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The circular photogalvanic effect (CPGE) is the photocurrent generated in an optically active
material in response to an applied ac electric field, and it changes sign depending on the chirality of
the incident circularly polarized light. It is a non-linear dc current as it is second-order in the applied
electric field, and for a certain range of low frequencies, takes on a quantized value proportional
to the topological charge for a system which is a source of nonzero Berry flux. We show that for
a non-interacting double-Weyl node, the CPGE is proportional to two quanta of Berry flux. On
examining the effect of short-ranged Hubbard interactions upto first-order corrections, we find that
this quantization is destroyed. This implies that unlike the quantum Hall effect in gapped phases
or the chiral anomaly in field theories, the quantization of the CPGE in topological semimetals is
not protected.
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I. INTRODUCTION

Semimetals are materials which can support gapless
quasiparticle excitations in two or three dimensions,
in the vicinity of isolated band touching points in the
Brillouin zone, thus possessing discrete Fermi points
(rather than Fermi surfaces). They come in differ-
ent varieties, for example, the Fermi points may ap-
pear at linear band crossings (e.g. graphene, Weyl
semimetals), or at quadratic band crossings1,2 (e.g. Lut-
tinger semimetals). A more non-trivial example of such
semimetal is the double-Weyl semimetal, which consists
of two bands touching each other linearly along one
momentum direction, but quadratically along the re-
maining directions.3–7 Some of these three-dimensional
(3d) semimetals (e.g. Weyl and double-Weyl semimet-
als) possess a nonzero Berry curvature at the Fermi
nodes. In this paper, we focus on the 3d double-Weyl
semimetals,2,8,9 which, in the momentum space, have
double the monopole charge of Weyl semimetals.

A double-Weyl semimetal can be realized by apply-
ing a Zeeman field to an isotropic Luttinger semimetal.2

They are also predicted to appear9–11 in SrSi2, and in
the ferromagnetic phase of HgCr2Se4. Our aim is to
study the circular photogalvanic effect (CPGE), also
known as chiral photocurrent. The CPGE refers to the
dc current, that is generated as a result of shining circu-
larly polarized light on the surface of an optically active
metal.12–15 In fact, the CPGE refers to the part of the
photocurrent that switches sign with the sign of the he-
licity of the incident polarized light. This is a non-linear
response, as it is second order in the applied ac electric
field, and at low frequencies, it depends on the orbital
Berry phase of the Bloch electrons. Hence, CPGE is a
measure of the topological charge at a Fermi node pos-
sessing a nontrivial Berry curvature.

The quantization of the CPGE has been demon-
strated in earlier works for the topological Weyl
nodes.16,17 In this paper, we will consider the issue
of quantization of CPGE for the double-Weyl nodes.
Firstly, we will show that in the absence of interac-
tions, the CPGE is indeed proportional to the topo-
logical charge of the node at low enough frequencies.
Secondly, we will examine the effect of Hubbard inter-
actions on this quantized value.

II. THE CONTINUUM HAMILTONIAN FOR A
DOUBLE-WEYL SEMIMETAL

The Hamiltonians describing a pair of double-Weyl
nodes can be written in the form2,8,9

H± = b±(k) · σ, (2.1)

with

b±(k) =

 −
√

3
2

(
k2
x − k2

y

)
√

3 kx ky
∓v kz

 . (2.2)
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Here, σi (i = x, y, z) are the three Pauli matrices, and
the “±” sign reflects the two opposite chiralities of the
two nodes. The energy eigenvalues are:

E±(k) = ±
√
v2 k2

z +
3

4
(k2
x + k2

y)2 . (2.3)

For each the given two-band Hamiltonians, we can
define an U(1) Berry curvature, which is analogous to a
magnetic field in momentum space. This Berry curva-
ture is given by:

Bi± =
1

8π
εijl b̂± · ∂kj b̂± × ∂kl b̂± , (2.4)

where b̂± = b±/|b±|. It is easy to check that this mag-

netic field is divergenceless
(
∂kjBj± = 0

)
, as long as it

is computed in regions away from the points of singu-
larity where b± = 0. The band touching point is such
a singularity, where we have:

∂kjBj±(k) = ±2 δ(k) . (2.5)

Thus each double-Weyl node is a source of two Berry
flux quanta. These nodes come in pairs, sourcing equal
and opposite flux quanta, such that the sum of Berry
flux quanta from both the double-Weyl nodes vanishes,
which is the desired physical scenario as the Brillouin
zone is a closed manifold without any boundary through
which no net flux can emanate.

III. QUANTIZATION OF CPGE IN THE
ABSENCE OF INTERACTIONS

The CPGE tensor is defined as:16,17

βij± =
iπ e3

A

h2

∫
d3k [∂ki (E+ − E−)]Bj± δ (~ω − E+ + E−) ,

(3.1)

where eA in the electric charge. To perform the inte-
grals, we change variables as follows:

kr =
√
R sin θ , kz =

√
3R cos θ

2 v
,

kx = kr cosφ , ky = kr sinφ ,

where 0 ≤ R ≤ ∞ , 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π .
(3.2)

Using the above, we get:

β11
± = β22

± = β33
± = (±2)× iπ e3

A

3h2
. (3.3)

All non-diagonal components
(
βij±
∣∣
i 6=j

)
evaluate to zero.

Clearly, we see that

tr[β±] = (±2)× iπ e3
A

h2
, (3.4)

where is ±2 the monopole charge of the corresponding
double-Weyl node. The time derivative of the injection
current is defined as the second order response

dj±i
dt

= βij± [E(ω)×E∗(ω)]j , (3.5)

to an electric field E(ω) = E∗(−ω). Therefore, the
CPGE is also quantized.

Now let us compute the second-order photocurrent
from the field-theoretic defintion, using Feynman di-
agrams. Firstly, we need the three components of
the paramagnetic current operator (using J±i (k) ≡
eA

δH±(k)
δki

), which are given by:

Jx(k) = eA
√

3 (−kx σx + ky σy) ,

Jy(k) = eA
√

3 (ky σx + kx σy) ,

Jy(k)± = ∓eA v σz . (3.6)

From now on we will drop the “±” subscript/superscript
and concentrate only on the double-Weyl node with
charge +2, unless stated otherwise. This is justified
when the dc contribution to the photocurrent can be
calculated separately for each node, such as when the
nodes are well separated in the momentum space.

FIG. 1. Feynman diagram contributing to the quantized
circular photogalvanic effect in the absence of interactions.

The expression for the second-order photocurrent is
given by:

ji(Ω) = −χ
jli
1 (ω1, ω2) + χjli2 (ω1, ω2)

~2
Aj(ω1)Al(ω2)

=
χjli1 (ω1, ω2) + χjli2 (ω1, ω2)

~2 ω1 ω2
Ej(ω1)El(ω2) ,

(3.7)

where Ω ≡ ω1 + ω2, and the contributions χjli1 and χjli2

are given by Feynman diagrams of the type shown in
Fig. 1. In the second line, we have used the relation
between the electric field and the vector potential, which
is: E(ω) = iωA(ω).
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We compute the analytical expressions for χjli1,2 in the Matsubara formalism, such that

χijl1 (iω1, iω2) = T
∑
εn

∫
d3k

(2π)3
tr [JiG(i εn − iω1,k)Jj G(i εn − i Ω,k)JlG(i εn,k)] , (3.8)

where T is the temperature, n is an integer, and εn = (2n+ 1)π T .

In the zero temperature limit, we can use T
∑
εn

. . . →∫
dε
2π . . . . Furthermore, from the expression for

χijl1 (iω1, iω2), we can obtain χjli2 by using the relation:

χijl2 (iω1, iω2) = χjil1 (iω2, iω1) . (3.9)

In the absence of interactions, we can calculate the
contributions from each node separately. The Green’s
function for the first double-Weyl node is given by:

G(i εn,k) =
1

2

[
1 + b̂+(k) · σ

i εn − E+(k)− |µ| +
1− b̂+(k) · σ

i εn + E+(k)− |µ|

]
,

(3.10)

where we have introduced the projectors(
1± b̂+(k) · σ

)
onto the conduction (“+”) and

the valence (“-”) bands, and have chosen the chem-
ical potential µ to be negative for definiteness (i.e.
µ < 0). Similarly, the Green’s function for the second
double-Weyl node is given by:

G̃(i εn,k) =
1

2

[
1 + b̂−(k) · σ

i εn − E+(k) + |µ̃| +
1− b̂−(k) · σ

i εn + E+(k) + |µ̃|

]
,

(3.11)

where we have chosen µ̃ > 0 for definiteness.

Performing all the integrals, we finally get:

χ123
1 (iω1, iω2) =

∫
dε d3k

(2π)4
tr [JxG(i εn − iω1,k)Jy G(i εn − i Ω,k)Jz G(i εn,k)]

=
e3
A

[
ω3

1 (ω1 + 2ω2) ln
(
4µ2 + ω2

1

)
− ω3

2(2ω1 + ω2) ln
(
4µ2 + ω2

2

)
+ (ω2 − ω1)(ω1 + ω2)3 ln

(
4µ2 + (ω1 + ω2)2

)]
24π2 ω1 ω2 (ω1 + ω2)

(3.12)

for T → 0 .

One can check that χijl1 ∝ εijl, and hence the com-
putation of χ123

1 is sufficient to know all the nonzero

components of χijl1 .
We need to find the physical response through the an-

alytical continuation of the above expressions from Mat-
subara frequencies to real frequencies. This is a subtle
procedure which should be carried out carefully. Choos-
ing ω1,2 > 0 for definiteness, the analytical continuation
is performed by taking18,19

iω1,2 → ω1,2 + i δ , δ → +0 . (3.13)

The logarithms then transform according to

ln
[
4µ2 + ω2

]
→ ln

[
4µ2 − (ω + i δ)2

]
= ln |4µ2 − ω2| − iπ sign(ω) Θ

(
|ω| − 2 |µ|

)
.

(3.14)

We then need to set ω1 = Ω−ω2 with Ω→ 0. After the

analytical continuation, we find that in this limit,

χ123
1 (ω + Ω,−ω)

Ω→0
= − e

3
A ω

2

12πΩ
Θ
(
ω − 2 |µ|

)
. (3.15)

An identical contribution comes from χ123
2 (on using

Eq. (3.9)). Adding these together, we find that the cur-
rent expression in Eq. (3.7) reduces to:

jl =
2π e3

A

3h2 Ω
εijlE

i(ω + Ω)Ej(−ω) Θ
(
ω − 2 |µ|

)
.

(3.16)

In the time domain, this corresponds to

dji
dt

=
iβ0(ω)

3
[E(ω)×E(−ω)]i ,

β0(ω) ≡ 2π e3
A Θ

(
ω − 2 |µ|

)
h2

. (3.17)

This agrees with Eq. (3.5).
This result from the non-interacting case has been ob-

tained for the first double-Weyl node with the chemical
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−λ

(a)

−λ

(b)

−λ

(c)

−λ

(d)

−λ

(e)

FIG. 2. Feynman diagrams contributing to the scattering
processes for Hubbard interactions, described by Eq. (4.1).
Here, a solid line represents the Green’s function of the first
node (with chemical potential µ), while a dashed line repre-
sents the Green’s function of the second node (with chemical
potential µ̃). The wavy lines represent the four-fermion in-
teractions. Hence, diagrams (a)-(c) involve only intranodal
scatterings, whereas (d)-(e) describe internodal processes.

potential µ. Analogously, for the second node, we would
obtain:

β̃0(ω) = −2 e3
A Θ

(
ω − 2 |µ̃|

)
π h2

. (3.18)

Consequently, in the frequency range 2 |µ| < ω < 2 |µ̃|,
only the first node contributes to the CPGE, while the
contribution from the second node is zero due to Pauli
blocking.

IV. CORRECTIONS TO THE QUANTIZED
CPGE DUE TO SHORT-RANGED HUBBARD

INTERACTIONS

In this section, we consider the first-order pertur-
bative corrections originating from four-fermion inter-
actions. The interaction Hamiltonian for short-ranged
Hubbard interactions is given by:

Hint

=
−λ
2

∑
s,s′

∫
d3k d3p

(2π)6

[ 2∑
ζ,η=1

ψ†ζ,s(k)ψζ,s(k)ψ†η,s′(p)ψη,s′(p)

+

2∑
ζ=1

ψ†ζ,s(k)ψζ̄,s(k)ψ†
ζ̄,s′

(p)ψζ,s′(p)
]
,

(4.1)

where λ is the Hubbard interaction strength (positive λ
corresponds to the attractive interaction), and ψζ,s(k)
denotes the fermion field with nodal index ζ and pseu-
dospin index s. The first and the second terms describe
the intranodal and internodal scattering processes re-
spectively. These are shown diagrammatically in Fig. 2.
In the diagrams, we have used a solid line to represent
the Green’s function for the first double-Weyl node, and
a dashed line to depict the Green’s function for the sec-
ond double-Weyl node. In the following subsections, we
will compute the first-order self-energy and vertex cor-
rections due to the Hubbard interactions.

A. First-order self-energy corrections

(a) (b)

(c) (d)

FIG. 3. Feynman diagrams contributing to first-order cor-
rections to self-energy. Diagrams (b) and (d) describe the
internodal scatterings.

The contributions to the first-order self-energy cor-
rection are given by the Feynman diagrams shown in
Fig. 3. For the short-ranged Hubbard interaction, scat-
terings between double-Weyl nodes of opposite chirali-
ties have to be taken into account, which are given by
the second term of Eq. (4.1). The analytic expression
for Fig. 3(a) reads as:

Σ(a) = λT
∑
εn

∫
d3k

(2π)3
G(i εn,k)

T→0
= −λ

2

∫
d3k

(2π)3
[1−Θ(E+ − |µ|)] = −λNh

2
,

(4.2)

where Nh > 0 is the number of holes below the double-
Weyl point in the first node. In a similar fashion, the
contribution from Fig. 3(b) evaluates to:

Σ(b) = λT
∑
εn

∫
d3k

(2π)3
G̃(i εn,k) =

λNe
2

, (4.3)

with Ne > 0 denoting the number of electrons above the
double-Weyl point in the second node.
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Finally, the contributions from Figs. 3(c) and 3(d)
evaluate to:

Σ(c) = −λT
∑
εn

∫
d3k

(2π)3
tr [G(i εn,k)] = −2 Σ(a) ,

Σ(d) = −λT
∑
εn

∫
d3k

(2π)3
tr
[
G̃(i εn,k)

]
= −2 Σ(b) ,

(4.4)

resulting in the total self-energy

Σ = Σ(a) + Σ(b) + Σ(c) + Σ(d) = −λ (Ne −Nh)

2
. (4.5)

The effect of this self-energy is to simply shift the chem-
ical potential by an amount

δµ = −Σ =
λ (Ne −Nh)

2
. (4.6)

Clearly, this does not change the CPGE current, as it
only modifies the frequency range where the quantized
value of the CPGE is valid.

B. First-order vertex corrections

(a) (b)

FIG. 4. Feynman diagrams contributing to first-order vertex
corrections. Diagrams (a) and (b) describe the intranodal
and internodal scatterings, respectively.

The Feynman diagrams contributing to first-order
vertex corrections are shown in Fig. 4. When the vertex
i = x, with the external Matsubara frequency set to ω1

for definiteness, Fig. 4(a) contributes as:

√
3 (−kx σx + ky σy)

→ λ
√

3

∫
dε d3k

(2π)4
G(i ε,k) (ky σy − kx σx)G(i ε− iω1,k)

= 0 . (4.7)

Similarly, for i = y, Fig. 4(a) gives:

√
3 (ky σx + kx σy)

→ λ
√

3

∫
dε d3k

(2π)4
G(i ε,k) (ky σx + kx σy)G(i ε− iω1,k)

= 0 . (4.8)
The only non-vanishing contribution from Fig. 4(a)
comes for i = z, which gives:

− v σz

→ −λ v
∫
dε d3k

(2π)4
G(i ε,k)σz G(i ε− iω1,k)

= λ

6 Λ−
√

3

[
4 |µ|+ iω1 ln

(
− (
√

3Λ+iω1)(ω1+2 i |µ|)
(
√

3Λ−iω1)(ω1−2 i |µ|)

)]
σz

192π
,

(4.9)

where Λ is the UV momentum cutoff.
The contribution from the diagram in Fig. 4(b) is

analogous, but has an overall opposite sign due to
the opposite chirality of the second node, and with
|µ| → |µ̃|:

v σz

→ λ v

∫
dε d3k

(2π)4
G̃(i ε,k)σz G̃(i ε− iω1,k)

= λ

−6 Λ +
√

3

[
4 |µ̃| − iω1 ln

(
− (
√

3Λ+iω1)(ω1+2 i |µ̃|)
(
√

3Λ−iω1)(ω1−2 i |µ̃|)

)]
σz

192π
.

(4.10)

Adding these two contributions together, we find that
for the first node, the vertex with σz (and external fre-
quency ω1) is renormalized according to:

− v σz|total

→ λ

[
4 (|µ̃| − |µ|) + iω1 ln

(
4 |µ| |µ̃|+2 iω1(|µ̃|−|µ|)+ω2

1

4 |µ| |µ̃|−2 iω1(|µ̃|−|µ|)+ω2
1

)]
σz

64
√

3π
,

(4.11)

which is finite and does not contain the UV cutoff any-
more.
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This gives the correction:

δχ123
1 (iω1, iω2)

=
λ e3

A

[
ω3

1 (ω1 + 2ω2) ln
(
4µ2 + ω2

1

)
− ω3

2 (2ω1 + ω2) ln
(
4µ2 + ω2

2

)
+ (ω2 − ω1) (ω1 + ω2)

3
ln
(
4µ2 + (ω1 + ω2)2

)]
1536

√
3π3 v ω1 ω2 (ω1 + ω2)

×
[

4 (|µ̃| − |µ|) + i (ω1 + ω2) ln

(
4 |µ| |µ̃|+ 2 i (ω1 + ω2) (|µ̃| − |µ|) + (ω1 + ω2)

2

4 |µ| |µ̃| − 2 i (ω1 + ω2) (|µ̃| − |µ|) + (ω1 + ω2)
2

)]
. (4.12)

Performing the analytical continuation iω1,2 → ω1,2 +
i δ, and setting ω1 = −ω2 = ω, we find that this con-
tributes as:

δχ123
1 (ω + Ω,−ω) = δχ213

1 (−ω, ω + Ω)

Ω→0
=

λ e3
A ω

2 (|µ̃| − |µ|)
192
√

3π2 vΩ
Θ
(
ω − 2 |µ|

)
, (4.13)

which leads to the correction

δ

(
djz
dt

)
= − iλ e3

A (|µ̃| − |µ|)
24
√

3h2 v
Θ
(
ω − 2 |µ|

)
[E(ω)×E(−ω)]z ,

(4.14)

for the current in the z−direction. Here, we have ne-
glected the corrections to the chemical potentials, since
they only change the frequency range within which
CPGE for the the non-interacting case is nonzero.

In a similar fashion, we get:

δχ312
1 (ω + Ω,−ω) = δχ132

1 (−ω, ω + Ω)

Ω→0
=

λ e3
A ω

2
[
4 (|µ| − |µ̃|)− ω ln

∣∣∣ (2 |µ|+ω)(2 |µ̃|−ω)
(ω−2 |µ|)(2 |µ̃|+ω)

∣∣∣]
768
√

3π2 vΩ

×Θ
(
ω − 2 |µ|

)
, (4.15)

δ

(
djy
dt

)
= iλ e3

A

4 (|µ̃| − |µ|) + ω ln
∣∣∣ (2 |µ|+ω)(2 |µ̃|−ω)

(ω−2 |µ|)(2 |µ̃|+ω)

∣∣∣
96
√

3h2 v

×Θ
(
ω − 2 |µ|

)
[E(ω)×E(−ω)]y . (4.16)

By symmetry in the xy−plane, we infer that

δ

(
djx
dt

)
= δ

(
djy
dt

)
. (4.17)

Due to the intrinsic anisotropy of the problem, it is not
surprising that the corrections for the current in the
z−direction is different from that in the xy−plane.

V. SUMMARY AND OUTLOOK

We have computed the CPGE for the double-Weyl
semimetal, first in the absence of interactions and then
in the presence of short-ranged Hubbard interactions.
In the non-interacting case, for low-enough frequency
ranges of the applied electric field, the CPGE gets con-
tribution only from one double-Weyl node and has a
quantized value proportional to the topological charge
of the corresponding node. However, switching on
Hubbard interactions affects this result, destroying the
quantization. This is similar to the results found for the
case of CPGE currents in Weyl semimetals.19 The only
difference is that the corrections for the current in the
z−direction is different from that in the xy−plane, due
to the anisotropic dispersion of the starting Hamilto-
nian. These results imply that unlike the quantum Hall
effect in gapped phases or the chiral anomaly in field
theories, the quantization of the CPGE in topological
semimetals is not protected.

In future, it will be interesting to look at the correc-
tions coming from the Coulomb interactions. The com-
putations will be cumbersome for this case compared to
the Weyl semimetal, due to the anisotropic dispersion of
the double-Weyl Hamiltonian. It will also be interesting
to see the effect of short-ranged correlated disorder on
the CPGE, using the well-known techniques.20–22
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