The circular photogalvanic effect (CPGE) is the photocurrent generated in an optically active material in response to an applied ac electric field, and it changes sign depending on the chirality of the incident circularly polarized light. It is a non-linear dc current as it is second-order in the applied electric field, and for a certain range of low frequencies, takes on a quantized value proportional to the topological charge for a system which is a source of nonzero Berry flux. We show that for a non-interacting double-Weyl node, the CPGE is proportional to two quanta of Berry flux. On examining the effect of short-ranged Hubbard interactions upto first-order corrections, we find that this quantization is destroyed. This implies that unlike the quantum Hall effect in gapped phases or the chiral anomaly in field theories, the quantization of the CPGE in topological semimetals is not protected.