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Abstract 

This paper describes all the properties of high-Tc cuprates by introducing rotating holes which are created by angular 

momentum conservations on a two dimensional CuO2 surface, and which have a different mass from that of a normal 

hole due to the magnetic field energy induced by the rotation. This new particle called a macroscopic boson describes 

doping dependences of pseudo gap temperature and the transition temperature at which an anomaly metal phase appears. 

In addition, it also describes all the properties of the anomaly metal phase, using findings from our previous article [1]. 

Furthermore, the present paper introduces a new model to handle many-body interactions, which results in a new 

statistic equation. A partition function of macroscopic bosons describes all the properties of the anomaly metal phase, 

which sufficiently agrees with experiments. Moreover, the above-mentioned statistic equation describing many-body 

interactions accurately explains why high-Tc cuprates have significantly high critical temperatures, which indicates that 

the source of the characteristic stems from pseudo gap energy. By introducing a macroscopic boson and the new statistic 

model for many-body interactions, the present paper uncovered the mystery of high-Tc cuprates, which have been a 

challenge for many researchers. Moreover, in the present paper, pure analytical calculations are conducted. These 

calculations agree with experimental data which do not employ numerical calculations or fitting methods but employ 

many actual physical constants.  
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1. Introduction 

 

1.1 Brief summary of the paper 

 

In particular, this paper theoretically describes properties of high-Tc cuprates. That is, we clarify why 

high-Tc cuprates has considerably high temperature as the transition.  

Based on results from our previous paper [1], the present paper describes pseudo gap temperature 

T* and transition temperature T0 at which the anomaly metal phase appears, as well as critical 
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temperatures Tc. Moreover, the anomaly mental phase such as Hall coefficient RH, electron specific 

heat coefficient, etc., are described from the findings above. 

Furthermore, we have established a new model for many-body interactions and thus, using this 

model, the mechanism of high-Tc cuprates, with considerably high temperature Tc, is uncovered.  

 

1.2 Background 

  

The significance of the present paper will be better understood with a review of the fundamental 

concept of superconductivity. Although several significant advancements have been presented, from 

the initial discovery of a superconductor,, the most impressive discoveries are the CuO2-based 

superconductors (i.e., high-Tc cuprates) [2]. This is because, prior to this finding, superconductors 

generally require significantly high refrigeration because of their lower critical temperature (about 20 

K). However, because they have higher Tc than LN2, high-Tc cuprates received the widest attention 

and interests from condensed matter physics researchers, as well as researchers in technologies who 

showed interest in the technical merits when applied to superconducting magnetic energy storage, 

energy transmitting [3-5], and so on. Thus, initial findings showed that high-Tc cuprates involved 

many condensed matter physics and technologies researchers.  

 

However, condensed matter physics researchers investigated high-Tc cuprates for deeper reasons. 

That is, they are the first case at which the standard band model and the Bardeen-Cooper-Schieffer 

(BCS) theory are not applied, which implies that novel physical phenomena occurred. (Recent H-

based superconductors [6] with extremely high pressures have high potential to be applied to the BCS 

theory.) Nevertheless, many claimed that it is related to many-body interactions, which made many 

theoretical researchers’ approach to the mechanism difficult. It is obvious that, as an analogy to the 

BCS theory, the use of quantum field theory is not adequate because quantum field theory is too 

abstract and does not reflect the fact that a phenomenon in condensed matter physics involves many 

actual physical constants. Although many articles about the experiments have been reported [7-13], 

no theory describes all the experimental data. There are several reasons for this: many-body problems 

are essential and there is no information about the kind of force that combines a Cooper pair in high-

Tc cuprates. 

Consequently, existing theories have attempted to describe the mechanism of high-Tc cuprates 

using either Fermi-liquid model or resonating valence bond (RVB) model [14-17]. However, these 

theories have undetermined parameters, which inevitably leads to numerical or fitting methods. We 

must mention that they are insufficient, because many related and actual physical parameters are 

involved when the properties of high-Tc cuprates are considered. For example, several researchers 

claim that, because of magnetic field interactions, the nature of force to combine a Cooper pair must 
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be spin interactions. However, as mentioned later in this paper and previous our paper [1], magnetic 

field interactions are not generally only spin interactions. Furthermore, if the interaction was defined 

as the spin interaction, they could not explain why other many physical parameters such as phonons 

are related. 

Although many theories that discuss the nature of force to combine a Cooper pair and the source 

of pseudo gap using RVB model or Hubbard model exist, few theoretical articles address the anomaly 

metal phase and the transition temperature T0 at which the anomaly metal phase appears. 

 

 In particular, a number of themes and problems to theoretically solve the mechanism of high-

Tc cuprates exist despite the number of experiments conducted and thus, researchers continue to 

investigate other possibilities of high-Tc cuprates. 

   Recent discussions showed that because there is no future solution to high-Tc cuprates, most 

researchers now take their themes to topology insulators in order to publish more articles within a 

short term. That is, for young students to become researchers, because of the complexities of high-Tc 

cuprates. young researchers are not interested in researching high-Tc curprates and instead other 

materials are focused on. This is because the busy schedules of researchers do not allow the needed 

ample study time. 

In the present paper, however, we believe that studies on high-Tc cuprates are not irrelevant. 

Rather, we would like to emphasize again the importance of this basic study.  

 

1.3 Outline of the theory in this paper 

 

 The present paper describes further facts based on the previous our paper [1]. In our previous paper, 

critical temperatures Tc on doping were described, which agrees with experiments. The present paper 

describes basically the anomaly metal phase properties and why high-Tc cuprates exhibit significantly 

high critical temperature when many-body interactions are considered. 

 

What describes properties such as the anomaly metal phase is not a net hole-carrier but a rotating 

hole. This rotation occurs because, under a transition temperature T0, holes experience complete 2D 

CuO2 surface, i.e., 2D motions are generally allowed by angular momentum conservations. This 

rotating hole (referred to as a macroscopic boson) differs from a normal net hole, because this 

macroscopic boson has self-induced magnetic field energy. Thus the mass of a macroscopic boson is 

much larger than that of a single hole. Moreover, the radius of a macroscopic boson is approximately 

in order of a CuO2 cell (i.e., about 1 nm).  

Basically, the mass of macroscopic bosons provides pseudo gap temperature T*. These 

macroscopic bosons behave according to an approximated partition function in terms of bosons. 
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Furthermore, a particular form of this partition function describes the anomaly metal phase properties. 

 

Subsequently, we established a model to handle many-body interactions, which describes why 

high-Tc cuprates exhibit significantly high critical temperature. In addition to Coulomb interaction, 

magnetic field interaction between macroscopic bosons are included in our model, It predicts 

extremely short coherence (i.e., about 1 nm ) up to about 140 K (i.e., a critical temperature), but at 

further temperatures the relative distance suddenly becomes 10-7 m order. As mentioned in our 

previous paper [1], a method to combine a Cooper pair is Lorentz force which only appears when two 

charged particles move at the same velocity due to the law of action and reaction. Therefore, when the 

relative kinetic energy of two macroscopic bosons becomes zero, the above-mentioned model predicts 

that the relative distance between the two macroscopic bosons becomes zero, with the net coherence 

of two holes in order of CuO2 cell, i.e., 1 nm. Our model explains why high-Tc cuprates have 

significantly high critical temperature because the magnitude of the magnetic field interaction by 

macroscopic bosons is large. 

 

1.4 Brief review of our previous paper 

 

As described in details in the review section of the present paper, we briefly explain a method of force 

to combine a Cooper pair. 

As mentioned, when two charged particles have the same velocities, i.e., the relative kinetic 

energy is zero, these two particles experience an attractive force with each other, which stems from 

the Lorentz force. This phenomenon can be understood using an analogy that two macroscopic parallel 

current leads experience an attractive force with each other according to electromagnetism. Next, we 

consider that these current leads are shortened to a wavelength of a microscopic quantum particle. 

Even at this situation, as long as the wave numbers of two particles are equal, it is assumed that two 

moving charged particles still experience the attractive force with each other. As will be mentioned in 

the review section of the present paper, this is a source of attractive force to combine a Cooper pair, 

which results in a critical temperature Tc.  

 

1.5 Summary of significances in this paper 

 

As discussed in the Discussion section, consider the summary of significances in the present paper. 

1) It has uncovered the source of mysteries in high-Tc cuprates, i.e., the presence of a macroscopic 

boson. 

2) It has succeeded in describing the anomaly metal phase with pure theory, which has no fitting or 

numerical calculations and which agrees with experiments. 
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3) It has established a new model to handle general many-body interactions, and using this model, 

this paper has clarified why high-Tc cuprates have so high critical temperature. 

 

1.6 Entire contents of the paper 

 

The entire paper is organized as follows: 

 

In the theory section, we describe the followings: 

1) A macroscopic boson and the partition function the bosons obey are presented. 

2) Pseudo gap energy and the temperature T* are calculated. 

3) A transition temperature T0 at which the anomaly metal phase appears is described. 

4) Using the partition function, Hall coefficient equation RH dependent on both temperatures and 

doping is derived. Moreover, electron specific heat coefficient dependent on doping is also 

obtained. 

5) A new model to handle many-body interactions is established. 

 

In the result section: 

1) Theoretical Tc, T*, and T0 dependences on doping are shown. 

2) The dependence of the Hall coefficient RH and electron specific heat coefficient on doping are 

presented. 

3) As a result of establishing new model to handle many-body interactions, relative distance between 

two macroscopic bosons per temperature is shown, which clarifies a point of critical temperature 

Tc. 

After the Discussion and Conclusion sections, an Appendix describes theoretically Curie temperatures 

in ferromagnetic materials such as Fe, using our above-mentioned model to handle many-body 

interactions. 

  

2. Theory  

 

2.1 Introduction of new particle 

 

When considering a CuO2 surface and when the refrigeration is sufficient that a hole wavelength 

becomes larger than that of the width of the surface, it is assumed that 2-dimension is completely 

formed. This implies that, on the surface, an angular momentum must be conserved. Thus, each hole 

takes a circle by self-rotating. At this time, because this rotating circle has magnetic field energy, we 

should consider that a new particle has been created. Going forward, we refer to this new particle as a 
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“macroscopic boson”. The schematic is shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1  

Schematic of a macroscopic boson. Normally, holes move in 3-dimension when their kinetic energy is high. 

However, when refrigeration reduces the momentum along z-direction, the complete x-y 2-dimensional motion 

is formed. Thus, a conservation of the angular momentum creates a rotation movement by a hole itself. 

Because a current circle by the rotation generates magnetic field energy, which determines the mass of this 

circle, this circle is essentially different from a normal hole. We will refer to this new particle as “a 

macroscopic boson.” Note that the radius η of a macroscopic boson is assumed to be in order of a CuO2 cell 

(i.e. about 1 nm)  

 

First, let us calculate the mass of a macroscopic boson. Using a magnetic flux, magnetic field energy 

is represented as 

2U =
1

2
𝐼𝛷0, (1) 

where I and Φ0 denote a current surrounding a macroscopic boson and a magnetic flux of a 

macroscopic boson having the unique value. The fact of the presence of this persistent current I can 

be cited from [12]. 

In this equation, the magnetic flux is assumed to be quantized because each angular momentum is 

conserved as mentioned. 

𝛷0 =
ℎ

𝑒
, (2) 

where h and e denote the Planck constant and the charge of a hole. Note that this paper employs both 

the constant h and ħ as Planck constant. 

In this current, the cyclotron angular frequency is introduced. 

I =
𝑒

𝑇
= 2𝜋𝑒𝜔𝑐 = 2𝜋𝑒

𝑒𝐵0

𝑚
= 2𝜋𝑒2 𝜇0𝐻0

𝑚
, (3) 

x 

y 

z 

e+ 

𝑇 > 𝑇0 

x 

y 

𝑇 ≤ 𝑇0 

2η 

e+ 
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where ωc, B0, and u0 denote the cyclotron angular frequency, the constant and unique value of magnetic 

field in a macroscopic boson, and the magnetic permeability in the vacuum, respectively.  

Thus, eq. (1) becomes 

U =
1

2
2𝜋𝑒2 𝜇0𝐻0

𝑚

ℎ

𝑒
,  (4) 

where 

𝐻0 =
ℎ

𝑒

1

𝜇0𝜋𝜂2,   (5) 

where η is the approximated radius of a macroscopic boson. 

Because the magnetic field B0 is expressed as eq. (5), the rest energy, i.e. the mass of a macroscopic 

boson is formed as, 

2U = π𝑒2 𝜇0

𝑚

ℎ

𝑒

1

𝜇0𝜋𝜂2

ℎ

𝑒
=

ℎ2

𝑚𝜂2. (6) 

Let us consider the spin of a macroscopic boson to obtain partition function, which creates all the 

anomaly metal properties.  

As mentioned, when a macroscopic boson is created, a complete 2-dimensional motion can be 

considered. That is, among the x-y-z axes, we cannot consider z-components. Therefore, using W. 

Pauli matrix, this case considers only x-and y-components. 

𝑠𝑥 =
ħ

2
(
0 1
1 0

). (7-1) 

𝑠𝑦 =
ħ

2
(
0 −𝑖
𝑖 0

), (7-2) 

where i denotes the imaginary unit. 

In this paper, a spin angular momentum is defined as the determinant from W. Pauli matrix. 

Thus, each determinant is 

det𝑠𝑥 = −
1

2
ħ,  (8-1) 

det𝑠𝑦 =
1

2
ħ.    (8-2) 

Therefore, a net spin angular momentum of a macroscopic boson is calculated as 

s ≡ det𝑠𝑥 + 𝑑𝑒𝑡𝑠𝑦 = 0 ∙ ħ. (9) 

The above result implies that, although a single hole behaves as a fermion, this macroscopic boson 

behaves like a boson. Thus, the name of this particle is derived from this fact. 

Due to the fact that a macroscopic boson follows the Bose’s partition function, first we simply consider 

𝑓𝑟 =
1

exp(
𝐸𝑖−𝐸𝐹
𝑘𝐵𝑇

)−1
, (10) 

where Ei, |𝐸𝐹| , 𝑘𝐵 ,and T denote energy, a chemical potential, the Boltzmann constant, and 

temperature, respectively.   
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An important point is that the exponential function is approximated as a Maclaurin series, 

𝑓𝑟 ≈
1

𝐸𝑖−𝐸𝐹
𝑘𝐵𝑇

+1−1
=

𝑘𝐵𝑇

𝐸𝑖−𝐸𝐹
. (11) 

This above partition function is very important because all properties in the anomaly metal phase in 

CuO2-based superconductors are described by this partition function. We will see how this equation 

describes properties of the anomaly metal phase later.  

Moreover, this equation has another expression. In semiconductor physics, the following equation 

holds generally: 

𝐸𝐹 = 𝐸 + 𝑘𝐵𝑇𝑙𝑛(
2𝑁𝐴

𝑛𝑖
), (12) 

where 𝑁𝐴 denotes accepter concentration. The number 2 is attached because of the presence of spin. 

Moreover, 
2𝑁𝐴

𝑛𝑖
 implies doping parameter. Therefore, because ni implies concentration of lattices, the 

doping parameter is less than the value of the number 1 as long as we consider the picture which holes 

are doped in a Mott-insulator.   

Using the equation above, the partition function, eq. (11), is translated as 

𝑓𝑟 = −[ln (
𝑁𝐴

𝑛𝑖
)]−1 . (11-2) 

 

Let us calculate pseudo gap energy, which is directly related to the mass of a macroscopic boson.  

First, here, we define carrier concentration of macroscopic bosons considering 2-dimensional energy 

state density. 

𝐷2 (𝐸) =
𝑚

𝜋ħ2 ≡ 𝑝0, (13) 

n =
1

𝑑
∫𝐷2(𝐸)𝑓𝑟𝑑𝐸, (14) 

where 𝐷2(𝐸), n, and d denote energy state density in 2-dimension, particle concentration, and width 

of the 2-dimensional sheet, respectively. An important point to note is that the parameter d [m] is 

consistently substituted by the number 1 but the reason of the appearances in some equations are to 

clarify the meaning of these equations.  

The integral for concentration (14) is simply conducted as follows, because energy state density in 2-

dimension is constant as indicated in Eq. (13) and because partition function fr is represented by eq. 

(11-2). In the process of this calculation of eq. (14), an energy E0 appears as 

𝐸0 = −
𝑑

𝑝0
𝑛0 × ln(

2𝑁𝐴

𝑛𝑖
), (15) 

This energy E0 is assumed to be essentially equal to pseudo gap energy. Combined with the mass of a 

macroscopic boson, this pseudo gap energy is represented as follows: 
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𝐸0 = −𝑈 × 𝑙𝑛 (
2𝑁𝐴

𝑛𝑖
) = −

1

2

ℎ2

𝑚𝜂2 ln (
2𝑁𝐴

𝑛𝑖
). (16-1) 

The above derived pseudo gap energy equation has a coefficient for doping function ln. This factor is 

identical to the zero-point energy: 

1

2
ħω =

1

2

ℎ2

𝑚𝜂2. (16-2) 

However, this derived energy E0 implies merely a potential. In general, an energy gap appears or 

disappears involving a photon’s emission or absorption. This fact implies that, for a potential to 

become a general energy gap, the potential is given the product of the fine-structure constant α, which 

includes characteristic impedance Z0 for electromagnetic waves. 

Typically, the fine-structure constant α is given as 

α =
𝑍0𝑒

2

4𝜋ħ
=

1

137.0
. (17) 

In eq. (17), the impedance Z0 works as the specific impedance to electromagnetic waves. 

Thus, the net pseudo gap energy |𝛥|0is derived as follows, which will give the temperature of pseudo 

gap T* as discussed later. 

|𝛥|0 = −
1

2

ℎ2

𝑚𝜂2 𝛼 × ln(
2𝑁𝐴

𝑛𝑖
). (18) 

 

2.1 Calculations to obtain formulas for T* and T0 

 

Let us calculate the formula of pseudo gap temperature T *. 

In our previous paper [1], an energy gap is assumed to be proportional to the product between critical 

temperature Tc and Fermi energy EF. Starting this assumption, the calculation process through 

substituting an equation of Fermi energy and giving critical temperature reach the following equation. 

T = −
|𝛥|2

𝑘𝐵
2

1

𝑇𝑐

1

ln (
2𝑁𝐴
𝑛𝑖

)
,(19) 

where Tc and Δ denote critical temperature and a general energy gap, respectively.  

This equation generally implies the relationship between a temperature and an energy gap including 

critical temperature Tc. When the previously derived energy gap from a macroscopic boson is 

substituted with an energy gap in the above equation, then variable temperature T must become a 

constant of pseudo gap temperature T*. Therefore, the temperatures Tc and T* have a dependent 

relationship. As discussed later, note that this dependent relationship is a different point for the 

temperature T* and T0, because T0 provides the transition temperature in appearance of anomaly metal 

phase. Thus, as a formula of pseudo gap temperature T*, the following equation holds: 
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𝑇∗ = −
1

𝑘𝐵
2

1

4
(3.4 × 10−21)2[ln (

2𝑁𝐴

𝑛𝑖
)}

2 1

𝑇𝑐

1

ln (
2𝑁𝐴
𝑛𝑖

)
= −

1

𝑘𝐵
2

1

4
(3.4 × 10−21)2[ln(

2𝑁𝐴

𝑛𝑖
)}

1

𝑇𝑐
, (20) 

where, to the equation of |𝛥|0 of eq. (18) in creating eq. (20), each physical parameter was substituted. 

That is, the physical parameters m, h, and α in eq. (18) were given actual values. Note that radius η is 

approximated as 1 nm.   

 

In the present paper, we consider the anomaly metal phase properties in CuO2 –based superconductors. 

These properties are determined mainly by the transition temperature T0, which is directly related to 

appearances of the Hall-effect coefficient RH. As mentioned, this transition temperature also implies 

the transition for appearance of the anomaly mental phase. To obtain an equation for the temperature 

T0, we consider derivations of the Hall-effect coefficient RH. The Hall-effect coefficient RH depends 

on absolute of energy –uBe,, where u and Be denote self-magnetic moment of a macroscopic boson and 

applied magnetic fields, respectively. The absolute of energy –uBe involves Boltzmann statistics and 

thus it is related to concentration (i.e., the number) of macroscopic bosons. Considering these facts, at 

first concentration of macroscopic bosons is again taken and secondary self-magnetic moment of a 

macroscopic boson are calculated. In the previously appeared concentration eq. (14), the calculation 

for energy integral, in turn, is conducted actually because we attempted to obtain temperature T 

dependence for RH 

n = 𝑘𝐵𝑇
1

𝑑
𝑝0 ∫

𝑑𝐸

𝐸−𝐸𝐹
= 𝑘𝐵𝑇

1

𝑑

𝑏

𝑎
𝑝0 × ln(

𝑇0

𝑇𝑐
), (21) 

where 

a = 𝑘𝐵𝑇𝑐          𝑏 = 𝑘𝐵𝑇0    
  .    (21-2) 

Note that the second form of fr in eq. (11-2) is not employed here. This obtained concentration n for 

macroscopic bosons will be employed later. 

 

In turn, a magnetic moment u is generally defined as 

μ = IS, (22) 

where I and S denote the self-current and the area in which a magnetic flux is presented. 

Seeing the schematic Fig.1 of a macroscopic boson (which assumes the motion of a hole to be a circle) 

and because a magnetic flux of it should be quantized as h/e, the magnetic flux of a macroscopic boson 

is 

𝛷0 = 𝐵0𝜋𝜂2 ≡
ℎ

𝑒
,   (23) 

where radius η is approximated on a cell of the CuO2 surface. That is, 

η ≈ 1 nm        (24) 

Moreover, assuming that a magnetic field among a macroscopic boson is equal to the central magnetic 
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field generated by a moving hole, a persistent current I in a magnetic moment is calculated as  

I =
1

𝜇0
2𝜂𝐵0. (25) 

 Consequently, a magnetic moment u is derived as 

μ ≈
2

𝜇0
𝜂

ℎ

𝑒

ℎ

𝑒𝜋
× 1018. (26) 

    Now we begin to calculate RH. 

As mentioned, considering an energy –uBe, the Boltzmann statics is represented as 

n = 𝑛0exp (−
𝜇𝐵𝑒

𝑘𝐵𝑇
),   (27) 

where n0 is concentration with no applied magnetic field Be. 

In this equation, the exponential function is approximated by the Maclaurin series. 

n ≈ 𝑛0(1 −
𝜇𝐵𝑒

𝑘𝐵𝑇
). (28) 

In this equation, the previously calculated concentration n, eq. (21), is applied. 

𝑘𝐵𝑇
𝑝0

𝑑
× ln(

𝑇0

𝑇𝑐
) = 𝑛0(1 −

𝜇𝐵𝑒

𝑘𝐵𝑇
). (29) 

Solving this equation for n0 and employing the general definition of RH, we reach an important 

equation. 

𝑅𝐻 =

𝜇𝐵𝑒
𝑘𝐵𝑇

−1

𝑒𝑘𝐵𝑇
𝑝0
𝑑

×ln(
𝑇0
𝑇𝑐

)
.    (30) 

Composition of this equation presents a new temperature T0, which implies the appearance of RH. 

𝑇0 ≡
𝜇𝐵𝑒

𝑘𝐵
. (31) 

In turn, let us consider the above definition equation T0 (the derived formula of RH will be considered 

again later). While an applied magnetic field Be in the definition of T0 is variable, the magnetic field 

B0 is a constant derived by the physical constants. This fact allows us to introduce a variable quantum 

number N between Be and B0  

𝐵0 = 𝑁𝐵𝑒. (32) 

Moreover, this variable integer N is undergone by partition function fr.  

N = 𝑁0𝑓𝑟, (33) 

where eq. (11-2) is applied as fr. 

 

Note that the magnetic field B0 was calculated from eq. (23). This employment of partition function 

fr implies that an application of Be makes every direction of some magnetic moments of macroscopic 

bosons the same orientation. In other words, prior to the application of Be, the directions of self-
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magnetic moments of each macroscopic boson are random (i.e., up- or down-direction), despite that 

the conservations of angular momentum produces macroscopic bosons. But the application of Be 

presents all the directions of some magnetic moments of macroscopic bosons with the same orientation. 

Because the interaction between macroscopic bosons with the same directed magnetic moment is 

repulsive, these bosons now obtain the existences as single and independent particles. Assembling 

these facts, the conclusive equation of the transition temperature T0 is derived, which depends on 

carrier doping. 

𝑇0 ≈ −
2

𝜇0

ℎ

𝑒
× 10−9 1

𝑘𝐵

ℎ

𝑒𝜋
× 1018 1

𝑁0
× ln(

2𝑁𝐴

𝑛𝑖
). (34) 

As described later, this equation of T0 and the formula of critical temperature Tc [1] will be crucial 

factors when calculating properties of the anomaly metal phase.  

   

2.3 Analyze anomaly metal phase 

 

Next, we derive dependences on temperature of RH. Up to the previous section, the general equation 

of RH was derived, which resulted in a definition of transition temperature T0. In this equation, we 

introduce the following approximation to the general equation of RH. 

𝜇𝐵𝑒

𝑘𝐵𝑇
≫ 1. (35) 

According to this approximation, the general equation of RH becomes as 

𝑅𝐻 ≈
𝜇𝐵𝑒

𝑒(𝑘𝐵𝑇)2
𝑝0
𝑑

×ln(
𝑇0
𝑇𝑐

)
. (36) 

Thus, the approximated equation of RH is determined by applied magnetic fields Be. That is, this RH 

equation depends on both quantum number N and the universal magnetic field B0. 

𝑅𝐻 ≈
𝜇𝐵0

𝑒(𝑘𝐵𝑇)2
𝑝0
𝑑

×ln(
𝑇0
𝑇𝑐

)

1

𝑁
.  (37) 

Note that the universal magnetic field B0 is one in a macroscopic boson. Thus, in view of magnetic 

field energy, an application of magnetic field which dominates over the universal magnetic field B0 

results in destructions of macroscopic bosons and makes the anomaly metal phase disappear. Moreover, 

the employment of quantum number N implies that the RH equation is determined by doping. That is, 

variable integer N is expressed by partition function fr, which also implies doping. 

1

𝑁
=

1

𝑁0𝑓𝑟
= −

1

𝑁0
× ln(

2𝑁𝐴

𝑛𝑖
). (38) 

Considering this, the approximated RH equation further becomes 

𝑅𝐻 ≈ −
𝜇𝐵0

𝑒(𝑘𝐵𝑇)2
𝑝0
𝑑

×ln (
𝑇0
𝑇𝑐

)

1

𝑁0
× ln(

2𝑁𝐴

𝑛𝑖
). (39) 
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As many literatures reported [18], this derived equation of RH is proportional to (
1

𝑇
)2. 

In Result section, we will depict this RH equation in terms of both doping parameters and temperatures 

T.  

 

In turn, let us consider electron specific heat coefficient in the anomaly metal phase. Because electron 

specific heat coefficient is essentially equal to average energy U contributed by macroscopic bosons, 

it is simply necessary to calculate the average energy using partition function fr. Thus, average energy 

using partition function fr for energy integrals is given as 

U =
∫𝐸𝑓𝑟𝑑𝐸

∫𝑓𝑟𝑑𝐸
. (40) 

Note that the lower limitation a and the upper limitation b of these integrals are given as 

a = 𝑘𝐵𝑇𝑐      𝑏 = 𝑘𝐵𝑇0. (41) 

Assuming the Fermi energy for macroscopic bosons (i.e., the chemical energy, but not for single holes) 

is sufficiently small, the calculation results in 

U =
𝑘𝐵𝑇0−𝑘𝐵𝑇𝑐+𝐸𝐹×ln(

𝑘𝐵𝑇0−𝐸𝐹
𝑘𝐵𝑇𝑐−𝐸𝐹

)

ln(
𝑘𝐵𝑇0−𝐸𝐹
𝑘𝐵𝑇𝑐−𝐸𝐹

)
≈

𝑘𝐵(𝑇0−𝑇𝐶)

ln(
𝑇0
𝑇𝑐

)
. (42) 

In general, electron specific heat coefficient is derived by differential in terms of temperature to the 

average energy. In the present paper, however, ΔT is employed, instead of the differential for 

temperature. Moreover, this ΔT is assumed to be (T0-Tc) in this paper. Therefore, using the average 

energy of a macroscopic boson U and ΔT, electron specific heat coefficient is expressed as a 

calculation process.  

𝛾0 =
𝑈

(𝛥𝑇)2
=

𝑘𝐵

𝑇0−𝑇𝑐

1

ln(
𝑇0
𝑇𝑐

)
. (43) 

Furthermore, to obtain electron specific heat coefficient with the unit [J/mol K2], the Avogadro 

constant 𝑁0
𝐴 is considered here because previously calculated average energy U implies one for a 

macroscopic boson. Consequently, electron specific heat coefficient is derived as 

γ =
𝑁0

𝐴𝑘𝐵

𝑇0−𝑇𝑐

1

ln(
𝑇0
𝑇𝑐

)
. (44) 

 

2.4 Superconductivity with consideration of many-body interactions 

 

In the previous section, mainly anomaly metal properties were described. However, it is necessary to 

describe why macroscopic bosons undertake Bose-Einstein (BE) condensation by forming a pair from 

two macroscopic bosons, despite that they have been already general bosons such as Cooper pairs. In 

the previously published paper [1], we found a new attractive force to combine particles from local 

current in a CuO2 cell [12]. Because this local current is equal to rotational and self-current which 
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creates the mass of a macroscopic bosons; hence, this result of the previous paper thus agrees with the 

descriptions in the present paper. Therefore, in this section, based on the understanding that two 

macroscopic bosons form a pair, we describe why BE condensation occurs in so high temperature, 

with consideration of many-body interactions between the bosons. 

 

There are many-body interactions in terms of carriers in various materials. Especially, this fact is 

essential to high-Tc cuprates, because the general band theory cannot be applied. The many-body 

interactions of carriers imply there are many local temperatures Ti in the materials, where i is index 

for a location. In other words, in a temperature Ti, thermal equilibrium can be assumed. Thus, Fig. 2 

indicates our model to handle many-body interactions. In this figure, a radius ai forms a sphere shell, 

which has differential number dN and local temperature Ti. Moreover, in the center, a macroscopic 

boson is presented. The immediately outer particles out of dN give a pressure to this sphere shell, 

which equals to kinetic energies of particles in dN (i.e., it is represented by a temperature Ti), while 

the central macroscopic boson provides force of thermal expansion, which implies electrostatic energy, 

i.e., Coulomb interactions. Moreover, the present case adds magnetic interactions between 

macroscopic bosons as a force of thermal expansion. 

 

     

 

 

 

 

 

 

 

 

 

 

Fig.2 

Schematic of our established model to handle many-body interactions. Considering a nature of many-body 

interactions, it is important to note that temperatures are locally different. However, this model claims that in 

differential number dN (a macroscopic boson takes the center and dN takes a temperature 𝑻𝒊 ), thermal 

equilibrium can be assumed. Considering this, a proportion between force of thermal expansion from Coulomb 

interactions in addition to the magnetic field interactions from the bosons and force of compression from 

immediate outer side, which is equal to the kinetic energies in dN (i.e., a temperature 𝑻𝒊), is formed. Calculating 

this proportional equation results in a new statistic equation.  

𝑎𝑖 

dN, 𝑇𝑖 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2020                   doi:10.20944/preprints202005.0105.v1

https://doi.org/10.20944/preprints202005.0105.v1


15 

 

 

Considering that these forces of thermal expansion should be proportional to a force of 

compression in a sphere shell, the following relation holds: 

(Coulomb interaction energy and magnetic field interaction energy) = 
3

2
𝑘𝐵𝑇𝑖 × 𝑑𝑁 

 

 Calculate this equation.  

First, dN is represented as 

dN = gfd𝑘⃗ = 𝑔𝑓(
1

𝑑𝑣
),  (45) 

where k, v, g, and f denote wave number, volume, state number, and partition function for the boson, 

respectively. 

In the equation of dN, as mentioned, state number g and partition function f are given as 

𝑓 ≡ 𝑓𝑟 = −[ln (
2𝑁𝐴

𝑛𝑖
)]−1. (46) 

    g =
1

𝑑
∫𝐷2(𝐸)𝑑𝐸 = 𝑝0𝐸0, (47-1) 

    𝐷2(𝐸) =
𝑚

𝜋ħ2 ≡ 𝑝0,      (47-2) 

    𝐸0 = |𝛥|0 = −
1

2

ℎ2

𝑚𝜂2 𝛼 × ln(
2𝑁𝐴

𝑛𝑖
). (47-3) 

Thus, fg is given as 

fg = 𝑝0
1

2

ℎ2

𝑚𝜂2 𝛼. (48) 

To calculate the left-hand side of the above-mentioned proportional equation. The electrostatic energy 

UE is calculated as 

𝑈𝐸 =
1

2
𝜀0(

𝑒

4𝜋𝜀0𝑎𝑖
2)

2𝑑𝑣, (49) 

where 𝜀0 and 𝑎𝑖 denote the permittivity for the vacuum and the radius which dN is taking in the 

model.  

At this time, a volume element of the integral is expressed as 

dv =
1

d𝑘⃗ 
=

4𝜋

3
𝑎𝑖

3. (50) 

Moreover, the magnetic interaction Vp from macroscopic bosons is given as 

𝑉𝑝 = 𝑈𝐵𝑑𝑁, (51) 

Consequently, the resultant equation is provided by 

𝑎𝑖
2 =

9𝜀0

𝑒2
(3𝑘𝐵𝑇𝑖 − 2𝑈𝐵)𝑓𝑔. (52) 
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Fig. 3 

A basic model of well-potential. This model is directly related to the immediate prior figure model. The 

diameter 2𝒂𝒊 varies, depending on a temperature 𝑻𝒊 . A macroscopic boson in this well-potential forms a 

stationery wave, and its wave function and eigenvalue are presented in every basis texts. An important point is 

that all of these depends on index i.  

 

As shown in Fig.3, the central macroscopic boson behaves under the model of well-potential. Thus, 

the eigenvalue and wave function of it are presented by  

𝜓𝑖(𝑟) = √
2

2𝑎𝑖
sin (

𝑖𝜋𝑟

2𝑎𝑖
). (53) 

   𝐸𝑖 =
ħ2𝑖2𝜋2

2𝑀×2𝑎𝑖
, (54) 

where M, i, and r denote the mass of a macroscopic boson, index, and microscopic variable of sphere-

coordinates, respectively.  

These equations imply that a particle under the many-body interactions forms a stationary wave and 

that the wave function of the stationary wave and the eigenvalue (i.e., kinetic energy) are determined 

by a radius ai. 

 

 Using the above concept, we consider how BE condensation occurs. Besides a sphere shell having 

temperature Ti,, another sphere shell having temperature Tj is considered here. When we accept a 

combination of two macroscopic bosons by a force F, these two bosons must have the identical kinetic 

energy because, in general and as mentioned in our previous paper [1], a relative and attractive force 

appears only when their relative velocities become the same. In particular, that fact is applied when 

the attractive Lorentz force generates between moving and charged particles whose velocities are 

identical. Thus, when forming a pair from two macroscopic bosons, the eigenvalues indexed by i and 

j becomes equal. That is,  

2𝑎𝑖 

𝑉 = ∞ 𝑉 = ∞ 
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|𝐸𝑖 − 𝐸𝑗| = 0, (55) 

This implies that an index i and j becomes equal, resulting in that all the radius ai and eigenvalue Ei 

take the identical radius a0 and EB, because of the arbitrary property of index i. Hence, if a pair forms, 

every energy of macroscopic bosons undergoes the identical energy EB, which implies these bosons 

take BE condensation. 

Moreover, as shown in Fig. 4, taking index i to be equal j implies that temperatures Ti and Tj 

must be equal. Even at this moment, positions r of wave functions, eq. (53), are common and thus the 

two sphere shells take the superposition, i.e. the relative distance ξG between the two sphere shells 

should be zero and the combination is now formed. Thus, the net coherence of two holes becomes on 

a cell order, 1 nm, as reported by many literatures. 

Employing the above-mentioned equation (52), an equation of the relative distance between 

sphere shells ξG for temperature T is derived as follows: 
1

4
𝜉𝐺
2 =

9𝜀0

𝑒2
(3𝑘𝐵〈𝑇〉 − 2𝑈𝐵)𝑔𝑓, (56) 

where UB is substituted with pseudo gap |𝛥|0 in eq. (18). 

 

 

          

 

 

 

 

 

 

 

 

Fig. 4 

Schematic of two macroscopic bosons having many-body interactions. The relative distance of 𝝃𝑮  

implies one between two macroscopic bosons. When an attractive force F between them appears and because 

the relative kinetic energy becomes zero, indexes i and j take the same. Thus, a superposition between them 

occurs, rendering 𝝃𝑮be zero. That is, two bosons now combine to be a Cooper pair. Employing the statistic 

equations from our established model, we can predict this type of transition. 

 

As will be discussed in Result section, temperatures at which 𝜉𝐺
2 ≤ 0 implies superconductivity state 

(i.e., the net coherence of two holes is about 1 nm, which equals CuO2 cell order) and the transition 

temperature Tc at which 𝜉𝐺 = 0 implies a critical temperature. 

 

𝑎𝑖 dN, 𝑇𝑖 
𝑎𝑗 dN, 𝑇𝑗 

𝜉𝐺 
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2.5 Review to obtain the formula for Tc 

 

Let us review our previous paper [1], which describes a force F to combine two particles and a critical 

temperature on doping. 

Note that because this is a review to understand the stream of outlined derivations of a critical 

current Tc, some equations in the calculation process and derivation process are left out. In case that 

the reader is interested in the detail, the paper can be downloaded the paper as an Open Access paper.  

First, we assume that a general energy gap is proportional to both Fermi energy and Critical 

current as follows: 

FcB ETk
2

, (57) 

In this equation, the fermi energy in a p-type material is employed as, 













i

A
BiF

n

N
TkEEp

2
log: , (58) 

In this equation, a superconducting energy gap is introduced. 

cBi TkE 2 ,                (59) 

Substituting these energies and employing the state equation with the universal gas constant R, the 

following equations are obtained. 

 
























i

A

c

cB
n

N

T

T
Tk

2
log21

2

1 22
, (60) 

and 

 
























i

A

A

B

c

cB
n

N

NRT
Tk

2
log

2

11
21

2

1 22
, (61) 

where  

PVB   ,                (62)            

where 𝛺𝐵 denotes a thermodynamic potential. 

In this way, a general expression of energy gap for temperatures is derived. 

Next, let us consider the derivation of superconducting energy gap. 

 To consider the superconducting energy gap, it is necessary to mention a force F, which results in a 

combination of a Cooper pair. As mentioned previously, two charged particles generally experience 

an attractive force with each other when they are moving with the same velocity, i.e., when the relative 

energy or momentum is zero. As shown in Fig. 5-1 to 5-4, at first two parallel conductors along which 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2020                   doi:10.20944/preprints202005.0105.v1

https://doi.org/10.20944/preprints202005.0105.v1


19 

 

the same direction and same amount of a current are presented. From the electromagnetism, these 

current leads experience an attractive force with each other, which results from the Lorentz force. 

When we shorten these leads to a wavelength of a carrier, this attractive force still exists. This implies 

that two charged particles whose wave numbers are identical experience an attractive force with each 

other. 

   Considering this fact, a force F and its energy (i.e. superconducting energy gap) is represented as 

2 22
2 22 20 0

2 2 2

24 1 1
sin cos sin cos

2

q
F q k

m k r m r

  
        ,(63) 

0

2

2

0
22

cossinlog
2

ur
m

q
u  

 
   00 u     ,       (64) 

where ψ, r, θ, ϕ, q, β, and 𝑢0 denote wave function of a hole, relative distance of two holes, angle 

associated with the Lorentz force, angel related with two wave number of holes, the electric charge of 

a hole, constant, and integral constant, respectively. 

 

                  

 

Fig. 5-1: Currents in the same direction. Note that this figure was cited from [1] 
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Fig. 5-2 Shorter leads with currents in the same direction. Note that this figure was cited from [1] 

 

 

 

       

Fig. 5-3 Holes with same direction and equal velocity. Note that this figure was cited from [1] 

 

 

 

       

 

 

 

 

 

Fig. 5-4 Center-of-mass motion of Cooper pair. Note that this figure was cited from [1] 

 

Furthermore, the derived superconducting energy gap u is given a relationship with the pseudo gap 

energy.  

D
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where 
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2 2

0

2

2
log sin cos

q

m

 
        (65-2) 

2 2

0

2

21 1
log sin cos

B D B D

q

k k m

 
     

 
       (65-3) 

In this process, we added a Debye temperature θD and a net coherence ξ to the equation. Note that, as 

an integral constant, the BCS formula under a particular condition was employed. That is, in the 

formula Tc of BCS theory, because the interaction potential V in the BCS formula equals the mass of 

a Cooper pair and when the mass of a macroscopic boson U, eq. (6), is substituted to V in the BCS 

formula, in turn, this large value of U makes the exponential function in the BCS formula zero. 

Concerning the thermodynamic potential, the following equation is applied under the condition of 

BE condensation. 

0
5

2
FB EPV  ,            (66-1) 

002 GF EE  ,                (66-2) 

where EF and EG denote the Fermi energy and band gap at zero temperature, respectively.  

Thus, critical temperature becomes 

D
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)cossinlog

2
()

1
(4 2
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0
22

2 


. (67) 

Moreover, we derive 2-dimensional critical temperature equation from the above. 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.6 

A result of typical critical current on doping. This is derived from the equation by combining pseudo gap energy 

and superconducting energy gap. At doping 0.16, the critical temperature reaches the maximum, which agrees 

with the experiments. In calculations, no numerical calculations or fitting method are employed. The values of 

critical temperatures are relatively sensitive for Debye temperature and band gap in our derived equation. This 
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implies that, although high-Tc cuprates in common have CuO2 surfaces, differences of Debye temperatures and 

band gaps would result in various values of critical temperatures among high-Tc cuprates. 

 

Thus, to conclude, a critical temperature equation is derived as 

2
2

2

2

0
22
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k
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


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





 [K/m], (68) 

where σ, θD , and nq denote surface density of carriers and Debye temperature in 2-demention, which 

is assumed to be approximately equal to that of 3-dimension, and the number of layer.  

Note that all the constants in the consequent equation have actual physical meaning and unit. This 

implies that no numerical calculations or fitting methods are required. This fact is also consistent 

everywhere in the present paper. 

 

Table 1 Physical parameters in the equation of critical temperature  

 

Debye temperature 𝜃𝐷                140 K 

Coherence ξ                       1 nm 

Band gap EG                       1.53 × 10−18J 

The number of layer nq                         3 

 

In Fig.6, a result of this review section is shown, where used physical parameters are listed in Table 1. 

As shown, our derived critical temperature equation sufficiently agrees with a typical high-Tc copulate. 

Note that the reason why the band gap is relatively large is related to the property of the Mott-insulator. 

For the detail, refer to [1].  

 

3. Results 

 

First, Fig. 7 shows the entire depictions of Tc, T*, and To on doping as a result of analytical calculations. 

Generally, the agreements with the experiments is good. Moreover, in Fig. 8, the result of theoretical 

calculations of the Hall coefficient RH. As shown, the lower doping, the higher RH, and the RH behave 

as non-linear on temperatures. This result accurately agrees with the experiments such as [18]. 

Furthermore, Fig. 9 indicates a result of theoretical calculation for electron specific heat coefficient. 

According to the experiments [19,20], the calculation values are valid in addition that it takes the 

maximum at a higher doping.   
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Fig. 7 

The whole depiction from theoretical calculations of Tc, T*, and T0 vs. doping. 

For the previous figure of Tc graph, T* and T0 are added. Note that T* is depicted on the understanding that it 

is smaller than T0. Moreover, T* has the gradual and easy minimum point on touching Tc dome. Thus, it does 

not exist in the Tc dome. As mentioned, no numerical calculations and fitting methods are employed. T0 begins 

with about 500 K and vanishes almost at the same doping at which Tc disappears. As mentioned in the text, this 

transition temperature is important in considering the anomaly metal phase. 

 

        

 

 

 

 

 

 

 

 

 

 

  

Fig. 8 

Hall-effect coefficient RH on both temperature and doping. 
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As many experimental literatures report, the lower doping takes, the higher RH becomes. The calculated values 

generally agree with experiments in addition that temperate dependence is non-linear. Note that the quantum 

number N0 in RH equation, which varies on the applied magnetic fields Be, was assumed to be 𝟏. 𝟏 × 𝟏𝟎𝟐. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 

A theoretical result of electron specific heat coefficient on doping. 

At the relatively high doping, the curve takes the maximum, which agrees with the experiments. In other 

words, to both lower doping or higher doping from this the maximum, electron specific heat coefficient 

decreases.  

 

As a result of the statistic equation for the many-body interactions, Fig. 10 shows superconductivity 

state up to a critical temperature about 140 K. In this figure, the state, which relative distance 𝜉𝐺  

between two macroscopic bosons with consideration of the many-body interactions, under zero 

implies superconductivity state. From the further temperatures higher than the critical temperature, 

relative distance 𝜉𝐺  becomes much larger as a change of non-continuity. Obviously, a transition 

occurs at around 140 K. 
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Fig. 10 

Relative distance between two macroscopic bosons vs. temperature. Because up to about 140 K relative distances 

𝝃𝑮 𝐢s not defined according to our statistic equation to handle the many-body interactions, up to about 140 K, 

the net coherence of two holes is defined as about 1 nm, i.e., superconductivity state is maintained. However, at 

the further temperatures, relative distances 𝝃𝑮  suddenly becomes 𝟏𝟎−𝟕𝒎  order. Obviously, a transition 

occurs at around 140 K. As an important notation, the magnetic field interaction UB is substituted by the pseudo 

gap energy at the optimum doping 0.16. Thus, as many researchers claim, the many-body interactions in terms 

of macroscopic bosons (not holes) is one of the reasons why high-Tc cuprates exhibit so high critical temperate. 

 

4. Discussion 

 

4.1. Macroscopic boson and high-Tc cuprates 

 

Since the first discovery of a high-Tc cuprate, many experiments have been reported as well as 

suggested theories. However, according to current researchers’ challenges, the mechanism of high-Tc 

cuprates is yet to be uncovered. At least, researchers in superconductivity do not have the consensus 

to describe the mechanism behind it.  

We propose that the reason behind the challenges of many researchers is that a particle 

describing high-Tc cuprates is not a normal hole but a macroscopic boson, which is formed by the 

conservation of angular momentum in 2-dimension and by rotational motion of a hole itself. The 

concept of a macroscopic boson, as mentioned, provided a unique partition function, and this partition 

function can explain every property in the anomaly metal phase. Moreover, the presence of this boson 
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gives substantial reason why high-Tc cuprates have significantly high critical temperature when 

considered with many-body interactions 

In particular, most important points in high-Tc cuprates are to understand the nature of force to 

combine two holes as a Cooper pair and to understand that carriers that contribute to the high-Tc 

superconductors are macroscopic bosons (i.e., not single hole), which are created due to the presence 

of 2-dimensional CuO2 surface and due to the conservation of angular momentum. 

 

4.2 Anomaly metal phase and transition temperature T0  

 

Thus far, to understand the mechanism of a high-Tc cuprate, it was important to study the source of 

pseudo gap energy. Although this is true, another important factor which should be understood is the 

source of the transition temperature T0, which defines the anomaly metal phase appearance. As 

mentioned, all the equations which describe the anomaly metal phase have the parameter T0 as well 

as Tc. Therefore, excessive focus on the source of pseudo gap energy made most researchers less 

careful of the source of the transition temperature T0, and this confused researchers when considering 

the mechanism.  

 

4.3 Highlights of the process for the materials to undergo superconductivity  

 

 Let us review the process, which describes the mechanism from forming a macroscopic bosons to 

undergoing BE condensation.  

First, high-Tc cuprate reaches the transition temperature T0 with a lower or no refrigeration. At this 

stage, because the wavelength of a hole along z-axis becomes longer than the width of 2-dimensional 

CuO2 surface, the net 3-dimension disappears and the conservation of angular momentum forms a 

macroscopic boson, which implies the rotation of a hole producing a magnetic field energy. Thus, this 

magnetic field energy gives a mass of macroscopic boson. 

By further refrigeration, many-body interactions including the magnetic field energy of 

macroscopic bosons and Coulomb interactions result in very short relative distance of two holes (i.e., 

the net coherence of about 1 nm). Simultaneously, two holes gain a strong combination of the Lorentz 

force, because the relative kinetic energy among two holes becomes zero. 

As a result of our established statistic equation, all the Cooper pairs take the identical energy and 

thus BE condensation is produced, which is the source of the Meissner effect. 
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4.4 The reason why high-Tc cuprates have significantly high critical temperature 

 

As mentioned, an attractive force is the Lorentz force when two charged particles have no relative 

kinetic energy. However, as indicated in Fig. 11, this concept can also be satisfied in s-wave pair as 

well as d-wave pair. Considering this schematic figure, the pair symmetry of high-Tc cuprates as d-

wave is not important. Rather, it is crucial to focus on an irregular many-body interactions in high-Tc 

cuprates with an explanation of the significantly high critical temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 

Schematic of paring symmetries. 

The principle to generate an attractive force between two charged particles is that relative momentum must be 

equal. That is, when this principle is satisfied and if outer macroscopic heat energy does not disturb, the two 

charged particles are combined by the generated attractive force, which stems from the Lorentz force. This 

proves that this principle is satisfied are illustrated in the figures above, i.e., s-wave and d-wave symmetries. 

This is why there is another irrelevant particle among force–experiencing two particle. This irrelevant charged 

particle with different momentum does not experience this attractive force. However, the Coulomb interactions 

does not have this characteristic. 

 

According to the model we employed to handle many-body interactions in terms of charged particles, 

it is normally impossible for two particles to take their relative distance shorter than about 10-7 m. In 

this case, however, our employed equation in many-body interactions has magnetic field interaction 

𝑈𝐵 in eq. (56) due to the presence of macroscopic bosons (i.e. pseudo gap energy) as well as Coulomb 

interaction. Therefore, this fact renders relative distance between two macroscopic bosons to be zero 

up to a high temperature, which makes the net coherence of two holes become the order on the cell of 

a CuO2 surface (i.e. about 1 nm). 

v [m/s] 

v [m/s] 

Paring of s-wave 

picture 

v 

[m/s] 

v 

[m/s] 

Paring of d-wave 

picture 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2020                   doi:10.20944/preprints202005.0105.v1

https://doi.org/10.20944/preprints202005.0105.v1


28 

 

This is demonstrated as shown in Fig. 10, which results in a critical temperature about 140 K. 

Considering 𝑈𝐵 in eq. (56) in our model equation to handle many-body interactions is pseudo gap 

energy, eq. (18), which is essentially equal to the mass of a macroscopic boson, the parameter η [m] 

(i.e., radius of a boson and order on a CuO2 cell) determines the critical temperature as well as doping. 

This parameter also determines both a Debye temperature and a band gap. Thus, this fact does not 

contradict the critical current equation (68) in this review section or our previous paper [1].  

   Furthermore, according to our derived statistic equation, the larger UB is, the higher a critical 

temperature Tc, and actual high-Tc implies that UB is sufficiently large, which results when the 

parameter η [m] is sufficiently small in addition to the optimum doping. 

 

To conclude, the existence of a macroscopic boson implies that: 

1) It causes the anomaly metal phase in high-Tc cuprates. 

2) Irregular many-body interactions are caused by it, which results in a high critical temperature 

higher than LN2.   

 

Note that, if we consider electron-doping in a Mott-insulator, carrier concentration dominates over the 

lattice concentration ni with consideration of the local electron at each lattice in the Mott-insulator, 

and thus the sign of the function ln in eq. (18) of pseudo gap energy (i.e., UB in eq. (56)) is altered. 

Hence, the sign of UB in eq. (56) also becomes the opposite, which makes electron-doping unable to 

have a high critical temperature because on the contrary UB would prevent the enhancement of critical 

temperatures Tc.   

 

4.5 Consideration of significances in this paper 

 

 We believe that this paper is significant because: 

1) It clarified why high-Tc cuprates have actual high critical temperature higher than LN2. 

2) It showed that all the puzzles including the properties of anomaly metal phase reported in previous 

articles have been attributed to the presence of a macroscopic boson. 

Thus far many theoretical investigations were reported to explain the mechanism of high-Tc cuprates 

but most of them used numerical computing or fitting methods. However, a general understanding of 

how the mechanism worked was largely unknown. Therefore, we proposed a detailed explanation of 

the mechanism which has been proposed for a comprehensive understanding of high-Tc cuprates. 
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5. Conclusion  

 

This paper described theoretically high-Tc cuprate properties such as the transition temperatures on 

doping, Hall-effect or electron specific heat coefficient on doping. Moreover, it established a novel 

model to handle general many-body interactions, which explained why the high-Tc cuprates exhibit a 

significantly high critical temperature.  

In general, the derived resultant equations predicted values accurately agree with the data from 

experimental reports, with no numerical calculations and fitting methods. 

The resistivity on lower doping in the anomaly metal phase is not discussed in this paper. 

However, an equation for conductivity which takes linearly temperature dependence (i.e., non-linearly 

resistivity) was obtained in the Theory section of the paper, because the carrier concentration in eq. 

(21), which lineally depends on temperatures, implies the conductivity. However, the non-lineally 

resistivity in the anomaly metal phase which appears only on low doping and mobility from the 

experiments is unclear because it is directly related to superconductivity (i.e., resistivity = 0). 

Therefore, because it does not only involve macroscopic bosons but also magnetic flux quanta and I-

V characteristic, the subject is complex. Thus, we expect further investigations on the subject 

involving magnetic flux quanta and critical current density in the future.  

 

 

References 

 

[1] S. Ishiguri, Results in Physics, 3, 74-79 (2013) 

[2] J.G. Bednorz and K.A. Müller, Zeitschrift für Physik B. 64, 189–193 (1986) 

[3]M. Yamaguchi, et al., IEEE Transactions on Applied Superconductivity. 13 (2), 1848–1851 (2003) 

[4] J. Pitel and P. Kovac, Supercond. Sci. Technol 10 847 (1997) 

[5] S. Ishiguri and T. Funamoto, Physica C 471, 333–337 (2011) 

[6] M. Somayazulu, et al, Phys. Rev. Lett. 122, 027001 (2019) 

[7] H. Mukuda, et al, Phys. Rev. Lett., 96 087001 (2006) 

[8] Y. Kohasaka, et al, Science, 315, 1380 (2007) 

[9] D.N. Basov, T. Timusk, Review of Modern Phys., 77, 721 (2005) 

[10] M. Le Tacon, et al, Nature Physics, 2, 537 (2006) 

[11] K. Tanaka, et al, Science, 314, 1910 (2006)  

[12] S. Uchida, Japanese Applied Physics (institute journal ), 80(5), 383-386 (2013) 

[13] T. Fujita, J. Cryogenics and Superconducting Societies of Japan, 47,(2), 89-95 (2012) 

[14]. P. W. Anderson, et al, J. Phys.: Condens. Matter, 16(24), R755 (2004) 

[15]. M. Ogata, H. Fukuyama, Rep. Prog. Phys., 71, (2008) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2020                   doi:10.20944/preprints202005.0105.v1

https://doi.org/10.20944/preprints202005.0105.v1


30 

 

[16] D.J. Scalapino, Phys. Pep., 250, 329 (1995) 

[17] T. Moriya, K. Ueda, Advances in Physics., 49, 555 (2000) 

[18] M. Sato, Research on condensed matter physics, 72(4), 431-435 (1999)  

[19] J. W. Loram, et al, Physica C 162-164, 498 (1989) 

[20] N. Momono, et al, Physica C 233, 395 (1994)  

 

Additional information 

 

This paper is not related to any competing interests such as funding, employment and personal 

financial interests. Moreover, this paper is not related to non-financial competing interesting. 

 

 

Acknowledge 

We thank Enago (www.enago.jp) for English language Review. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2020                   doi:10.20944/preprints202005.0105.v1

http://www.enago.jp/
https://doi.org/10.20944/preprints202005.0105.v1


31 

 

Appendix 

 

A1. Introduction and significances of this appendix 

 

The purpose of this appendix is to confirm the proposed new model to handle many-body interactions 

described in the main text, by applying another physical phenomenon. As an example, we now 

introduce transitions of ferromagnetic material, i.e., Curie temperatures. 

Before conducting an actual calculation, we will briefly discuss some background information to 

understand significance of this appendix as well as to confirm our established model. Concerning 

transition phenomena, many literatures have been reported [a1-a6]. In particular, Ising model is the 

most famous and basic. According to our literature review, however, few articles exist which 

accurately predicted that the transition temperatures agreed with data of experiments. Moreover, many 

statistic physics texts claim that the Ising model in 2-dimension provides an equation of transition 

temperature but no known model in the 3-dimension. If we follow the existing theory, a calculation of 

transition temperature implies the evaluation of exchange interaction. However, this interaction is 

quite abstract and thus it difficult to evaluate in every ferromagnetic material. A general formula to 

determine a transition temperature has not been obtained because partition function with consideration 

of many-body interactions cannot be calculated mathematically.  

In this appendix, using our established model for many-body interactions, we predict the actual 

values of transition temperatures which sufficiently agree with the experimental values. These 

calculations do not involve any numerical calculations or fitting methods. Here, we provide a new 

model for statistic physics considering many-body interactions.  

 

A2. Predictions of Curie temperatures using our employed model to handle many-

body interactions 

 

As shown in Fig A1, a magnetic moment 𝜇⃑ is located in the center of a sphere shell dN at which the 

temperature is Ti. Similar to that of the main text, the following proportional relation holds: 

 (magnetic field interaction from magnetic moments)=
 3

2
𝑘𝐵𝑇𝑖𝑑𝑁 (A-1) 

In this equation, the left-hand side is given as 

    −𝜇 ∙ 𝐵⃗  

As every basic text describes, a magnetic field B is represented as 

𝐵⃗ = −
𝜇0

4𝜋
[
𝜇⃗⃗ 

𝑟3 −
3(𝜇∙⃗⃗  ⃗𝑟)⃗⃗⃗⃗ 𝑟 

𝑟5 ], (A-2) 

where r is radius of sphere shell dN. 
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Fig. A1 

A schematic of our model to apply a ferromagnetic material. 

The concept to handle many-body interactions are basically the same as the case presented in the main text. 

That is, force of thermal expansion from the central magnetic moment 𝝁  ⃗⃗⃗⃗ 
is proportional to force of compression 

from the immediately outer locations, which are equal to kinetic energies in the differential number dN. Note 

that, this case does not include the magnetic field interaction by macroscopic bosons. Calculating the 

proportional equation results in a statistic equation which involves the many-body interactions. 

 

In this equation, the first term implies a ferromagnetic, while the second term is antiferromagnetic. 

Because the present case is to handle a ferromagnetic material, thus, we employ the first term. 

Moreover, the directions of two magnetic moments 𝜇⃑ are assumed to be parallel, i.e., the scalar 

product between two 𝜇⃑ is positive. 

Considering the above, the equation becomes  

−𝜇 ∙ [−
𝜇0

4𝜋

𝜇⃗⃗ 

𝑟3] =
3

2
𝑘𝐵𝑇𝑖𝑑𝑁. (A-3) 

 Moreover, as mentioned, dN is expressed as follows, considering the volume element of integral: 

 
𝜇0

4𝜋
|𝜇 |2

1

𝑟3 =
3

2
𝑘𝐵𝑇𝑖𝑑𝑁 =

3

2
𝑘𝐵𝑇𝑖 × 𝑔𝑓𝑑𝑘⃗ . (A-4-1) 

 d𝑘⃗ =
1

𝑑𝑣
=

1
4𝜋

3
𝑟3

. (A-4-2) 

Thus, here, an important equation is derived. 

 𝜇0|𝜇 |
2 =

9

2
𝑘𝐵𝑇𝑖𝑔𝑓 =

9

2
𝑘𝐵𝑇𝑖𝑔

1

exp(−
𝐸𝑖−𝐸𝐹
𝑘𝐵𝑇𝑖

)−1
. (A-5) 

 

In this Bose-statistic equation, Ei denotes the zero-point energy of phonon, i.e., the Debye temperature 

and +|𝐸𝐹|is a chemical potential, which equals to Gibbs free energy, but especially this case implies 

only an internal energy. Therefore, this chemical potential is derived from electron specific heat 

coefficient as follows: 

𝜇⃑ 
dN, 𝑇𝑖 

r 
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 𝜇0|𝜇 |
2 =

9

2
𝑘𝐵𝑔

𝑇

exp[−
1

𝑘𝐵𝑇
(
3

2
𝑘𝐵𝜃𝐷+𝛾𝑇2)]−1

, (A-6) 

In this case, a transition temperature of Tc is assumed to be obtained by taking the extremum from this 

equation. Hence, to calculate differentials, Ti is considered to be a variable continuous temperature T 

because there are now no dependent parameters on index i except Ti. 

Therefore, the following equation is calculated. 

𝑑

𝑑𝑇
𝜇0|𝜇⃗⃗ |2=0 , (A-7) 

Consequently, this equation is obtained: 

𝛾𝑇2−
3

2
𝑘𝐵𝜃𝐷

𝑘𝐵𝑇
= −1, (A-8-1) 

 T ≡ 𝑇𝑐 = −
𝑘𝐵

2𝛾
+ √

3𝑘𝐵𝜃𝐷

2𝛾
≈ √

3𝑘𝐵𝜃𝐷

2𝛾
, (A-8-2) 

 

Table 1-A lists the physical constants of a ferromagnetic metal Fe. 

 

Table 1-A Fe physical constants 

 

Debye temperature 𝜃𝐷       470 K 

Electron specific heat coefficient γ      8.4 × 10−27 J/K2 

 

Employing these physical constants, the transition temperature Tc for the metal Fe is calculated as 

𝑇𝑐 ≈ 1.08 × 103 K    (A-9) 

Because measurements of the transition report 1043 K, the agreement is sufficient. 

Then, we consider the transition temperature of the ferromagnetic Ni. The material Ni has much 

less thermal conductivity, different from the metal Fe. This implies that a chemical energy, i.e, the 

internal thermal energy is allowed to be ignored. Thus, from eq. (A-8-1), the Tc equation is expressed 

simply as 
3

2
𝑘𝐵𝜃𝐷 ≈ 𝑘𝐵𝑇𝑐. (A-10) 

 

Because the Debye temperature of Ni is reported as 450 K, the Tc is calculated as  

𝑇𝑐 ≈ 675 K (A-11) 

Compared with a measured transition value 627 K, the agreement can be considered as sufficient. 
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