Preprint
Article

This version is not peer-reviewed.

Effect of Interactions on the Quantization of the Chiral Photocurrent for Double-Weyl Semimetals

A peer-reviewed article of this preprint also exists.

Submitted:

05 May 2020

Posted:

07 May 2020

You are already at the latest version

Abstract
The circular photogalvanic effect (CPGE) is the photocurrent generated in an optically active material in response to an applied ac electric field, and it changes sign depending on the chirality of the incident circularly polarized light. It is a non-linear dc current as it is second-order in the applied electric field, and for a certain range of low frequencies, takes on a quantized value proportional to the topological charge for a system which is a source of nonzero Berry flux. We show that for a non-interacting double-Weyl node, the CPGE is proportional to two quanta of Berry flux. On examining the effect of short-ranged Hubbard interactions upto first-order corrections, we find that this quantization is destroyed. This implies that unlike the quantum Hall effect in gapped phases or the chiral anomaly in field theories, the quantization of the CPGE in topological semimetals is not protected.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated