1 to capture the details. It also reduces the total number
of parameters by replacing the fully-connected layers with a
global average pooling after the last convolutional layer.

ResNet is a deeper network than VGG16(with 16 layers)
and VGG19(with 19 layers) but smaller because of the use
of global average pooling instead of the fully-connected
layers(like inception model). By adding some connections
directly to the output skipping training from a few layers, it
tries to handle the problem of vanishing gradient descent. This
is called a residual network. That means with the help of this
type we can train very deep networks. ResNet50 is from this
group with 50 weight layers.

DenseNet architecture is designed in such a way that all the
layers are directly connected ensuring maximum information
flow in the network. Also unlike ResNet, here features are
concatenated. This architecture requires less parameters and
computation to get state-of-art performace.

Numerous works have been done in detecting COVID-19
from radiography images. Different model architectures have
been used for accurate detection of the disease. COVID-
Net [5] introduced a deep convolutional neural network de-
sign for detecting COVID-19 using the COVIDx dataset,
which comprises 13,975 chest X-ray images. COVID-Net
network architecture uses projection-expansion-projection-
extension (PEPX) design pattern (Figure 1). They utilized
a human-machine collaborative design strategy. This strategy
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Figure 1: COVID-Net [5] Architecture

combines human-driven principled network design prototyping
and machine-driven design exploration. In the final detection,
they have used 4 class classifications: Normal, Bacterial, Non-
COVID-19 Viral, and COVID-19 Viral.

Table I: Sensitivity(Recall) of COVID-Net [5]

Normal Bacterial Non-Covid19 Viral COVID19 Viral
73.9 93.1 81.9 100.0

Table II: Precision of COVID-Net [5]

Normal Bacterial Non-Covid19 Viral COVID19 Viral
95.1 87.1 67.0 80.0

From Table I and II, it is clear that the COVID-Net is very
good at detecting COVID-19 infection as sensitivity(recall) is
100%. A small portion of radiology images is misclassified as
COVID-19. But for other classes, both the sensitivity(recall)
and positive predictive value(precision) rate can be improved.
So, there is a lot more to contribute to properly detect the
COVID-19 from other respiratory infections as they are all
very similar. The COVID-Net model has achieved a test
accuracy of 93.3%.

COVNet [4] has differentiated COVID-19 from
Community-Acquired Pneumonia(CAP) from chest CT
images. The dataset was collected from 6 hospitals and
is not publicly accessible. COVNet is a 3D deep learning
framework(can extract both 3D global and 2D local
representative features) and contains a ResNet50 [19] as
the backbone. They have used U-net [20] to segment the
lung region from the chest radiology images. The training
dataset contains 1165 images of COVID-19, 1560 from CAP,
and 1193 of non-pneumonia CT scans. They have trained
their model with both CAP and non-pneumonia CT images
to check the robustness of how efficiently their model can
differentiate between COVID-19 and other similar lung
diseases. Table III gives us an overview of the performance of
their model, which seems very promising but not for public
use.

Transfer learning is a technique where the knowledge gained
from solving a specific problem is transferred to solve a

Table III: Sensitivity(Recall) & Specificity of COVNet [4]

COVID-19 CAP Non-pneumonia
Sensitivity 90 87 94
Specificity 96 92 96

different but similar problem. Transfer learning can provide
great results in detecting various irregularities in small med-
ical image datasets. Paper [21] adopted a transfer learning
technique to evaluate the performance of some state-of-the-
art convolutional neural network architectures. They used two
different datasets in this experiment. Table IV presents a
summary of their datasets.

Table IV: Datasets used in paper [21]

COVID-19 Pneumonia Normal
Dataset 1 224 700 504
Dataset 2 224 714 504

The author evaluated five CNN models which are VGG19
[22], MobileNet v2 [23], Inception [24], Xception [25], and
Inception ResNet v2 [24]. Among these models, MobileNet v2
[23] provided the best results in terms of specificity in their
particular datasets. Table V presents the results of MobileNet
v2 [23] on Dataset 2. The results from Table V is promising.
But this experiment was performed on a particular small
dataset. For practical medical use, especially in a pandemic
like COVID-19, this model needs to perform well on large
datasets as well.

DarkCovidNet is another deep learning model proposed
in paper [26]. The author used Darknet-19 [27] model as
their base model and designed DarkCovidNet architecture.
DarkCovidNet has 17 convolutional layers in contrast to the
19 convolutional layers in Darknet-19.

Figure 2: DarkCovidNet [26] Architecture

DarkCovidNet used a dataset of 1125 chest X-ray im-
ages, which comprises 125 images that were diagnosed with
COVID-19, 500 images with pneumonia, and 500 images were

Table V: Results of MobileNet v2 [23] on Dataset 2

Accuracy Sensitivity Specificity(2-class) (3-class)
0.9678 0.9472 0.9866 0.9646
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normal. The result of their experiment is presented in Table
VI.

Table VI: Experiment results of DarkCovidNet [26]

Classification Sensitivity Specificity Precision F1-score Accuracy
2-class 0.9513 0.953 0.9803 0.9651 0.9808
3-class 0.8535 0.9218 0.8996 0.8737 0.8702

From the table, it is clear that DarkCovidNet is very good
at detecting COVID-19 for 2-class classification. But there
are room for improvements for 3-class classification. This
method needs more contribution to detect COVID-19 from
other respiratory infections as well.

3. Methodology
As our dataset contains a small amount of COVID-19

radiography images, learning a deep learning model can be
very problematic in this scenario because deep learning models
require a large number of data for training from scratch.
Transfer learning can used as a viable solution to this problem.
In transfer learning algorithms, information learned in one
domain is utilized to perform another task in other domains.
For example, it a common practice to initialize deep learning
models with weights learned by the ImageNet dataset [28] in
computer vision domains. ImageNet is an enormous dataset
containing 3.2 million images from different sources. The
main advantage of such transfer learning algorithms is that
pretrained models on dataset like ImageNet have already
learned different features of different images. Later, these
learned features can be utilized for any other domain-specific
tasks by fine-tuning the pretrained model on the dataset of
that domain. However, if the dataset used for pretraining is
similar to the dataset of a specific task, it is expected that the
pretraining process will have more relevant and useful features
for that task. From this intuition, we utilized the CheXNet
model [7] trained on chest X-ray images for pretraining
instead of using AlexNet, VGG, inception or ResNet which
are pretrained on ImageNet(with 1000 categories of images
but with no chest X-ray images). The CheXNet model is
basically the DenseNet-121 model, which was trained on
the ChestRadiology-14 dataset [9] containing 112,120 chest
radiology images from 30,805 unique patients to detect 14
different diseases from radiography images. As the ChexNet
was trained on a huge dataset of radiography images, it is
expected that the ChexNet has learned various features relevant
to the radiography images. To utilize those learned features
related to the radiography image, we used transfer learning
from CheXNet by initializing our model by the weights of
CheXNet. We used DenseNet-121 [6] as a deep learning model
for feature extraction because this model has several advan-
tages over other deep learning models for the image domain,
which is explained in subsection 3(Model architecture).

The complete workflow proposed method is shown schemat-
ically in Figure 3. First, we load the pretrained DenseNet-121
model with the CheXNet model for feature extraction. Then
we remove the last layer of the CheXNet model and replace it

with a classifier specific to our task. For 3-class classification
(COVID-19, Pneumonia, and Normal), our classifier is a fully
connected layer with three neurons. For 2-class classification
(COVID-19 and non-COVID-19), it is a fully connected
layer with three neurons. Then we train our model (COVID-
DenseNet) with the radiography images of COVIDx dataset
[5] containing 13,800 radiography images of 13,725 unique
patients. In the testing phase, this trained COVID-DenseNet
model is efficiently used to predict the radiography image
class. Finally, a gradient-based localization algorithm (Grad-
Cam) [10] is used to identify the significant image regions that
contribute to the prediction decisions.

3.1. Data Generation
Radiology images of COVID-19 infected patients are rare.

We used COVIDx dataset assembled by [5]. We downloaded
the images on 7th April, 2020. They combined open source
databases with chest radiology or CT images from [29], [30],
[31]. We only used X-ray images to train our model and no
CT scan images were used. The total number of COVID-19
infected Chest images are only 238. This number is extremely
small compared to the number of radiology images available
for pneumonia infected and healthy persons, which are 6045
and 8851 respectively. So the data is highly skewed because
of the scarcity of images of COVID-19 patients. To deal with
this unbalanced dataset, we augmented only the COVID-19
images in the training set. The following Table IV shows the
distribution of the dataset before and after augmentation.

Table VII: Class Distribution.

Augmentation/ Class Normal Pneumonia COVID-19
No 8851 6045 238
Yes 8851 6045 11416

The train-test split ratio is fixed at 0.9. We also stratified
the train, validation, and test split so that the proportion is
maintained in each set. We augmented the training data in
six different methods. These are width shift, height shift,
horizontal flip, rotation, brightness change, and zoom in or
zoom out. We created 9 different images randomly for each
category. So each COVID-19 radiology image in the training
set has a total of 54 augmentations. For validating the result,
the dataset was prepared for 10-fold cross-validation keeping
the proportions of the class labels the same for each fold.
We maintained augmentation leakage by creating an indexing
system so that the augmentation of images in one fold does not
fall in another one. We also maintained an index for patient
ids’ so that no two folds have images of the same patient.
Each patient a has variable number of images. So dividing the
patients randomly among 10-folds would create an imbalance
in terms of the number of images in each fold. So we had
to maximize both the number of patients and images for each
fold at the same time. We thus reduced the correlation between
train and test images.

The COVID-19 dataset is currently growing. We created a
new data injection method to add new images to our dataset.
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This method also performs all the balancing acts to reduce the
correlation of images between each fold.

3.2. Preprocessing
We used minimal preprocessing of the dataset before it is

fed to our model. The only preprocessing was resizing every
image to a similar dimension. We used images of height
224 pixels, width 224 pixels, and the number of channel
3 (224*224*3). Minimal preprocessing makes our inference
process faster, so when testing, we can generate the model’s
output (prediction and heatmap) in real-time.

3.3. Model Architecture
Our model is comprised of two parts, feature extractor, and

classifier. For the feature extractor, we used Densenet-121 [6],
and for the classifier, we used a fully connected layer with
softmax activation function.

The main building block of DenseNet-121 is DenseBlock
[6]. These DenseBlocks consist of Convolution Layers. In
general, CNN architectures are hierarchical, so feature maps
of (l − 1)th layer are input to the lth layer. But in DenseNet,
feature-maps off all preceding layers are concatenated and
used as input for any particular layer. Also, it’s own feature-
maps are used as inputs for all subsequent layers. So, for lth
layer, features maps of all preceding layers X0, X1, ..., Xl−1
are concatenated and used as it’s input.

Xl = Hl([X0, X1, ..., Xl − 1]) (1)

Here Hl represents the lth layer, Xl is the output of the lth
layer, and [X0, X1, ..., Xl − 1] represents the concatenation
operation.

This special design improves information flow through the
network and alleviates vanishing gradient problem. Moreover,
DenseNet enhances feature reuse and parameter efficiency
and provides each layer the collective knowledge of the
network. Another important reason for choosing DenseNet as
our architecture is that dense connection has a regularization
effect, and it reduces over-fitting on training with smaller data
sets [6], which is our case.

DenseNet-121 has four dense blocks and a transition layer
between every two dense blocks (Figure 4). Each dense block
consists of several convolution layers, and each transition layer
consists of a batch normalization, a convolution, and an av-
erage pooling layer. To increase nonlinearity ReLU activation
function is used in DenseNet, which can be described as:

ReLu(x) =

{
x x > 0

0 x ≤ 0
(2)

In our model, the final layer of the Dense-121 is a global
average pooling layer that generates the features from the
input image. These features are used by the classifier to
make the final prediction. For the classifier, we used a fully
connected layer, followed by a softmax activation function. For
3-class classification, we used a fully connected layer of three

units, and for 2-class classification, we used a fully connected
layer of two units. The softmax activation normalizes the
output of the fully connected layer and generates a probability
distribution over the predicted output classes. The equation of
the softmax function can be written as follows:

σ(~zi) =
ezi∑K
j=1 e

zi
(3)

Here, ~z is the input vector of the softmax function, zi values
are the components of the input vector, and K is the number
of classes.

3.4. Model Implementation
DenseNet-121 consists of 121 densely connected convolu-

tional layers with a fully connected(FC) layer of 1000 units
as its final output layer. We removed the final layer and
used it as our feature extractor. Then we added a classifier
that consists of an FC layer and a softmax activation. We
initialized our models weights with the weights of CheXNet
[7], which was trained on ChestRadiology-14 [9] dataset of
112,120 chest radiology images. Since CheXnet was already
trained to extract features from chest radiology images, we
used this transfer learning method to leverage the pretrained
model.

The network was trained end-to-end with a backpropagation
algorithm to minimize the loss function. We used categorical
cross-entropy as the loss function of our model. The loss
function can be written as the the following equation:

L(θ) = − 1

n

[
n∑
i=1

K∑
k=1

yik lnhθ(x
i)k

]
(4)

Here, n is the number of training samples, k is the number
of classes, θ is the model parameter, yik is the actual level of
ith training sample, hθ(xi)k is the output at kth node for ith
training sample.

Adam optimizer [32] was used to update the model weight
θ. Weight update equation can be written as follows:

θt = θt−1 − α
mt√
vt + ε

(5)

where,
mt = β1 ×mt−1 + (1− β1)× gt (6)

vt = β2 × vt−1 + (1− β2)× g2t (7)

Here, θt is weight at time t, θt−1 is weight at time t−1, α is
the learning rate, gt is gradient of the weights with respect to
the loss function, mt is the first moment estimate and vt is the
second raw moment estimate, β1 and β2 are hyperparameters.

We used (β1 = 0.9 and β2 = 0.999). The initial learning
rate was .00001, and it was reduced by the factor of 0.1 when
the validation loss plateaued. Because when loss begins to
plateau, reducing the learning rate helps the optimizer to find
the minimum in the loss surface more efficiently. We used
early stopping with patience 5, which means if validation set
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Figure 3: Schematic diagram of the complete workflow.

performance does not improve for 5 epochs, then the training
will be stopped, and the model’s parameter with the best
validation set performance will be restored. This strategy helps
to stop the over-fitting of the model.

3.5. Prediction and Heatmap generation
In Section 4, we described the implementation of our model

at the training phase. After training, we get a trained model
with a learned weight that we can use at the testing phase to
make a prediction. In the testing phase, our model receives
a chest radiography image of a patient and does minimal
preprocessing (resizing in shape 224*224). Then the image
is fed to the trained model to generate final predictions.

Besides making the prediction, our method also generates
a heatmap of the input image. This heatmap highlights the
significant regions in the input image that contributed most to
a particular prediction. This can help doctors identifying the
critical areas of an affected patient’s chest, which may lead
the model to identify him as a COVID-19 affected person.

We used Gradient-weighted Class Activation Mapping
(Grad-CAM) [10] to generate the heatmap. This heatmap is a

coarse localization map which highlights the important regions
in the input image for making the prediction. Grad-CAM
exploits the last convolution layer of a CNN architecture to
generate the activation map. The intuition behind choosing the
last convolution layer is that the deeper CNN layers capture the
high-level information most. Early CNN layers cannot capture
the high-level information and the later fully-connected layers
loses the spatial information. Therefore, last CNN is a good
choice which captures both spatial and high-level information.
In this approach, to generate the heatmap of width u and height
v, we computed the gradient of the target class with respect
to the feature maps of the final convolutional layer. These
gradients are average-pooled over width and height dimension
to generate the neuron importance weights for the target class.

αck =
1

Z

∑
i

∑
j

δyc

δAkij
(8)

Here, c is the target class, yc is the gradient of c before
softmax, Ak is the feature map of the last convolution layer,
summation over i and j represents the average-pool operation,
and αck is the generated importance weights for class c.
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Figure 4: DenseNet-121 with 4 dense blocks and 3 transition layers.

After that, a weighted combination of ReLU activation is
applied. This produces a coarse localization map or heatmap
of the size of the final convolution layer. The ReLU activation
function is applied because it emphasises the features that have
a positive influence on the final prediction.

LcGrad−CAM = ReLU

(∑
k

αckA
k

)
(9)

Here, LcGrad−CAM is the generated heatmap, αck is the
generated importance weights for class c, and Ak is the feature
map of the last convolution layer.

Finally, this heatmap is resized and superimposed on the
input image, which generates the final heatmap like Figure
6. Figure 6 shows the actual Chest-Xray images along with
heatmaps of a COVID-19 affected, a pneumonia affected,
and a normal person. We can see that our model is mainly
emphasizing on the lung areas in detecting COVID-19 or
pneumonia.

4. Results and Discussion
As the dataset of COVID-19 cases is not that much avail-

able, to be assured about the performance of our model, we
performed both 2-class classification (COVID-19 and non-
COVID-19) and 3-class classification (COVID-19, Pneumonia,
and Normal). Moreover, we performed patient-wise 10-fold
cross-validation to guarantee the robustness of our model.
Finally, in the qualitative analysis, we analyzed the decision-
making behavior of our model to ensure interpretability and
trustworthiness.

4.1. Quantitative Analysis
To show this particular analysis, we calculated the test

accuracy, precision, recall, and f-score of each experimental
setup. As we have an imbalanced class distribution, accuracy
alone cannot provide a proper performance overview. So we
also included the other metrics mentioned above to assess our
model. Recall is the fraction of test instances of a class that
has been correctly predicted whereas precision is the fraction
of correctly classified object assigned to the class. F-score is

Figure 5: Accuracy vs epoch and loss vs epoch for train and
validation set (Experiment 1).

simply the harmonic mean of these two values. The equation
for calculating these values are:

recall =
TP

TP + FN
(10)

precision =
TP

TP + FP
(11)

fscore =
2 ∗ recall ∗ precision
recall + precision

(12)

Here, TP, FN, and FP are true positives, false negatives,
and false positives. For multi-class prediction, f-score can be
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computed in two different ways: micro-average f-score and
macro-average f-score. In the micro-average f-score, the larger
classes get more weight and hence give the same evaluation as
accuracy. However, in the macro-average f-score, the smaller
classes get the same importance as the bigger ones. We choose
this macro-average to evaluate our models.

4.1.1. Three class classification
In this experiment, we performed a 3-class classification

(COVID-19, Pneumonia, and Normal). We split our dataset in
train, validation, and test set in an 80%-10%-10% ratio. There
was no common image among the three sets, and augmentation
was performed separately in each set. Results are shown in Ta-
ble VIII and IX. The results show 95% accuracy for normal or
healthy people where the model correctly predicted pneumonia
and COVID-19 with 93% and 87% accuracy. The low accuracy
for COVID-19 cases is due to the limited amount of training
images. Overall accuracy is 94%, which is quite good. As
our dataset is imbalanced, we analyzed precision, recall and
f-score. We can see that all performance matrices are more
that 90% for pneumonia and normal and 87% for COVID-
19. These results indicates our model is capable of classifying
COVID-19, pneumonia, and normal chest radiography images
with high confidence.

4.1.2. Patient wise cross validation
To check the robustness and performance consistency of our

model, we have done patient-wise 10-fold cross-validation as
the data-set contains multiple radiology images of different
days for the same patient. Each fold has images of different
patients, and augmentation was performed separately in each
of them. Table X shows the average accuracy, precision, recall,
and f-score of all folds. The result is quite similar to the
3-class classification performance, which indicates that the
performance of the model does not deviate too much even if
we change the train and test instances. So the model is robust
and can work quite well with new images.

4.1.3. Two class classification
The same setup (train, validation, test split in 80%-10%-

10% ratio) as the first experiment with only 2 class labels
(COVID-19 and Non-COVID-19) was used in this experiment.
Results are shown in Table XI and Table XII. We see improve-
ment in detecting COVID-19 cases with binary classification
as expected. The model can classify better in this setup with
an overall accuracy of 96%. Overall precision, recall and f-
score is also 96%. We also analyzed accuracy, precision, recall
and f-score separately for COVID-19 and Non- COVID-19
and all matrices is more that 90%. These results ensures that,
this model can serve very well in case one only wants the
successful detection of COVID-19.

4.1.4. Comparison with standard computer vision
algorithm

We compared our model other state of the art computer
vision models. Particularly, we compared with inception-v3,
resnet50, and VGG-16 with the same setup as three class
classification. Initial weights were set to the trained models

on ImageNet, which is a large database of images for clas-
sification tasks. Weights of the trained models are available,
and we trained the radiology dataset with the initial weights
of these trained models, which is a transfer learning approach.
The comparative performance is shown in Table XV. Overall
accuracy for COVID-DenseNet is 94%, while accuracy for
resnet50, inception-v3, and VGG-16 are 92%, 90%, and 93%.
COVID-DenseNet has higher accuracy for Pneumonia and
Normal cases also. The results clearly indicate that our model
outperforms other computer vision models.

4.1.5. Different initial weights
We trained Densenet with initial weights set to the trained

model from ChestXNet. The reason for performing transfer
learning with this weight is that the necessary features as-
sociated with radiology images have already been extracted,
and we might use that information in the model to efficiently
change the problem set to our use case with COVID-19
images. We trained our model with image-net and random
weight initialization to verify our claim of a performance boost
with ChestXNet transfer learning. The results are shown in
Table XIV. The overall performance increased with weight
initialization from ChestXNet.

4.1.6. Comparison with state of the art methods
We have encountered some state-of-the-art methods de-

veloped for detecting COVID-19. The accuracy comparison
with these methods is shown in Table XV. COVID-Net [5]
introduced a deep convolutional neural network for detecting
COVID-19 using COVIDx dataset which comprises 13,975
chest X-ray images and achieved an accuracy of 93.3%. Apos-
tolopoulos2020 [21] adopted transfer learning to evaluate some
state-of-the-art CNN architectures and obtained an accuracy of
96.78% for 2-class classifications and an accuracy of 94.72%
for 3-class classifications using MobileNets v2 [23]. Ozturk
[26] used DarkNet [33] model as their classifier and proposed
DarkCovidNet model. They obtained 98.08% accuracy for
2-class and 87.02% accuracy for multi-class classifications.
ResNet50 plus SVM [34], A deep learning based methodology
achieved an overall accuracy of 95.38% and ResNet50 [35],
a deep convolutional neural network model, achieved 98%
accuracy for 2-class classifications. COVNet [4], which is a
3D deep learning model and uses ResNet50, obtained 93.24%
accuracy for 3-class classifications.

Class/ Metric Accuracy Precision Recall f-score
Overall 0.94 0.94 0.94 0.94
COVID-19 0.87 0.87 0.87 0.87
Pneumonia 0.93 0.95 0.93 0.94
Normal 0.95 0.94 0.96 0.95

Table VIII: Three-class classification results.

4.2. Qualitative Analysis
As described in section 5, we used Gradient-weighted Class

Activation Mapping (Grad-CAM) [10] to analyze our model’s

2This metric is not mentioned directly in the paper. We calculated it from
their Sensitivity and Specificity results.
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Predicted/ Actual COVID-19 Pneumonia Normal
COVID-19 27 3 1
Pneumonia 2 93 3
Normal 2 4 96

Table IX: Confusion matrix for three-class classification.

Class/ Metric Accuracy Precision Recall f-score
Overall 0.93 0.92 0.92 0.92
COVID-19 0.86 0.77 0.85 0.81
Pneumonia 0.90 0.93 0.91 0.92
Normal 0.95 0.94 0.94 0.94

Table X: Patient-wise cross-validation results.

Class/ Metric Accuracy Precision Recall f-score
Overall 0.96 0.96 0.96 0.96
COVID-19 0.93 0.90 0.94 0.92
Non COVID-19 0.96 0.97 0.97 0.97

Table XI: Two-class classification results.

Predicted/ Actual COVID-19 Non COVID-19
COVID-19 29 3
Non COVID-19 2 97

Table XII: Confusion matrix for two-class classification.

output. It produces a coarse localization map highlighting
the significant regions in the input image for making the
prediction. From the generated heatmap, we can approximately
localize the possible affected regions. Figure 6 shows the
actual Chest-Xray images along with heat-maps of a COVID-
19 affected, a pneumonia affected, and a normal person. We
can see that our model is mainly emphasizing on the lung
areas in detecting COVID-19 or Pneumonia as expected. This
indicates the infected lung areas which led the model to predict
COVID-19 or Pneumonia. On the other hand, heatmap of a
normal person shows that our model is not emphasizing on any
particular region. This indicates there is no affected region and
the person is healthy.

This qualitative analysis is important for a number of
factors:

• Interpretability: One of the major drawbacks of many
deep learning models is the lack of interpretability. With
Grad-CAM, we tried to make our model interpretable and
explainable. The generated heat-maps show us insights
about how our model makes predictions.

• Trustworthiness: From the heatmaps, we can see the
important regions of the images that lead to classification
decisions. Consequently, we can verify that our model is
not making decisions based on inappropriate regions of
the radiology images.

• Possible critical factors: Our approach can provide
new insights and visual indicators about critical factors
of COVID-19 disease.

• Misclassification Cases: The heatmap provides visual
explanation of the misclassified examples. In figure 7
we showed some false positive and false negative cases

Models COVID-19 Pneumonia Normal Overall
COVID-DenseNet 0.87 0.93 0.95 0.94

Resnet50 0.90 0.93 0.91 0.92
InceptionV3 0.84 0.87 0.93 0.90

VGG16 0.77 0.87 0.98 0.93

Table XIII: Comparison of accuracy with other Computer
Vision models.

Figure 6: Actual Chest-Xray images along with heatmaps of
a COVID-19 affected, a pneumonia affected, and a normal
person (top to bottom respectively).
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Figure 7: Actual Chest-Xray images along with heatmaps of
a COVID-19 misclassified as Pneumonia, COVID-19 mis-
classified as normal, pneumonia misclassified as COVID-19,
and a normal misclassified as COVID-19 (top to bottom
respectively).

Weight Initialization COVID-19 Pneumonia Normal Overall
Random 0.87 0.82 0.95 0.90

ImageNet 0.84 0.90 0.96 0.93
CovXNet 0.87 0.93 0.95 0.94

Table XIV: Comparison of accuracy of Densenet with different
weight initializations.

Classification Models Accuracy

3-class

COVID-DenseNet 0.94
CovidNet [5] 0.933
Apostolopoulos2020 [21] 0.947
DarkCovidNet [26] 0.87
COVNet [4] 0.932

2-class

COVID-DenseNet 0.96
Apostolopoulos2020 [21] 0.968
DarkCovidNet [26] 0.98
ResNet50 plus SVM [34] 0.95
ResNet50 [35] 0.98

Table XV: Comparison of accuracy with state-of-the-art meth-
ods for 3-class(COVID-19, Pneumonia, and Normal) and 2-
class(COVID-19 and Normal) classifications.

of COVID-19 cases. From the visual representation of
the critical region we can see the problems of detection
associated with different kind of images.
Generally X-ray of healthy patient has no critical region.
But our model detected healthy person as COVID-19
positive by finding a critical region in the right lung.
The case where normal image was falsely classified as
COVID-19 positive, we can see that there is no visible
critical region in the lung region. So our model was
unable to detect COVID-19.
The distinction of Pneumonia from COVID-19 is a bit
complicated than normal images, because in this case
there are some critical regions in the lung. The critical
region looked quiet similar for both Pneumonia and
COVID-19 in some cases. So the model falsely classified
the images in this kind of situations.

5. Limitations and future works
Some limitations and future works are listed below.
• Lack of data: The biggest limitation of our model is the

small number of radiology images of COVID-19 patients.
With the limited amount of images, our model worked
quite well. But to increase the accuracy and make the
model diverse, more images are needed. If more public
data is available in future, we can train our model with
more data and improve the performance of our model.

• Different types of pneumonia: We could work with 14
different types of pneumonia as in [7], which we have
merged as one class and train our model. So our model is
extendable to these cases easily with slight modification.

• Progression of COVID-19 disease: Our dataset con-
tains radiology images of COVID-19 patients of different
stages (1-14 days). If more data is available, we can
analyze images of same patients at different days to study
how COVID-19 gradually develop.
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• Severity of COVID-19 disease: Currently, COVID-
DenseNet is capable of detecting COVID-19 disease from
chest radiology images. In future, we are interested in
predicting the severity of the detected COVID-19 disease
by analyzing the radiology image.

6. Conclusion
In this work, we showed a novel transfer learning-based

approach to detect COVID-19. To assure that our model can
differentiate COVID-19 radiology images from both healthy
persons and pneumonia patients, we performed both 2-class
and 3-class classifications. To guarantee the robustness and
consistency of our model, we implemented patient-wise 10-
fold cross-validation. Moreover, we performed an explainabil-
ity analysis to interpret and visualize how our model works.
Our extensive experiments suggest that COVID-DenseNet
can be used effectively for detecting COVID-19 from chest
radiology images.
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