Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2020 d0i:10.20944/preprints202005.0105.v1

Analytical descriptions of high-Tc cuprates by introducing rotating
holes and a new model to handle many-body interactions
Shinichi Ishiguri
Nihon University
1-2-1 1zumi-Cho, Narashinoshi, Chiba 275-8575 JAPAN
TEL: +81-47-474-9143
Email: ishiguri.shinichi@nihon-u.ac.jp

Abstract

This paper describes all the properties of high-Tc cuprates by introducing rotating holes which are created by angular
momentum conservations on a two dimensional CuOz surface, and which have a different mass from that of a normal
hole due to the magnetic field energy induced by the rotation. This new particle called a macroscopic boson describes
doping dependences of pseudo gap temperature and the transition temperature at which an anomaly metal phase appears.
In addition, it also describes all the properties of the anomaly metal phase, using findings from our previous article [1].
Furthermore, the present paper introduces a new model to handle many-body interactions, which results in a new
statistic equation. A partition function of macroscopic bosons describes all the properties of the anomaly metal phase,
which sufficiently agrees with experiments. Moreover, the above-mentioned statistic equation describing many-body
interactions accurately explains why high-Tc cuprates have significantly high critical temperatures, which indicates that
the source of the characteristic stems from pseudo gap energy. By introducing a macroscopic boson and the new statistic
model for many-body interactions, the present paper uncovered the mystery of high-Tc cuprates, which have been a
challenge for many researchers. Moreover, in the present paper, pure analytical calculations are conducted. These
calculations agree with experimental data which do not employ numerical calculations or fitting methods but employ

many actual physical constants.
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1. Introduction

1.1 Brief summary of the paper

In particular, this paper theoretically describes properties of high-Tc cuprates. That is, we clarify why
high-Tc cuprates has considerably high temperature as the transition.
Based on results from our previous paper [1], the present paper describes pseudo gap temperature

T* and transition temperature To at which the anomaly metal phase appears, as well as critical
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temperatures Tc. Moreover, the anomaly mental phase such as Hall coefficient RH, electron specific
heat coefficient, etc., are described from the findings above.
Furthermore, we have established a new model for many-body interactions and thus, using this

model, the mechanism of high-Tc cuprates, with considerably high temperature Tc, is uncovered.

1.2 Background

The significance of the present paper will be better understood with a review of the fundamental
concept of superconductivity. Although several significant advancements have been presented, from
the initial discovery of a superconductor,, the most impressive discoveries are the CuOz-based
superconductors (i.e., high-Tc cuprates) [2]. This is because, prior to this finding, superconductors
generally require significantly high refrigeration because of their lower critical temperature (about 20
K). However, because they have higher Tc than LN, high-Tc cuprates received the widest attention
and interests from condensed matter physics researchers, as well as researchers in technologies who
showed interest in the technical merits when applied to superconducting magnetic energy storage,
energy transmitting [3-5], and so on. Thus, initial findings showed that high-Tc cuprates involved

many condensed matter physics and technologies researchers.

However, condensed matter physics researchers investigated high-Tc cuprates for deeper reasons.
That is, they are the first case at which the standard band model and the Bardeen-Cooper-Schieffer
(BCS) theory are not applied, which implies that novel physical phenomena occurred. (Recent H-
based superconductors [6] with extremely high pressures have high potential to be applied to the BCS
theory.) Nevertheless, many claimed that it is related to many-body interactions, which made many
theoretical researchers’ approach to the mechanism difficult. It is obvious that, as an analogy to the
BCS theory, the use of quantum field theory is not adequate because quantum field theory is too
abstract and does not reflect the fact that a phenomenon in condensed matter physics involves many
actual physical constants. Although many articles about the experiments have been reported [7-13],
no theory describes all the experimental data. There are several reasons for this: many-body problems
are essential and there is no information about the kind of force that combines a Cooper pair in high-
Tc cuprates.

Consequently, existing theories have attempted to describe the mechanism of high-Tc cuprates
using either Fermi-liquid model or resonating valence bond (RVB) model [14-17]. However, these
theories have undetermined parameters, which inevitably leads to numerical or fitting methods. We
must mention that they are insufficient, because many related and actual physical parameters are
involved when the properties of high-Tc cuprates are considered. For example, several researchers

claim that, because of magnetic field interactions, the nature of force to combine a Cooper pair must
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be spin interactions. However, as mentioned later in this paper and previous our paper [1], magnetic
field interactions are not generally only spin interactions. Furthermore, if the interaction was defined
as the spin interaction, they could not explain why other many physical parameters such as phonons
are related.

Although many theories that discuss the nature of force to combine a Cooper pair and the source
of pseudo gap using RVB model or Hubbard model exist, few theoretical articles address the anomaly

metal phase and the transition temperature To at which the anomaly metal phase appears.

In particular, a number of themes and problems to theoretically solve the mechanism of high-
Tc cuprates exist despite the number of experiments conducted and thus, researchers continue to
investigate other possibilities of high-Tc cuprates.

Recent discussions showed that because there is no future solution to high-Tc cuprates, most
researchers now take their themes to topology insulators in order to publish more articles within a
short term. That is, for young students to become researchers, because of the complexities of high-Tc
cuprates. young researchers are not interested in researching high-Tc curprates and instead other
materials are focused on. This is because the busy schedules of researchers do not allow the needed
ample study time.

In the present paper, however, we believe that studies on high-Tc cuprates are not irrelevant.

Rather, we would like to emphasize again the importance of this basic study.

1.3 Qutline of the theory in this paper

The present paper describes further facts based on the previous our paper [1]. In our previous paper,
critical temperatures Tc on doping were described, which agrees with experiments. The present paper
describes basically the anomaly metal phase properties and why high-Tc cuprates exhibit significantly

high critical temperature when many-body interactions are considered.

What describes properties such as the anomaly metal phase is not a net hole-carrier but a rotating
hole. This rotation occurs because, under a transition temperature To, holes experience complete 2D
CuO; surface, i.e., 2D motions are generally allowed by angular momentum conservations. This
rotating hole (referred to as a macroscopic boson) differs from a normal net hole, because this
macroscopic boson has self-induced magnetic field energy. Thus the mass of a macroscopic boson is
much larger than that of a single hole. Moreover, the radius of a macroscopic boson is approximately
in order of a CuO; cell (i.e., about 1 nm).

Basically, the mass of macroscopic bosons provides pseudo gap temperature T* These

macroscopic bosons behave according to an approximated partition function in terms of bosons.
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Furthermore, a particular form of this partition function describes the anomaly metal phase properties.

Subsequently, we established a model to handle many-body interactions, which describes why
high-Tc cuprates exhibit significantly high critical temperature. In addition to Coulomb interaction,
magnetic field interaction between macroscopic bosons are included in our model, It predicts
extremely short coherence (i.e., about 1 nm ) up to about 140 K (i.e., a critical temperature), but at
further temperatures the relative distance suddenly becomes 107 m order. As mentioned in our
previous paper [1], a method to combine a Cooper pair is Lorentz force which only appears when two
charged particles move at the same velocity due to the law of action and reaction. Therefore, when the
relative kinetic energy of two macroscopic bosons becomes zero, the above-mentioned model predicts
that the relative distance between the two macroscopic bosons becomes zero, with the net coherence
of two holes in order of CuO; cell, i.e., 1 nm. Our model explains why high-Tc cuprates have
significantly high critical temperature because the magnitude of the magnetic field interaction by

macroscopic bosons is large.

1.4 Brief review of our previous paper

As described in details in the review section of the present paper, we briefly explain a method of force
to combine a Cooper pair.

As mentioned, when two charged particles have the same velocities, i.e., the relative kinetic
energy is zero, these two particles experience an attractive force with each other, which stems from
the Lorentz force. This phenomenon can be understood using an analogy that two macroscopic parallel
current leads experience an attractive force with each other according to electromagnetism. Next, we
consider that these current leads are shortened to a wavelength of a microscopic quantum particle.
Even at this situation, as long as the wave numbers of two particles are equal, it is assumed that two
moving charged particles still experience the attractive force with each other. As will be mentioned in
the review section of the present paper, this is a source of attractive force to combine a Cooper pair,

which results in a critical temperature Tc.

1.5 Summary of significances in this paper

As discussed in the Discussion section, consider the summary of significances in the present paper.

1) It has uncovered the source of mysteries in high-Tc cuprates, i.e., the presence of a macroscopic
boson.

2) It has succeeded in describing the anomaly metal phase with pure theory, which has no fitting or

numerical calculations and which agrees with experiments.


https://doi.org/10.20944/preprints202005.0105.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2020 d0i:10.20944/preprints202005.0105.v1

3) It has established a new model to handle general many-body interactions, and using this model,

this paper has clarified why high-Tc cuprates have so high critical temperature.
1.6 Entire contents of the paper
The entire paper is organized as follows:

In the theory section, we describe the followings:
1) A macroscopic boson and the partition function the bosons obey are presented.
2) Pseudo gap energy and the temperature T* are calculated.
3) Atransition temperature To at which the anomaly metal phase appears is described.
4) Using the partition function, Hall coefficient equation RH dependent on both temperatures and
doping is derived. Moreover, electron specific heat coefficient dependent on doping is also
obtained.

5) A new model to handle many-body interactions is established.

In the result section:

1) Theoretical Tc, T*, and To dependences on doping are shown.

2) The dependence of the Hall coefficient RH and electron specific heat coefficient on doping are
presented.

3) Asaresult of establishing new model to handle many-body interactions, relative distance between
two macroscopic bosons per temperature is shown, which clarifies a point of critical temperature
Tc.

After the Discussion and Conclusion sections, an Appendix describes theoretically Curie temperatures

in ferromagnetic materials such as Fe, using our above-mentioned model to handle many-body

interactions.

2. Theory
2.1 Introduction of new particle

When considering a CuO; surface and when the refrigeration is sufficient that a hole wavelength
becomes larger than that of the width of the surface, it is assumed that 2-dimension is completely
formed. This implies that, on the surface, an angular momentum must be conserved. Thus, each hole
takes a circle by self-rotating. At this time, because this rotating circle has magnetic field energy, we

should consider that a new particle has been created. Going forward, we refer to this new particle as a
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“macroscopic boson”. The schematic is shown in Fig. 1.

y y
> X X
z ot /\/
e+ 4@47211
T>T, T<T,

Fig.1

Schematic of a macroscopic boson. Normally, holes move in 3-dimension when their kinetic energy is high.
However, when refrigeration reduces the momentum along z-direction, the complete x-y 2-dimensional motion
is formed. Thus, a conservation of the angular momentum creates a rotation movement by a hole itself.
Because a current circle by the rotation generates magnetic field energy, which determines the mass of this
circle, this circle is essentially different from a normal hole. We will refer to this new particle as “a
macroscopic boson.” Note that the radius n of a macroscopic boson is assumed to be in order of a CuO: cell

(i.e. about 1 nm)

First, let us calculate the mass of a macroscopic boson. Using a magnetic flux, magnetic field energy
is represented as

2U =1, (1)

where | and @ denote a current surrounding a macroscopic boson and a magnetic flux of a
macroscopic boson having the unique value. The fact of the presence of this persistent current | can
be cited from [12].

In this equation, the magnetic flux is assumed to be quantized because each angular momentum is

conserved as mentioned.
h
b, = 2 (2)

where h and e denote the Planck constant and the charge of a hole. Note that this paper employs both
the constant h and h as Planck constant.
In this current, the cyclotron angular frequency is introduced.

[ = ; = 2mew, = 27‘[6% = ZﬂezﬂoTHoa ®)
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where w¢, Bo, and uo denote the cyclotron angular frequency, the constant and unique value of magnetic
field in a macroscopic boson, and the magnetic permeability in the vacuum, respectively.

Thus, eq. (1) becomes

U= %ZHeZMOTHOS, (4)

where

h 1

Hy=-— )

e pomn?’

where 1 is the approximated radius of a macroscopic boson.
Because the magnetic field Bo is expressed as eq. (5), the rest energy, i.e. the mass of a macroscopic

boson is formed as,

h 1 h h?
20 =me2tel L Mh_ 1 (g
me ponn?e  mn?

Let us consider the spin of a macroscopic boson to obtain partition function, which creates all the
anomaly metal properties.

As mentioned, when a macroscopic boson is created, a complete 2-dimensional motion can be
considered. That is, among the x-y-z axes, we cannot consider z-components. Therefore, using W.

Pauli matrix, this case considers only x-and y-components.

=3 o) 00

—i
o) (12

where i denotes the imaginary unit.

In this paper, a spin angular momentum is defined as the determinant from W. Pauli matrix.

Thus, each determinant is

dets, = —-h, (8-1)

dets, =-h.  (8-2)

Therefore, a net spin angular momentum of a macroscopic boson is calculated as

s = dets, + dets, = 0-h. (9)

The above result implies that, although a single hole behaves as a fermion, this macroscopic boson
behaves like a boson. Thus, the name of this particle is derived from this fact.

Due to the fact that a macroscopic boson follows the Bose’s partition function, first we simply consider

fr = —mmm— (10)
exp( L )—1

kgT

where Ei, |Er|, kg,and T denote energy, a chemical potential, the Boltzmann constant, and

temperature, respectively.
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An important point is that the exponential function is approximated as a Maclaurin series,

-~ 1 _ kpT
fr ® 5787
kT

.(11)

+1-1  Ei—Ef

This above partition function is very important because all properties in the anomaly metal phase in
CuOz-based superconductors are described by this partition function. We will see how this equation
describes properties of the anomaly metal phase later.

Moreover, this equation has another expression. In semiconductor physics, the following equation

holds generally:

2Ny
ny

Er = E + kzTIn(22%), (12)

where N, denotes accepter concentration. The number 2 is attached because of the presence of spin.

Moreover, Znﬂ implies doping parameter. Therefore, because nj implies concentration of lattices, the

L

doping parameter is less than the value of the number 1 as long as we consider the picture which holes
are doped in a Mott-insulator.

Using the equation above, the partition function, eq. (11), is translated as

£ =—[In (:_?)]_1 L (11-2)

Let us calculate pseudo gap energy, which is directly related to the mass of a macroscopic boson.
First, here, we define carrier concentration of macroscopic bosons considering 2-dimensional energy
state density.

D (E) = == = py, (13)

n == [ D,(E)f.dE, (14)

where D, (E), n, and d denote energy state density in 2-dimension, particle concentration, and width
of the 2-dimensional sheet, respectively. An important point to note is that the parameter d [m] is
consistently substituted by the number 1 but the reason of the appearances in some equations are to
clarify the meaning of these equations.

The integral for concentration (14) is simply conducted as follows, because energy state density in 2-
dimension is constant as indicated in Eq. (13) and because partition function fr is represented by eq.

(11-2). In the process of this calculation of eq. (14), an energy Eo appears as

d 2N
Eq = L X ln(n—A), (15)

This energy Eois assumed to be essentially equal to pseudo gap energy. Combined with the mass of a

macroscopic boson, this pseudo gap energy is represented as follows:

d0i:10.20944/preprints202005.0105.v1
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n(Na

E,=-UxIn (2”:‘) -

) (16-1)

Zmn

The above derived pseudo gap energy equation has a coefficient for doping function In. This factor is

identical to the zero-point energy:

—hu)—

2mn?’

However, this derived energy Eo implies merely a potential. In general, an energy gap appears or
disappears involving a photon’s emission or absorption. This fact implies that, for a potential to
become a general energy gap, the potential is given the product of the fine-structure constant a, which
includes characteristic impedance Zo for electromagnetic waves.

Typically, the fine-structure constant o is given as

a=22 = 1 q7)

4rh 137 0
In eq. (17), the impedance Zoworks as the specific impedance to electromagnetic waves.

Thus, the net pseudo gap energy |4|,is derived as follows, which will give the temperature of pseudo

gap T" as discussed later.

__1nm 2Na
4], = Zmnza X In( . ). (18)

2.1 Calculations to obtain formulas for T" and To

Let us calculate the formula of pseudo gap temperature T*.

In our previous paper [1], an energy gap is assumed to be proportional to the product between critical
temperature T and Fermi energy Eg. Starting this assumption, the calculation process through
substituting an equation of Fermi energy and giving critical temperature reach the following equation.

|41 1

T=- K3 T_l (ZNA)

(19)

where T¢ and A denote critical temperature and a general energy gap, respectively.

This equation generally implies the relationship between a temperature and an energy gap including
critical temperature T.. When the previously derived energy gap from a macroscopic boson is
substituted with an energy gap in the above equation, then variable temperature T must become a
constant of pseudo gap temperature T*. Therefore, the temperatures Tc and T* have a dependent
relationship. As discussed later, note that this dependent relationship is a different point for the
temperature T* and To, because To provides the transition temperature in appearance of anomaly metal

phase. Thus, as a formula of pseudo gap temperature T, the following equation holds:

d0i:10.20944/preprints202005.0105.v1
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2Ng21 1

_ 20,
i Inh4y
i

ng

. 11 _ 11 _ 1
T = —EZ(34 X 10 21)2[11’1( —gz(34 x 10 21)2[11’1( )} FC, (20)

where, to the equation of |4|, ofeq. (18) in creating eq. (20), each physical parameter was substituted.
That is, the physical parameters m, h, and o in eq. (18) were given actual values. Note that radius 7 is

approximated as 1 nm.

In the present paper, we consider the anomaly metal phase properties in CuO2 —based superconductors.
These properties are determined mainly by the transition temperature To, which is directly related to
appearances of the Hall-effect coefficient RH. As mentioned, this transition temperature also implies
the transition for appearance of the anomaly mental phase. To obtain an equation for the temperature
To, we consider derivations of the Hall-effect coefficient RH. The Hall-effect coefficient RH depends
on absolute of energy —uBe,, where u and B, denote self-magnetic moment of a macroscopic boson and
applied magnetic fields, respectively. The absolute of energy —uB. involves Boltzmann statistics and
thus it is related to concentration (i.e., the number) of macroscopic bosons. Considering these facts, at
first concentration of macroscopic bosons is again taken and secondary self-magnetic moment of a
macroscopic boson are calculated. In the previously appeared concentration eq. (14), the calculation

for energy integral, in turn, is conducted actually because we attempted to obtain temperature T

dependence for RH
1 b dE 1 T,
n = kpT—po I BB kgT 7o X ln(;i), (21)
where
a= kBTC b = kBTO . (21'2)

Note that the second form of fr in eq. (11-2) is not employed here. This obtained concentration n for

macroscopic bosons will be employed later.

In turn, a magnetic moment u is generally defined as

u=1IS, (22)

where | and S denote the self-current and the area in which a magnetic flux is presented.

Seeing the schematic Fig.1 of a macroscopic boson (which assumes the motion of a hole to be a circle)
and because a magnetic flux of it should be quantized as h/e, the magnetic flux of a macroscopic boson

is

¢)0 = B()T[nz =

L@

where radius ) is approximated on a cell of the CuO; surface. That is,

n=1nm (24)

Moreover, assuming that a magnetic field among a macroscopic boson is equal to the central magnetic

10
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field generated by a moving hole, a persistent current | in a magnetic moment is calculated as
I =-227B,. (25)
Ho

Consequently, a magnetic moment u is derived as

u~2ntlx 1018, (26)
Ho

e emn
Now we begin to calculate RH.

As mentioned, considering an energy —uBe, the Boltzmann statics is represented as

Be
n = ngexp(— %}, (27)

where ng is concentration with no applied magnetic field Be.

In this equation, the exponential function is approximated by the Maclaurin series.

Be
n=ny(l— %). (28)

In this equation, the previously calculated concentration n, eq. (21), is applied.

0 To Be
kpT 22 x In(3) = no(1 -~ ,’(‘BT). (29)

Solving this equation for ng and employing the general definition of RH, we reach an important

equation.
uBe_
kpT
Ry =—3——~+-. 30
H ekBT%Oxln(;—o ( )
c

Composition of this equation presents a new temperature To, which implies the appearance of RH.

T, = £%. (31)

kg '
In turn, let us consider the above definition equation To (the derived formula of RH will be considered
again later). While an applied magnetic field Be in the definition of Ty is variable, the magnetic field
Bo is a constant derived by the physical constants. This fact allows us to introduce a variable quantum
number N between B and Bo
By, = NB,. (32)
Moreover, this variable integer N is undergone by partition function fr.
N = Nof, (33)
where eq. (11-2) is applied as fr.

Note that the magnetic field Bo was calculated from eq. (23). This employment of partition function
fr implies that an application of B makes every direction of some magnetic moments of macroscopic

bosons the same orientation. In other words, prior to the application of Be, the directions of self-

11
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magnetic moments of each macroscopic boson are random (i.e., up- or down-direction), despite that
the conservations of angular momentum produces macroscopic bosons. But the application of Be
presents all the directions of some magnetic moments of macroscopic bosons with the same orientation.
Because the interaction between macroscopic bosons with the same directed magnetic moment is
repulsive, these bosons now obtain the existences as single and independent particles. Assembling
these facts, the conclusive equation of the transition temperature To is derived, which depends on
carrier doping.

><1018 ! xl (ZNA
B €T

Ty~ ——=x 1079 —

Ho €

—)-(34)

As described later, this equation of Toand the formula of critical temperature T¢ [1] will be crucial

factors when calculating properties of the anomaly metal phase.
2.3 Analyze anomaly metal phase

Next, we derive dependences on temperature of RH. Up to the previous section, the general equation
of RH was derived, which resulted in a definition of transition temperature To. In this equation, we

introduce the following approximation to the general equation of RH.
K% % 1.(35)

According to this approximation, the general equation of RH becomes as
UB,
" ekaT)?ExXInGY) (36)
Thus, the approximated equation of RH is determined by applied magnetic fields Be. That is, this RH
equation depends on both quantum number N and the universal magnetic field Bo.

~ W?Xm(;_)% (37)
Note that the universal magnetic field Bo is one in a macroscopic boson. Thus, in view of magnetic
field energy, an application of magnetic field which dominates over the universal magnetic field Bo
results in destructions of macroscopic bosons and makes the anomaly metal phase disappear. Moreover,
the employment of quantum number N implies that the RH equation is determined by doping. That is,
variable integer N is expressed by partition function fr, which also implies doping.

1

1 2N4
N Nofy

=——><1 (

- (38)
Considering this, the approximated RH equation further becomes

In(=79). (39)

N UB, 1 2N,
Ry =

e(kBT)Zpoxln( °) Ny

12
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As many literatures reported [18], this derived equation of RH is proportional to (%)2.
In Result section, we will depict this RH equation in terms of both doping parameters and temperatures
T

In turn, let us consider electron specific heat coefficient in the anomaly metal phase. Because electron
specific heat coefficient is essentially equal to average energy U contributed by macroscopic bosons,
it is simply necessary to calculate the average energy using partition function fr. Thus, average energy

using partition function fr for energy integrals is given as

_ JEfrdE
U= TaE (40)

Note that the lower limitation a and the upper limitation b of these integrals are given as
a=kgT, b=kgT, (41)
Assuming the Fermi energy for macroscopic bosons (i.e., the chemical energy, but not for single holes)
is sufficiently small, the calculation results in
kpTy—kpTe+EpxIn(-BL0=EE)

kpTc—Ef ~ kB(TO_TC) (42)

kpTo—EF 1 To
ghd 2 Rkl Uil O n(=>
In (BT e

In general, electron specific heat coefficient is derived by differential in terms of temperature to the
average energy. In the present paper, however, AT is employed, instead of the differential for
temperature. Moreover, this AT is assumed to be (To-T¢) in this paper. Therefore, using the average
energy of a macroscopic boson U and AT, electron specific heat coefficient is expressed as a

calculation process.

U kg 1
Yo = (AT)2  To-T: ln(;—g). (43)

Furthermore, to obtain electron specific heat coefficient with the unit [J/mol K?], the Avogadro
constant Ng is considered here because previously calculated average energy U implies one for a
macroscopic boson. Consequently, electron specific heat coefficient is derived as

Af
y =12 (44)

T T-Te ln(TC)'

2.4 Superconductivity with consideration of many-body interactions

In the previous section, mainly anomaly metal properties were described. However, it is necessary to
describe why macroscopic bosons undertake Bose-Einstein (BE) condensation by forming a pair from
two macroscopic bosons, despite that they have been already general bosons such as Cooper pairs. In
the previously published paper [1], we found a new attractive force to combine particles from local

current in a CuO; cell [12]. Because this local current is equal to rotational and self-current which

13


https://doi.org/10.20944/preprints202005.0105.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2020 d0i:10.20944/preprints202005.0105.v1

creates the mass of a macroscopic bosons; hence, this result of the previous paper thus agrees with the
descriptions in the present paper. Therefore, in this section, based on the understanding that two
macroscopic bosons form a pair, we describe why BE condensation occurs in so high temperature,

with consideration of many-body interactions between the bosons.

There are many-body interactions in terms of carriers in various materials. Especially, this fact is
essential to high-Tc cuprates, because the general band theory cannot be applied. The many-body
interactions of carriers imply there are many local temperatures T; in the materials, where i is index
for a location. In other words, in a temperature T;, thermal equilibrium can be assumed. Thus, Fig. 2
indicates our model to handle many-body interactions. In this figure, a radius a; forms a sphere shell,
which has differential number dN and local temperature Ti. Moreover, in the center, a macroscopic
boson is presented. The immediately outer particles out of dN give a pressure to this sphere shell,
which equals to kinetic energies of particles in dN (i.e., it is represented by a temperature T;), while
the central macroscopic boson provides force of thermal expansion, which implies electrostatic energy,
i.e., Coulomb interactions. Moreover, the present case adds magnetic interactions between

macroscopic bosons as a force of thermal expansion.

- - - - - - - - - - - — - - - —

Fig.2

Schematic of our established model to handle many-body interactions. Considering a nature of many-body
interactions, it is important to note that temperatures are locally different. However, this model claims that in
differential number dN (a macroscopic boson takes the center and dN takes a temperature T; ), thermal
equilibrium can be assumed. Considering this, a proportion between force of thermal expansion from Coulomb
interactions in addition to the magnetic field interactions from the bosons and force of compression from
immediate outer side, which is equal to the kinetic energies in dN (i.e., a temperature T;), is formed. Calculating

this proportional equation results in a new statistic equation.
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Considering that these forces of thermal expansion should be proportional to a force of
compression in a sphere shell, the following relation holds:
(Coulomb interaction energy and magnetic field interaction energy) = %kBTl- X dN

Calculate this equation.
First, dN is represented as
dN = gfdk = gf (), (45)
where k, v, g, and f denote wave number, volume, state number, and partition function for the boson,
respectively.

In the equation of dN, as mentioned, state number g and partition function f are given as

f = ==[n(ZH17 (46)
g =2 [ Do(E)AE = poFy, (47-1)
Dy(E) = = = py, (47-2)
1 h?

EO = |A|0 = _Emnz

a xIn(2). (47-3)

Thus, fg is given as

hZ
2 (48)

m

1
fg =po;

To calculate the left-hand side of the above-mentioned proportional equation. The electrostatic energy
Uk is calculated as

e

Ug = 5 €0(pra) v, (49)

2
4meya;

where &, and a; denote the permittivity for the vacuum and the radius which dN is taking in the
model.

At this time, a volume element of the integral is expressed as

dv = dl—z = Taf. (50)

Moreover, the magnetic interaction V, from macroscopic bosons is given as
V, = UgdN, (51)

Consequently, the resultant equation is provided by

a? = 22 (3kyT; — 2Up)f g. (52)
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A
v

Zai
Fig. 3
A basic model of well-potential. This model is directly related to the immediate prior figure model. The
diameter 2a; varies, depending on a temperature T; . A macroscopic boson in this well-potential forms a
stationery wave, and its wave function and eigenvalue are presented in every basis texts. An important point is

that all of these depends on index i.

As shown in Fig.3, the central macroscopic boson behaves under the model of well-potential. Thus,

the eigenvalue and wave function of it are presented by

W) = [FsinD. 63)

h%i?m?
Ei =
2MX2a;

 (54)

where M, i, and r denote the mass of a macroscopic boson, index, and microscopic variable of sphere-
coordinates, respectively.

These equations imply that a particle under the many-body interactions forms a stationary wave and
that the wave function of the stationary wave and the eigenvalue (i.e., kinetic energy) are determined

by a radius a;.

Using the above concept, we consider how BE condensation occurs. Besides a sphere shell having
temperature T;, another sphere shell having temperature Tj is considered here. When we accept a
combination of two macroscopic bosons by a force F, these two bosons must have the identical kinetic
energy because, in general and as mentioned in our previous paper [1], a relative and attractive force
appears only when their relative velocities become the same. In particular, that fact is applied when
the attractive Lorentz force generates between moving and charged particles whose velocities are
identical. Thus, when forming a pair from two macroscopic bosons, the eigenvalues indexed by i and

j becomes equal. That is,
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|E; — E;| = 0, (55)

This implies that an index i and j becomes equal, resulting in that all the radius a;j and eigenvalue E;
take the identical radius ap and Eg, because of the arbitrary property of index i. Hence, if a pair forms,
every energy of macroscopic bosons undergoes the identical energy Eg, which implies these bosons
take BE condensation.

Moreover, as shown in Fig. 4, taking index i to be equal j implies that temperatures T; and T;
must be equal. Even at this moment, positions r of wave functions, eq. (53), are common and thus the
two sphere shells take the superposition, i.e. the relative distance &g between the two sphere shells
should be zero and the combination is now formed. Thus, the net coherence of two holes becomes on
a cell order, 1 nm, as reported by many literatures.

Employing the above-mentioned equation (52), an equation of the relative distance between
sphere shells &g for temperature T is derived as follows:
12 = 20 3k5(T) — 205)gf, (56)
where Ug is substituted with pseudo gap |4], ineq. (18).

Fig. 4

Schematic of two macroscopic bosons having many-body interactions. The relative distance of &

implies one between two macroscopic bosons. When an attractive force F between them appears and because
the relative Kinetic energy becomes zero, indexes i and j take the same. Thus, a superposition between them
occurs, rendering &gbe zero. That is, two bosons now combine to be a Cooper pair. Employing the statistic

equations from our established model, we can predict this type of transition.
As will be discussed in Result section, temperatures at which €2 < 0 implies superconductivity state

(i.e., the net coherence of two holes is about 1 nm, which equals CuO- cell order) and the transition

temperature Tc at which &; = 0 implies a critical temperature.
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2.5 Review to obtain the formula for Tc

Let us review our previous paper [1], which describes a force F to combine two particles and a critical
temperature on doping.

Note that because this is a review to understand the stream of outlined derivations of a critical
current Tc, some equations in the calculation process and derivation process are left out. In case that
the reader is interested in the detail, the paper can be downloaded the paper as an Open Access paper.

First, we assume that a general energy gap is proportional to both Fermi energy and Critical

current as follows:

In this equation, the fermi energy in a p-type material is employed as,

p:Er =E —kgT Iog(Z:A], (58)

In this equation, a superconducting energy gap is introduced.
2E. =K,T,, (59)
Substituting these energies and employing the state equation with the universal gas constant R, the

following equations are obtained.

1 T (2N
A’ ZE(kBTc )2{1— 2 Iog( A ]} (60)

c rli
and
1 119 1 2N
AP ==(k.T.)d1—2= "8 | AL (61
A 2(Bc){ TR 2NAog[ N J}( )
where
Qg|=PV | (62)

where 25 denotes a thermodynamic potential.
In this way, a general expression of energy gap for temperatures is derived.
Next, let us consider the derivation of superconducting energy gap.
To consider the superconducting energy gap, it is necessary to mention a force F, which results in a
combination of a Cooper pair. As mentioned previously, two charged particles generally experience
an attractive force with each other when they are moving with the same velocity, i.e., when the relative

energy or momentum is zero. As shown in Fig. 5-1 to 5-4, at first two parallel conductors along which
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the same direction and same amount of a current are presented. From the electromagnetism, these
current leads experience an attractive force with each other, which results from the Lorentz force.
When we shorten these leads to a wavelength of a carrier, this attractive force still exists. This implies
that two charged particles whose wave numbers are identical experience an attractive force with each

other.
Considering this fact, a force F and its energy (i.e. superconducting energy gap) is represented as

F =gt b 4” 52 ke Lsinocosg - 27 A Lsingcosg (63
m2 2r m r

u=— 2q7r_”°/3|\}f| logrsin@cosp+u,  u, <0 (64)
m

where v, 1, 8, ¢, q, B, and u, denote wave function of a hole, relative distance of two holes, angle
associated with the Lorentz force, angel related with two wave number of holes, the electric charge of

a hole, constant, and integral constant, respectively.

Lorentz force
( electromagnetic
force)

Fig. 5-1: Currents in the same direction. Note that this figure was cited from [1]
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Lorentz force

( electromagnetic

Fig. 5-2 Shorter leads with currents in the same direction. Note that this figure was cited from [1]

JUDILIND
UOTJOIL(T

JUSILIND

UOTJORIL(]

Jo

v Lorentz force

e+ ) ¢m— e+

Fig. 5-3 Holes with same direction and equal velocity. Note that this figure was cited from [1]

Fig. 5-4 Center-of-mass motion of Cooper pair. Note that this figure was cited from [1]

Furthermore, the derived superconducting energy gap u is given a relationship with the pseudo gap

energy.

Q
T, =—4a'? ﬁ |og(2N—AJ—1.149D , (65-1)

n;
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a=- Zq”% logésin@cosg  (65-2)
m?

2_2
a'=no=- L a=- 1 29 ﬂz’uoh log &sin@cos ¢ (65-3)
Ks6, k6o m

In this process, we added a Debye temperature 6p and a net coherence & to the equation. Note that, as
an integral constant, the BCS formula under a particular condition was employed. That is, in the
formula Tc of BCS theory, because the interaction potential V in the BCS formula equals the mass of
a Cooper pair and when the mass of a macroscopic boson U, eq. (6), is substituted to V in the BCS
formula, in turn, this large value of U makes the exponential function in the BCS formula zero.
Concerning the thermodynamic potential, the following equation is applied under the condition of

BE condensation.

|Qq| =PV = % Ero (66-1)

2B, =Eqy, (66-2)

where Erand E¢ denote the Fermi energy and band gap at zero temperature, respectively.
Thus, critical temperature becomes

( L )2(2q ”ﬂo |Og§SIr16’COSg0) Ee Iog(ZNA)—1.140D.(67)

T, =4

Moreover, we derive 2-dimensional critical temperature equation from the above.

1.40E+02
1.20E+02
1.00E+02
8.00E+01
6.00E+01
4.00E+01

2.00E+01

[w/3]] 9, @Injeaedwie) [BOTILL))

0.00E+00

doping
Fig.6

A result of typical critical current on doping. This is derived from the equation by combining pseudo gap energy
and superconducting energy gap. At doping 0.16, the critical temperature reaches the maximum, which agrees
with the experiments. In calculations, no numerical calculations or fitting method are employed. The values of

critical temperatures are relatively sensitive for Debye temperature and band gap in our derived equation. This
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implies that, although high-Tc cuprates in common have CuOz surfaces, differences of Debye temperatures and

band gaps would result in various values of critical temperatures among high-Tc cuprates.

Thus, to conclude, a critical temperature equation is derived as

1 .5,29°7% ugh . , EgNg o
log &£ sin @ cos —log(—) -1.146 K/m], (68
kaé’o)( 3 9¢ ) thog g(niz) b2 [K/m], (68)

<TC >2 =4

where o, 0p, and nq denote surface density of carriers and Debye temperature in 2-demention, which
is assumed to be approximately equal to that of 3-dimension, and the number of layer.

Note that all the constants in the consequent equation have actual physical meaning and unit. This
implies that no numerical calculations or fitting methods are required. This fact is also consistent

everywhere in the present paper.

Table 1 Physical parameters in the equation of critical temperature

Debye temperature 6 140K
Coherence & 1nm

Band gap Ec 1.53 x 10718]
The number of layer nq 3

In Fig.6, a result of this review section is shown, where used physical parameters are listed in Table 1.
As shown, our derived critical temperature equation sufficiently agrees with a typical high-Tc copulate.
Note that the reason why the band gap is relatively large is related to the property of the Mott-insulator.
For the detail, refer to [1].

3. Results

First, Fig. 7 shows the entire depictions of Tc, T*, and T, on doping as a result of analytical calculations.
Generally, the agreements with the experiments is good. Moreover, in Fig. 8, the result of theoretical
calculations of the Hall coefficient RH. As shown, the lower doping, the higher RH, and the RH behave
as non-linear on temperatures. This result accurately agrees with the experiments such as [18].
Furthermore, Fig. 9 indicates a result of theoretical calculation for electron specific heat coefficient.
According to the experiments [19,20], the calculation values are valid in addition that it takes the

maximum at a higher doping.
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Fig. 7

The whole depiction from theoretical calculations of Tc, T*, and To vs. doping.

For the previous figure of Tc graph, T* and To are added. Note that T* is depicted on the understanding that it
is smaller than To. Moreover, T* has the gradual and easy minimum point on touching Tc dome. Thus, it does
not exist in the Tc dome. As mentioned, no numerical calculations and fitting methods are employed. To begins
with about 500 K and vanishes almost at the same doping at which Tc disappears. As mentioned in the text, this

transition temperature is important in considering the anomaly metal phase.
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Fig. 8

Hall-effect coefficient RH on both temperature and doping.
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As many experimental literatures report, the lower doping takes, the higher RH becomes. The calculated values
generally agree with experiments in addition that temperate dependence is non-linear. Note that the quantum

number No in RH equation, which varies on the applied magnetic fields Be, was assumed to be 1.1 x 102,
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e 1.00E+00
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3
[¢”)
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< 400e01
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=~ | 2.00E-01
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— | 0.00E+00

0 008 01 015 0z 025 03 035 04 045

doping

Fig. 9

A theoretical result of electron specific heat coefficient on doping.

At the relatively high doping, the curve takes the maximum, which agrees with the experiments. In other
words, to both lower doping or higher doping from this the maximum, electron specific heat coefficient

decreases.

As a result of the statistic equation for the many-body interactions, Fig. 10 shows superconductivity
state up to a critical temperature about 140 K. In this figure, the state, which relative distance &;
between two macroscopic bosons with consideration of the many-body interactions, under zero
implies superconductivity state. From the further temperatures higher than the critical temperature,

relative distance &; becomes much larger as a change of non-continuity. Obviously, a transition
occurs at around 140 K.
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Fig. 10

Relative distance between two macroscopic bosons vs. temperature. Because up to about 140 K relative distances
& is not defined according to our statistic equation to handle the many-body interactions, up to about 140 K,
the net coherence of two holes is defined as about 1 nm, i.e., superconductivity state is maintained. However, at
the further temperatures, relative distances &; suddenly becomes 10~7m order. Obviously, a transition
occurs at around 140 K. As an important notation, the magnetic field interaction Us is substituted by the pseudo
gap energy at the optimum doping 0.16. Thus, as many researchers claim, the many-body interactions in terms

of macroscopic bosons (not holes) is one of the reasons why high-Tc cuprates exhibit so high critical temperate.

4. Discussion

4.1. Macroscopic boson and high-Tc cuprates

Since the first discovery of a high-Tc cuprate, many experiments have been reported as well as
suggested theories. However, according to current researchers’ challenges, the mechanism of high-Tc
cuprates is yet to be uncovered. At least, researchers in superconductivity do not have the consensus
to describe the mechanism behind it.

We propose that the reason behind the challenges of many researchers is that a particle
describing high-Tc cuprates is not a normal hole but a macroscopic boson, which is formed by the
conservation of angular momentum in 2-dimension and by rotational motion of a hole itself. The
concept of a macroscopic boson, as mentioned, provided a unique partition function, and this partition

function can explain every property in the anomaly metal phase. Moreover, the presence of this boson

25


https://doi.org/10.20944/preprints202005.0105.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2020 d0i:10.20944/preprints202005.0105.v1

gives substantial reason why high-Tc cuprates have significantly high critical temperature when
considered with many-body interactions

In particular, most important points in high-Tc cuprates are to understand the nature of force to
combine two holes as a Cooper pair and to understand that carriers that contribute to the high-Tc
superconductors are macroscopic bosons (i.e., not single hole), which are created due to the presence

of 2-dimensional CuO; surface and due to the conservation of angular momentum.

4.2 Anomaly metal phase and transition temperature To

Thus far, to understand the mechanism of a high-Tc cuprate, it was important to study the source of
pseudo gap energy. Although this is true, another important factor which should be understood is the
source of the transition temperature To, which defines the anomaly metal phase appearance. As
mentioned, all the equations which describe the anomaly metal phase have the parameter To as well
as T¢. Therefore, excessive focus on the source of pseudo gap energy made most researchers less
careful of the source of the transition temperature To, and this confused researchers when considering

the mechanism.

4.3 Highlights of the process for the materials to undergo superconductivity

Let us review the process, which describes the mechanism from forming a macroscopic bosons to
undergoing BE condensation.

First, high-Tc cuprate reaches the transition temperature To with a lower or no refrigeration, At this
stage, because the wavelength of a hole along z-axis becomes longer than the width of 2-dimensional
CuO; surface, the net 3-dimension disappears and the conservation of angular momentum forms a
macroscopic boson, which implies the rotation of a hole producing a magnetic field energy. Thus, this
magnetic field energy gives a mass of macroscopic boson.

By further refrigeration, many-body interactions including the magnetic field energy of
macroscopic bosons and Coulomb interactions result in very short relative distance of two holes (i.e.,
the net coherence of about 1 nm). Simultaneously, two holes gain a strong combination of the Lorentz
force, because the relative kinetic energy among two holes becomes zero.

As a result of our established statistic equation, all the Cooper pairs take the identical energy and

thus BE condensation is produced, which is the source of the Meissner effect.
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4.4 The reason why high-Tc cuprates have significantly high critical temperature

As mentioned, an attractive force is the Lorentz force when two charged particles have no relative
kinetic energy. However, as indicated in Fig. 11, this concept can also be satisfied in s-wave pair as
well as d-wave pair. Considering this schematic figure, the pair symmetry of high-Tc cuprates as d-
wave is not important. Rather, it is crucial to focus on an irregular many-body interactions in high-Tc

cuprates with an explanation of the significantly high critical temperature.

v [m/s]
SN
[m/s] [m/s]
v [m/s]
Paring of s-wave Paring of d-wave
picture picture
Fig. 11

Schematic of paring symmetries.

The principle to generate an attractive force between two charged particles is that relative momentum must be
equal. That is, when this principle is satisfied and if outer macroscopic heat energy does not disturb, the two
charged particles are combined by the generated attractive force, which stems from the Lorentz force. This
proves that this principle is satisfied are illustrated in the figures above, i.e., s-wave and d-wave symmetries.
This is why there is another irrelevant particle among force—experiencing two particle. This irrelevant charged
particle with different momentum does not experience this attractive force. However, the Coulomb interactions

does not have this characteristic.

According to the model we employed to handle many-body interactions in terms of charged particles,
it is normally impossible for two particles to take their relative distance shorter than about 107 m. In
this case, however, our employed equation in many-body interactions has magnetic field interaction
Ug ineq. (56) due to the presence of macroscopic bosons (i.e. pseudo gap energy) as well as Coulomb
interaction. Therefore, this fact renders relative distance between two macroscopic bosons to be zero
up to a high temperature, which makes the net coherence of two holes become the order on the cell of
a CuO; surface (i.e. about 1 nm).
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This is demonstrated as shown in Fig. 10, which results in a critical temperature about 140 K.
Considering Ug in eq. (56) in our model equation to handle many-body interactions is pseudo gap
energy, eq. (18), which is essentially equal to the mass of a macroscopic boson, the parameter n [m]
(i.e., radius of a boson and order on a CuO; cell) determines the critical temperature as well as doping.
This parameter also determines both a Debye temperature and a band gap. Thus, this fact does not
contradict the critical current equation (68) in this review section or our previous paper [1].

Furthermore, according to our derived statistic equation, the larger Ug is, the higher a critical
temperature Tc, and actual high-Tc implies that Ug is sufficiently large, which results when the

parameter n [m] is sufficiently small in addition to the optimum doping.

To conclude, the existence of a macroscopic boson implies that:

1) It causes the anomaly metal phase in high-Tc cuprates.

2) Irregular many-body interactions are caused by it, which results in a high critical temperature
higher than LN,

Note that, if we consider electron-doping in a Mott-insulator, carrier concentration dominates over the
lattice concentration n; with consideration of the local electron at each lattice in the Mott-insulator,
and thus the sign of the function In in eq. (18) of pseudo gap energy (i.e., Ug in eq. (56)) is altered.
Hence, the sign of Ug in eq. (56) also becomes the opposite, which makes electron-doping unable to
have a high critical temperature because on the contrary Ug would prevent the enhancement of critical

temperatures Tc.

4.5 Consideration of significances in this paper

We believe that this paper is significant because:
1) It clarified why high-Tc cuprates have actual high critical temperature higher than LN,
2) It showed that all the puzzles including the properties of anomaly metal phase reported in previous
articles have been attributed to the presence of a macroscopic boson.
Thus far many theoretical investigations were reported to explain the mechanism of high-Tc cuprates
but most of them used numerical computing or fitting methods. However, a general understanding of
how the mechanism worked was largely unknown. Therefore, we proposed a detailed explanation of

the mechanism which has been proposed for a comprehensive understanding of high-Tc cuprates.
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5. Conclusion

This paper described theoretically high-Tc cuprate properties such as the transition temperatures on
doping, Hall-effect or electron specific heat coefficient on doping. Moreover, it established a novel
model to handle general many-body interactions, which explained why the high-Tc cuprates exhibit a
significantly high critical temperature.

In general, the derived resultant equations predicted values accurately agree with the data from
experimental reports, with no numerical calculations and fitting methods.

The resistivity on lower doping in the anomaly metal phase is not discussed in this paper.
However, an equation for conductivity which takes linearly temperature dependence (i.e., non-linearly
resistivity) was obtained in the Theory section of the paper, because the carrier concentration in eq.
(21), which lineally depends on temperatures, implies the conductivity. However, the non-lineally
resistivity in the anomaly metal phase which appears only on low doping and mobility from the
experiments is unclear because it is directly related to superconductivity (i.e., resistivity = 0).
Therefore, because it does not only involve macroscopic bosons but also magnetic flux quanta and I-
V characteristic, the subject is complex. Thus, we expect further investigations on the subject

involving magnetic flux quanta and critical current density in the future.
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Appendix
Al. Introduction and significances of this appendix

The purpose of this appendix is to confirm the proposed new model to handle many-body interactions
described in the main text, by applying another physical phenomenon. As an example, we now
introduce transitions of ferromagnetic material, i.e., Curie temperatures.

Before conducting an actual calculation, we will briefly discuss some background information to
understand significance of this appendix as well as to confirm our established model. Concerning
transition phenomena, many literatures have been reported [al-a6]. In particular, Ising model is the
most famous and basic. According to our literature review, however, few articles exist which
accurately predicted that the transition temperatures agreed with data of experiments. Moreover, many
statistic physics texts claim that the Ising model in 2-dimension provides an equation of transition
temperature but no known model in the 3-dimension. If we follow the existing theory, a calculation of
transition temperature implies the evaluation of exchange interaction. However, this interaction is
quite abstract and thus it difficult to evaluate in every ferromagnetic material. A general formula to
determine a transition temperature has not been obtained because partition function with consideration
of many-body interactions cannot be calculated mathematically.

In this appendix, using our established model for many-body interactions, we predict the actual
values of transition temperatures which sufficiently agree with the experimental values. These
calculations do not involve any numerical calculations or fitting methods. Here, we provide a new

model for statistic physics considering many-body interactions.

A2. Predictions of Curie temperatures using our employed model to handle many-
body interactions

As shown in Fig A1, a magnetic moment i is located in the center of a sphere shell dN at which the
temperature is Ti. Similar to that of the main text, the following proportional relation holds:
(magnetic field interaction from magnetic moments):;3 kgT;dN (A-1)
In this equation, the left-hand side is given as
—ii- B
As every basic text describes, a magnetic field B is represented as

where r is radius of sphere shell dN.
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Fig. Al
A schematic of our model to apply a ferromagnetic material.

The concept to handle many-body interactions are basically the same as the case presented in the main text.

—

That is, force of thermal expansion from the central magnetic moment u is proportional to force of compression

from the immediately outer locations, which are equal to kinetic energies in the differential number dN. Note
that, this case does not include the magnetic field interaction by macroscopic bosons. Calculating the

proportional equation results in a statistic equation which involves the many-body interactions.

In this equation, the first term implies a ferromagnetic, while the second term is antiferromagnetic.
Because the present case is to handle a ferromagnetic material, thus, we employ the first term.
Moreover, the directions of two magnetic moments i are assumed to be parallel, i.e., the scalar
product between two i is positive.

Considering the above, the equation becomes

i [~ E] = 2kyTiaN. (A3)

413

Moreover, as mentioned, dN is expressed as follows, considering the volume element of integral:
szl 3 3 -
B 132 L = 2kyTidN = 2k, T, x gfdR. (A4-D)

7 1 1
dk = 3= 5 (A42)

Thus, here, an important equation is derived.

_> 9 9 1
tolfl* = EkBTigf = EkBTig —( Ei—EF) . (A-5)
exp| —t——)-1

kpT;

In this Bose-statistic equation, E;jdenotes the zero-point energy of phonon, i.e., the Debye temperature
and +|Eg|is a chemical potential, which equals to Gibbs free energy, but especially this case implies
only an internal energy. Therefore, this chemical potential is derived from electron specific heat
coefficient as follows:
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T

tolfl? = 2"39 T 73
2 eXp[—m(EkBGD‘FyTZ):I—

 (A-6)
1

In this case, a transition temperature of Tc is assumed to be obtained by taking the extremum from this
equation. Hence, to calculate differentials, T; is considered to be a variable continuous temperature T
because there are now no dependent parameters on index i except Ti.

Therefore, the following equation is calculated.

d
—7 Hojz=o0 » (A7)

Consequently, this equation is obtained:

3
YT?~"kgbp
kpT

T=T,=-%4 /“ﬂ ~ |ZE% (A g-2)
2y 2y 2y

Table 1-A lists the physical constants of a ferromagnetic metal Fe.

= -1, (A-8-1)

Table 1-A Fe physical constants

Debye temperature 6, 470 K

Electron specific heat coefficient y 8.4 x 10727 J/K2

Employing these physical constants, the transition temperature Tc for the metal Fe is calculated as
T.~1.08x103 K (A-9)
Because measurements of the transition report 1043 K, the agreement is sufficient.

Then, we consider the transition temperature of the ferromagnetic Ni. The material Ni has much
less thermal conductivity, different from the metal Fe. This implies that a chemical energy, i.e, the
internal thermal energy is allowed to be ignored. Thus, from eq. (A-8-1), the Tc equation is expressed
simply as
Zkpbp ~ kpT,. (A-10)

Because the Debye temperature of Ni is reported as 450 K, the Tc is calculated as

T, ~ 675 K (A-11)

Compared with a measured transition value 627 K, the agreement can be considered as sufficient.
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