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The Einstein-Lovelock theory contains an infinite series of corrections to the Einstein term with
an increasing power of the curvature. It is well-known that for large black holes the lowest (Gauss-
Bonnet) term is the dominant one, while for smaller black holes higher curvature corrections become
important. We will show that if one is limited by positive values of the coupling constants, then
the dynamical instability of black holes serves as an effective cut-off of influence of higher curvature
corrections in the 4D Einstein-Lovelock approach: the higher is the order of the Lovelock term, the
smaller is the maximal value of the coupling constant allowing for stability, so that effectively only a
first few orders can deform the observable values seemingly. For negative values of coupling constants
this is not so, and, despite some suppression of higher order terms also occurs due to the decreasing
threshold values of the coupling constant, this does not lead to an noticeable opportunity to neglect
higher order corrections. In the case a lot of orders of Lovelock theory are taken into account, so
that the black-hole solution depends on a great number of coupling constants, we propose a compact
description of it in terms of only two or three parameters encoding all the observable values.

PACS numbers: 04.50.Kd,04.70.Bw,04.30.-w,04.80.Cc

I. INTRODUCTION

According to the Lovelock theorem only metric and
Einstein tensors are divergence free, symmetric, and con-
comitant of the metric tensor and its derivatives in four
dimensions [1, 2]. Therefore, it was concluded that the
appropriate vacuum equations in 𝐷 = 4 are the Einstein
equations. In 𝐷 > 4 the theory of gravity is generalized
by adding higher curvature corrections [1] to the Ein-
stein term. Motivated by the low-energy limit of string
theory and higher dimensional gravity, black hole in the
𝐷 > 4 Einstein-Gauss-Bonnet and Einstein-Lovelock
gravity were extensively studied and a number of inter-
esting features were observed. The life-time of even a
softly Gauss-Bonnet corrected black hole proved out to
be much longer due to a strong suppression of Hawking
radiation [3]. The eikonal quasinormal modes for grav-
itational perturbations break down the correspondence
between the eikonal quasinormal modes and characteris-
tics of null geodesics [4, 5]. When the coupling constants
responsible for higher curvature corrections are not small
enough, the black holes are known to be unstable and
the instability develops at high multipoles numbers [6�
14] and is called the eikonal instability [8, 9].
Recently, there has been suggested the way to bypass

the Lovelock's theorem [15] by performing a kind of di-
mensional regularization of the Gauss-Bonnet equations
and obtain an e�ectively four-dimensional metric the-
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ory of gravity with di�eomorphism invariance and sec-
ond order equations of motion. The theory is formulated
in 𝐷 > 4 dimensions and then, the four-dimensional
e�ective theory is de�ned as the limit 𝐷 → 4 of the
higher-dimensional theory after the re-scaling of the cou-
pling constant 𝛼 → 𝛼/(𝐷 − 4). It is interesting to note
that, prior to [15], the dimensional regularization of the
Einstein-Gauss-Bonnet theory was suggested in [16].

This approach was generalized to the 4𝐷 Einstein-
Lovelock gravity in [17, 18]. Various properties of black
holes in this context, such as (in)stability, quasinormal
modes and shadows, were considered for the �rst time in
[19], while the innermost circular orbits were analyzed in
[20]. The generalization to the charged black holes and
an asymptotically anti-de Sitter and de Sitter cases in
the 4𝐷 Einstein-Gauss-Bonnet theory was considered in
[21]. Some further properties of black holes for this novel
theory, such as axial symmetry, Hawking radiation and
thermodynamics, linear perturbations, stability, collapse,
vacuum solutions and others were considered in [22�58].

Let us emphasise that the approach suggested in [15]
is essentially a regularization scheme. It is formulated in
𝐷 > 4 dimensional spacetime and the 𝐷 → 4 limit gives
nothing, but the second order di�erential equations for
the metric tensor which does not guarantee that the var-
ious tensor identities which we used to see in 4𝐷 General
Relativity, for example, the Bianchi identity, will have
the same form. Therefore, when one considers the mat-
ter which is propagating in the background of the 4𝐷
metric, the obtained 4𝐷 limit for the metric is valid,
while when the matter is non-minimally coupled to grav-
ity, like it happens, for example, for gravitational per-
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turbations and analysis of stability, then 𝐷-dimensional
perturbation equations must be the starting point, as it
was done, for example, in [19, 29]. This, in our opinion
rather evident fact, was emphasised in [59]. Another evi-
dent observation is that not every higher-dimensional so-
lution allow for the four-dimensional regularization, sim-
ply because there may be no four dimensional analogue
of the corresponding higher dimensional system. For ex-
ample, in order to obtain the rotating black hole solution
in 4𝐷, one cannot consider a higher-dimensional black
hole with multiple momenta in di�erent directions, but
rather the higher dimensional black hole with a single
momentum on the brane. A qualitatively similar illus-
tration was suggested in [60]. None of the above ob-
servations disproves the dimensional regularization sug-
gested in [15]. Recently in [61] it was claimed that non-
linear perturbations cannot be regularized in the same
way, although the linear perturbations do not have this
problem [19, 29]. Apparently non-linear perturbations
and the initial value problem must be further studied
within the above approach. The facts that the four-
dimensional black hole metric obtained when searching
for quantum corrections to the entropy [62, 63] was re-
produced via dimensional regularization scheme in [15]
and the BTZ-like black brane found in [27] was recently
reproduced via adding extra degrees of freedom (a scalar
�eld) in the well-de�ned four dimensional scalar-tensor
theory [64] with the Gauss-Bonnet term apparently sig-
nify that the above regularization can be an e�ective tool
at least in some cases and further study of the limits of
its applicability is appealing. It has been recently shown
within the Bondi-Sachs framework that the correspond-
ing scalar-tensor Hordenski gravity has no scalar propa-
gator in low-dimensional theories [65], indicating thereby
that the stability analysis performed in [29, 47] is also
valid for such theories.

An essential question arises when dealing with the
Einstein-Gauss-Bonnet theory as the low-energy limit
of string theory: How good approximation the Gauss-
Bonnet correction is, that is, can we ignore the in�nite
series by neglecting all the higher orders of the Lovelock
expansion except the lowest Gauss-Bonnet one? As the
coupling constant of 𝑚-th order comes with the denom-
inator 𝑟−2𝑚+2

𝐻 , where 𝑚 = 2 corresponds to the Gauss-
Bonnet term, then for su�ciently small black holes the
immediate answer is no! At the same time, for su�ciently
large black holes even the Gauss-Bonnet term must be
a good approximation. Apparently, between these two
extreme regimes a number of Lovelock terms must be
important and our aim here is to understand further fea-
tures of black holes when a number of higher curvature
corrections with various coupling constants are added.
Using the previously announced by us general analysis of
the region of eikonal (in)stability [29] we �rst show that
if one is limited by positive values of coupling constants
in front of Lovelock terms, then the eikonal instability
works as an e�ective cut-o� for higher order terms, be-
cause the larger is the order of the Lovelock correction,

the smaller is the critical value of the coupling constant
for the onset of instability. We show that basic observ-
able quantities such as quasinormal modes, radius of the
black-hole shadow, frequencies at the innermost stable
circular orbit etc. change almost indistinguishably when
the Lovelock corrections of higher than the fourth order
in curvature are included.
This e�ective cut-o� due to the instability does not

take place for negative coupling constants, for which case,
however, the in�uence of higher orders in curvature are
also suppressed, though at a much smaller rate, so that
corrections of even the 10th and higher orders in cur-
vature can still be distinguished from the Schwarzschild
limit. At this point we come to another problem: How to
study properties of a black hole metric in the Einstein-
Lovelock theory with a lot of Lovelock terms, that is,
containing many coupling constants as parameters of the
metric? The e�ective way to solve this problem has
been recently suggested in [66], where, using the generic
parametrization [67, 68] it was shown that astrophysi-
cally relevant black holes whose observable quantities in
the radiation zone can be distinguished from those in the
Einstein theory can usually be very well approximated
by only a few parameters. Here we apply this approach
for analysis of 4𝐷 Einstein-Lovelock black holes with a
lot of Lovelock terms.
The paper is organized as follows. Sec. II gives brief

information on 4𝐷 Einstein-Lovelock regularization and
the black-hole metric under consideration. Sec. III dis-
cusses the e�ective cut-o� of higher curvature terms
owing to the eikonal instability and in�uence of Love-
lock terms at higher orders upon observable quantities.
Sec. IV suggests a compact description of the black hole
metric which depends upon a lot of coupling constants
in terms of only a few parameters. Finally, in the Con-
clusions we summarize the obtained results and mention
some open questions.

II. STATIC BLACK HOLES IN THE

FOUR-DIMENSIONAL LOVELOCK THEORY

The Lagrangian density of the Einstein-Lovelock the-
ory has the form [1]:

ℒ = −2Λ +
𝑚∑︁

𝑚=1

1

2𝑚
𝛼𝑚

𝑚
𝛿𝜇1𝜈1𝜇2𝜈2...𝜇𝑚𝜈𝑚

𝜆1𝜎1𝜆2𝜎2...𝜆𝑚𝜎𝑚
(1)

×𝑅 𝜆1𝜎1
𝜇1𝜈1

𝑅 𝜆2𝜎2
𝜇2𝜈2

. . . 𝑅 𝜆𝑚𝜎𝑚
𝜇𝑚𝜈𝑚

,

where 𝛿𝜇1𝜇2...𝜇𝑝
𝜈1𝜈2...𝜈𝑝 is the generalized totally antisymmet-

ric Kronecker delta, 𝑅 𝜆𝜎
𝜇𝜈 is the Riemann tensor, 𝛼1 =

1/8𝜋𝐺 = 1 and 𝛼2, 𝛼3, 𝛼4, . . . are arbitrary constants of
the theory.
The Euler-Lagrange equations, corresponding to the
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Lagrangian density (1) read [69]:

Λ𝛿𝜇𝜈 = 𝑅𝜇
𝜈 − 𝑅

2
𝛿𝜇𝜈 +

𝑚∑︁
𝑚=2

1

2𝑚+1

𝛼𝑚

𝑚
𝛿𝜇𝜇1𝜈1𝜇2𝜈2...𝜇𝑚𝜈𝑚

𝜈𝜆1𝜎1𝜆2𝜎2...𝜆𝑚𝜎𝑚

×𝑅 𝜆1𝜎1
𝜇1𝜈1

𝑅 𝜆2𝜎2
𝜇2𝜈2

. . . 𝑅 𝜆𝑚𝜎𝑚
𝜇𝑚𝜈𝑚

. (2)

The antisymmetric tensor is nonzero only when the
indices 𝜇, 𝜇1, 𝜈1, 𝜇2, 𝜈2, . . . 𝜇𝑚, 𝜈𝑚 are all distinct. Thus,
the general Lovelock theory is such that 2𝑚 < 𝐷. In
particular, for 𝐷 = 4, we have 𝑚 = 1 corresponding to
the Einstein theory [2]. When 𝐷 = 5 or 6, 𝑚 = 2 and one
has the (quadratic in curvature) Einstein-Gauss-Bonnet
theory with the coupling constant 𝛼2.
Following [8], we introduce

̃︀𝛼𝑚 =
𝛼𝑚

𝑚

(𝐷 − 3)!

(𝐷 − 2𝑚− 1)!
=
𝛼𝑚

𝑚

2𝑚−2∏︁
𝑝=1

(𝐷 − 2− 𝑝) (3)

and consider the limit 𝐷 → 4 while ̃︀𝛼𝑚 remain con-
stant. In this way, we obtain the regularized 4𝐷 Einstein-
Lovelock theory formulated in [18], which generalizes the
approach of [15] used for the Einstein-Gauss-Bonnet the-
ory.
The four-dimensional static and spherically symmetric

black hole in the Einstein-Lovelock theory (Λ = 0) is
given by the following line element [18]:

𝑑𝑠2 = −𝑓(𝑟)𝑑𝑡2 + 1

𝑓(𝑟)
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑑 sin2 𝜃𝑑𝜑2). (4)

The metric function 𝑓(𝑟) is de�ned through a new vari-
able 𝜓(𝑟),

𝑓(𝑟) = 1− 𝑟2 𝜓(𝑟), (5)

which satis�es the algebraic equation [70]

𝑊 [𝜓(𝑟)] ≡ 𝜓(𝑟) +

𝑚∑︁
𝑚=2

̃︀𝛼𝑚𝜓(𝑟)
𝑚 =

2𝑀

𝑟3
, (6)

where 𝑀 is the asymptotic mass [71], 𝑚 is the power of
curvature of the corresponding Lovelock term. The Love-
lock corrections result in more than one branch, only one
of which is perturbative in ̃︀𝛼𝑚 for the Einstein-Lovelock
theory of any order.
For example, the (quadratic in curvature, so 𝑚 = 2)

Gauss-Bonnet theory leads to the two branches [21]:

𝑓(𝑟) = 1− 𝑟2

2̃︀𝛼2

(︃
−1±

√︂
1 +

8̃︀𝛼2𝑀

𝑟3

)︃
, (7)

one of which, corresponding to the �+� sign, is perturba-
tive in ̃︀𝛼2, while for the �-� the metric function 𝑓(𝑟) goes
to in�nity when ̃︀𝛼2 → 0.
It is convenient to measure all dimensional quantities

in units of the horizon radius 𝑟0. For the asymptotic
mass we obtain

2𝑀 = 𝑟0

(︃
1 +

𝑚∑︁
𝑚=2

̃︀𝛼𝑚

𝑟2𝑚−2
0

)︃
. (8)

The metric function 𝑓(𝑟) for the perturbative branch of
the general Einstein-Lovelock black hole can be obtained
numerically [18].1

III. CUT-OFF DUE TO THE EIKONAL

INSTABILITY

In order to understand how important the Lovelock
correction at 𝑖-th order in curvature is, let us �rst make
here one observation about black-hole stability at di�er-
ent orders of Lovelock theory. Let us suppose that the
coupling constants ̃︀𝛼𝑚 are either a) all positive or null or
b) all negative or null, that is, the coupling constants at
di�erent orders cannot be of opposite signs. In the most
general framework this is certainly not a strict suppo-
sition, unless one associates the coupling constant with
the fundamental string scale. Therefore, later we will
also discuss the case in which ̃︀𝛼𝑚 can be both positive
and negative at di�erent orders.
Let us consider the Einstein-Lovelock theory with the

only one non-zero Lovelock term, that is, all ̃︀𝛼𝑚̸=𝑖 = 0,
except one ̃︀𝛼𝑖 > 0, and designate the threshold value of
this coupling constant ̃︀𝛼𝑖 = ̃︀𝛼𝑐𝑟𝑖𝑡

𝑖 at which the eikonal in-
stability [29] occurs. Then, if one or more other Lovelock
terms are added to this system, that is, more coupling
constants are turned on ̃︀𝛼𝑚 > 0, then the critical value of
the ̃︀𝛼𝑖 will always decrease. This is an important observa-
tion, because it means that in order to estimate the max-
imal deformation of the black-hole geometry caused by
the 𝑖− 𝑡ℎ order Lovelock term, it is su�cient to consider
all other Lovelock corrections as vanishing ̃︀𝛼𝑚 ̸=𝑖 = 0.
Whenever more Lovelock terms are added, the relative
deformation of the geometry caused by a given term will
only decrease. Here the measure of deformation or de-
viation of the geometry from its Schwarzschild limit is
understood as a deviation of some gauge invariant ob-
servable quantity, such as radius of the shadow or fre-
quency at the innermost stable circular orbit (ISCO).
Now, we are in position to discuss observable quan-

tities, which we use for measuring deviation of the 4𝐷
Einstein-Lovelock black holes from the Schwarzschild ge-
ometry: quasinormal modes, radius of the shadow, Lya-
punov exponent, and the frequency at the innermost sta-
ble orbit.

A. Quasinormal modes

For the purpose of illustration here we will mainly
study a test electromagnetic �eld, although the analysis
can be easily extended to the gravitational perturbations,
the e�ective potentials for which were obtained in [29].

1 The Mathematica R○ code for the metric-function calculation is

available from https://arxiv.org/src/2003.07788/anc/.
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The general covariant equations for an electromagnetic
�eld has the form

1√
−𝑔

𝜕𝜇
(︀
𝐹𝜌𝜎𝑔

𝜌𝜈𝑔𝜎𝜇
√
−𝑔
)︀
= 0 , (9)

where 𝐹𝜌𝜎 = 𝜕𝜌𝐴𝜎 − 𝜕𝜎𝐴𝜌 and 𝐴𝜇 is a vector poten-
tial. After separation of the variables the perturbation
equation (9) takes the following general wave-like form(︂

𝑑2

𝑑𝑟2*
+ 𝜔2 − 𝑓(𝑟)

ℓ(ℓ+ 1)

𝑟2

)︂
Ψ = 0, (10)

where ℓ is the multipole number, and 𝑟* is the �tortoise�
coordinate, de�ned as

𝑑𝑟* =
𝑑𝑟

𝑓(𝑟)
.

Quasinormal modes 𝜔𝑛 correspond to solutions of the
master wave equation (10) with the requirement of the
purely outgoing waves at in�nity and purely incoming
waves at the event horizon:

Ψ ∝ 𝑒±𝑖𝜔𝑟* , 𝑟* → ±∞. (11)

In order to �nd quasinormal modes here we will use the
sixth order WKB formula developed in [72�74] (see also
[75, 76] for reviews) and time-domain integration, pro-
posed in [77].
From Table I for the positive values of coupling con-

stants we can see that the quasinormal modes for the
third order Einstein-Lovelock (with the vanishing Gauss-
Bonnet term) black hole di�ers from that for the purely
Einstein theory by about four percents, while already at
the �fth order the di�erence is only slightly exceeds one
percent.
From here we conclude that only �rst few Lovelock

correction may change the quasinormal modes seemingly,
while higher than the 5th order can be safely ignored.
This is not so for the case of negative ̃︀𝛼𝑚 for which, as can
be seen in Table II, even the 8th Lovelock order change
the quasinormal frequency by more than ten percents.
Nevertheless, the convergence in Lovelock orders takes
place even in this case and each higher orders contributes
less owing to the constrain upon the values of the negative
coupling constants. Notice that WKB method does not
provide reliable results for large negative values of the
Lovelock coupling. That is why we have calculated the
dominant QNMs by �tting time-domain pro�les.
As can be seen from the comparison of the �rst-order

WKB formula, which depends on the �rst two derivatives
of the metric function, and a more accurate sixth-order
WKB formula, which depends on higher (up to 12th)
derivatives, in order to estimate the order of deviation
from the Schwarzschild geometry it su�cient to consider
only quantities, which depend on the lowest derivatives.
Since the �rst-order WKB formula represent the eikonal
regime, in the next subsection we shall see that the order
of e�ect due to the Lovelock terms on the fundamental
quasinormal modes can be estimated by considering the
shadow radius and the Lyapunov exponent.

B. Shadow radius and the Lyapunov exponent

First we need to �nd the radius of the photon sphere
𝑟𝑝ℎ, which for a spherically symmetric solution is deter-
mined by means of the following function: (see, for ex-
ample, [78])

ℎ2(𝑟) ≡ 𝑟2

𝑓(𝑟)
. (12)

The photon sphere corresponds to the minimum of ℎ(𝑟),
so that in order to calculate 𝑟𝑝ℎ we �nd the solution to
the equation

ℎ′(𝑟) = 0 . (13)

Then, the radius of the black-hole shadow 𝑅𝑠ℎ, as seen
by a distant static observer located at 𝑟𝑂, obeys

𝑅𝑠ℎ =
ℎ(𝑟𝑝ℎ)𝑟𝑂
ℎ(𝑟𝑂)

=
𝑟𝑝ℎ
√︀
𝑓(𝑟𝑂)√︀

𝑓(𝑟𝑝ℎ)
≈ 𝑟𝑝ℎ√︀

𝑓(𝑟𝑝ℎ)
, (14)

where we assumed that the observer is located su�ciently
far away from the black hole so that 𝑓(𝑟𝑂) ≈ 1.
The Lyapunov exponent 𝜆 characterizes the mean life-

time of particles at the photon sphere, and depends on
the second derivative of the metric function at 𝑟 = 𝑟𝑝ℎ,

𝜆 = 𝑟2𝑝ℎ

√︃
ℎ′′(𝑟𝑝ℎ)

ℎ5(𝑟𝑝ℎ)
=
𝑓(𝑟𝑝ℎ)

𝑟𝑝ℎ

√︃
1−

𝑟2𝑝ℎ𝑓
′′(𝑟𝑝ℎ)

2𝑓(𝑟𝑝ℎ)
. (15)

In the eikonal limit ℓ → ∞ the quasinormal modes
of test �elds are connected with the parameters of null
geodesics, namely, the damping rate is related with the
Lyapunov exponent 𝜆 and the real oscillation frequency
is related with the orbital frequency [4],

𝜔 =
1

𝑅𝑠ℎ

(︂
ℓ+

1

2

)︂
− 𝑖𝜆

(︂
𝑛+

1

2

)︂
+𝒪

(︂
1

ℓ

)︂
. (16)

This correspondence, however not guaranteed for gravi-
tational �eld, is always valid for minimally coupled test
�elds [5].
From Table I we can see that for positive coupling con-

stants the radius of the shadow and the Lyapunov expo-
nent already at the fourth Lovelock order di�ers from the
Schwarzschild case by less than one percent. Therefore,
for this case, we can safely ignore the �fth and higher
Lovelock orders as it is unlikely that the deviation from
the Einstein theory for the geodesics' parameters could
be observed with accuracy of ∼ 0.2% in the near future.
On the contrary, for negative coupling constants (see Ta-
ble II) even at the 8th Lovelock order the shadow radius
and the Lyapunov exponent di�er from the Schwarzschild
values by tens of percents.

C. Frequencies at the innermost stable circular

orbit

The condition of the circular orbit is

𝑉𝑒𝑓𝑓 (𝑟) = 𝑉 ′
𝑒𝑓𝑓 (𝑟) = 0, (17)
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order 𝛼𝑖𝑛𝑠𝑡 𝑅𝑠ℎ 𝜆 Ω𝐼𝑆𝐶𝑂 𝜔 (QNM) (1st order) 𝜔 (QNM) (6th order)

2 0.0890 2.76248 0.335675 0.130467 0.536410− 0.160180𝑖 0.471821− 0.163727𝑖

3 0.0145 2.63255 0.375673 0.134254 0.566013− 0.178276𝑖 0.494739− 0.176565𝑖

4 0.0050 2.61074 0.382160 0.135409 0.571197− 0.181209𝑖 0.496803− 0.178715𝑖

5 0.0023 2.60401 0.383823 0.135771 0.572766− 0.181969𝑖 0.492613− 0.183712𝑖

6 0.001281 2.60140 0.384359 0.135909 0.573361− 0.182216𝑖 0.490779− 0.187169𝑖

7 0.000776 2.60009 0.384589 0.135977 0.573654− 0.182324𝑖 0.492773− 0.187527𝑖

8 0.000500 2.59937 0.384705 0.136015 0.573814− 0.182378𝑖 0.495693− 0.186350𝑖

9 0.000348 2.59898 0.384765 0.136035 0.573901− 0.182407𝑖 0.497424− 0.185287𝑖

10 0.000250 2.59873 0.384804 0.136049 0.573957− 0.182425𝑖 0.497769− 0.184813𝑖

11 0.000185 2.59856 0.384829 0.136058 0.573995− 0.182437𝑖 0.497362− 0.184795𝑖

12 0.000141 2.59844 0.384846 0.136064 0.574020− 0.182445𝑖 0.496825− 0.184954𝑖

13 0.000110 2.59836 0.384858 0.136068 0.574038− 0.182451𝑖 0.496442− 0.185116𝑖

14 0.000087 2.59830 0.384867 0.136071 0.574051− 0.182455𝑖 0.496256− 0.185221𝑖

15 0.000070 2.59826 0.384873 0.136073 0.574061− 0.182458𝑖 0.496207− 0.185272𝑖

16 0.000058 2.59823 0.384878 0.136075 0.574068− 0.182460𝑖 0.496223− 0.185288𝑖

17 0.000048 2.59820 0.384882 0.136076 0.574073− 0.182462𝑖 0.496262− 0.185288𝑖

18 0.000040 2.59818 0.384885 0.136077 0.574078− 0.182463𝑖 0.496300− 0.185284𝑖

19 0.000034 2.59816 0.384887 0.136078 0.574081− 0.182464𝑖 0.496328− 0.185279𝑖

1 (Schwarzschild) 2.59808 0.384900 0.136083 0.574101− 0.182471𝑖 0.496383− 0.185274𝑖

TABLE I. The threshold value of (in)stability 𝛼𝑖𝑛𝑠𝑡, radius of the shadow 𝑅𝑠ℎ, Lyapunov exponent 𝜆, frequency at ISCO Ω𝐼𝑆𝐶𝑂

and the fundamental quasinormal mode 𝜔 for electromagnetic perturbations (ℓ = 1, 𝑛 = 0) calculated by the 6th order WKB
formula. All quantities are measured in units of the event horizon radius (𝑟0 = 1); the last line corresponds to the Schwarzschild
black hole.

order 𝑅𝑠ℎ 𝜆 Ω𝐼𝑆𝐶𝑂 fundamental QNM

2 1.70722 1.054030 0.166374 0.537− 0.388𝑖

3 1.87218 0.819374 0.188296 0.539− 0.347𝑖

4 1.99829 0.667574 0.180030 0.541− 0.321𝑖

5 2.09629 0.564746 0.169830 0.541− 0.302𝑖

6 2.17223 0.500088 0.163101 0.541− 0.287𝑖

7 2.23081 0.463993 0.158578 0.541− 0.275𝑖

8 2.27627 0.445002 0.155346 0.540− 0.265𝑖

1 2.59808 0.384900 0.136083 0.496− 0.185𝑖

TABLE II. Radius of the shadow 𝑅𝑠ℎ, Lyapunov exponent 𝜆,
frequency at ISCO Ω𝐼𝑆𝐶𝑂 and the fundamental quasinormal
mode or electromagnetic perturbations (ℓ = 1, 𝑛 = 0) cal-
culated by the time-domain integration; for each order 𝑖 the
only nonzero coupling constant has the near-extreme negative
value, ̃︀𝛼𝑚=𝑖 = −𝑚−1 + 10−3. All quantities are measured in
units of the event horizon radius (𝑟0 = 1); the last line corre-
sponds to the Schwarzschild black hole.

where 𝑉𝑒𝑓𝑓 is the e�ective potential for a particle of unit
mass with energy 𝐸 and angular momentum 𝐿,

𝑉𝑒𝑓𝑓 (𝑟) =
𝐸2

𝑓(𝑟)
− 𝐿2

𝑟2
− 1. (18)

The innermost stable circular orbit corresponds to van-
ishing of the second derivative of the e�ective potential:

𝑉 ′′
𝑒𝑓𝑓 (𝑟𝐼𝑆𝐶𝑂) = 0. (19)

The frequency at ISCO is

Ω𝐼𝑆𝐶𝑂 =
𝑑𝜑

𝑑𝑡

⃒⃒⃒⃒
𝑟=𝑟𝐼𝑆𝐶𝑂

=

√︂
𝑓 ′(𝑟)

2𝑟

⃒⃒⃒⃒
𝑟=𝑟𝐼𝑆𝐶𝑂

. (20)

In the case of positive coupling constant the correc-
tion due to the fourth order Lovelock term is less than
one percent, so that the �fth and higher orders could
practically ignored. The negative couplings, again, are
characterized by very slow convergence of Lovelock or-
ders with the e�ect of tens of percent even at the 8th
order (see Table II).
If take a completely agnostic position and suppose that

coupling constants can change the sign from one Lovelock
order to another, then the negative couplings have oppo-
site e�ect to the positive ones: they enlarge the region
os stability and make slower the convergence of Lovelock
terms. Anyway, there are constrains on these coupling
constants and convergence takes place even for mixed
(positive and negative) ̃︀𝛼𝑚.

IV. PARAMETERIZED DESCRIPTION OF 4𝐷
EINSTEIN-LOVELOCK BLACK HOLES

In [66] it was shown that the so called moderate metrics
can be approximated by the following parametrization:

𝑓(𝑟) = 1− 𝑟0(𝜖+ 1)

𝑟
+
𝑟30(𝜖+ 𝑎1)

𝑟3
− 𝑟40𝑎1

𝑟4
, (21)
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Here 𝑟0 is the radius of the event horizon, so that
𝑁(𝑟0) = 0; 𝜖, 𝑎1 are some parameters, such that when
they all are equal to zero, the Schwarzschild limit is re-
produced. Moderate metrics are those which can be ap-
proximated by the above parametrization with su�cient
accuracy. Normally they include a class of metrics, for
which the metric functions change relatively slowly from
the event horizon up to the end of the e�ective zone of
radiation, which is about the innermost stable circular
orbit. This allows one to describe, in a uni�ed way, black-
hole metrics whose observable values are distinguishable
from those of the Schwarzschild solution [66].

For the Einstein-Lovelock theory we have

𝜖 =
2𝑀

𝑟0
− 1 = 𝑟20𝑊

[︀
𝑟−2
0

]︀
− 1 =

𝑚∑︁
𝑚=2

̃︀𝛼𝑚

𝑟2𝑚−2
0

, (22)

𝑎1 = 2𝜖+ 4𝜋𝑟0𝑇𝐻 − 1 = 𝑟20𝑊
[︀
𝑟−2
0

]︀(︃
2 +

3

𝑊 ′
[︀
𝑟−2
0

]︀)︃− 5

= 2
𝑚∑︁

𝑚=2

̃︀𝛼𝑚

𝑟2𝑚−2
0

− 3

∑︀𝑚
𝑚=2(𝑚− 1)̃︀𝛼𝑚𝑟

−2𝑚
0∑︀𝑚

𝑚=2𝑚̃︀𝛼𝑚𝑟
−2𝑚
0 + 𝑟−2

0

, (23)

where 𝑀 is the asymptotic mass and 𝑇𝐻 is the Hawking
temperature.
When this parametrization via only the two param-

eters 𝜖 and 𝑎1 is not a su�ciently good approximation,
we can use the general parametrization developed in [67].
Namely, we approximate the metric function by a ratio-
nal function of 𝑟, which is introduced through the con-
tinued fraction as

𝑓(𝑟) =
𝑟 − 𝑟0
𝑟

⎛⎜⎜⎜⎜⎝1− 𝜖𝑟0
𝑟

− 𝜖𝑟20
𝑟2

+

𝑎1𝑟
3
0

𝑟3

1 +
𝑎2
𝑟 − 𝑟0
𝑟

1 + . . .

⎞⎟⎟⎟⎟⎠ , (24)

where dimensionless constants 𝑎1, 𝑎2, . . . are �xed by
matching the series expansion for 𝑓(𝑟) at the event hori-
zon. In particular, one can �nd that

𝑎2 = −3
𝑟20(3𝑊

[︀
𝑟−2
0

]︀2
𝑊 ′′ [︀𝑟−2

0

]︀
+ 2𝑊

[︀
𝑟−2
0

]︀
𝑊 ′ [︀𝑟−2

0

]︀3
+ 8𝑊

[︀
𝑟−2
0

]︀
𝑊 ′ [︀𝑟−2

0

]︀2
)− 10𝑊 ′ [︀𝑟−2

0

]︀3
2𝑟20𝑊

[︀
𝑟−2
0

]︀
𝑊 ′
[︀
𝑟−2
0

]︀2
(2𝑊 ′

[︀
𝑟−2
0

]︀
+ 3)− 10𝑊 ′

[︀
𝑟−2
0

]︀3 . (25)

quantity value effect 1st order error 2d order error

𝑅𝑠ℎ 2.380080 8.39 % 0.429 % 0.198 %

𝜆 0.470996 22.37 % 1.956 % 1.153 %

Ω𝐼𝑆𝐶𝑂 0.143640 5.55 % 0.906 % 0.542 %

TABLE III. The shadow radius 𝑅𝑠ℎ, Lyapunov exponent 𝜆,
and frequency at ISCO Ω𝐼𝑆𝐶𝑂 for 𝑟0 = 1, ̃︀𝛼2 = −0.12, ̃︀𝛼3 =
−0.011, ̃︀𝛼4 = 0.009, ̃︀𝛼5 = 0.002, ̃︀𝛼6 = −0.001.

The Mathematica R○ code which constructs the ap-
proximation of any given order for the metric function
for arbitrary values of the Lovelock coupling constants̃︀𝛼2, ̃︀𝛼3, . . . is attached to the arXiv preprint as a supple-
mentary material.
In Table III we give an example of description of the

six parameter black hole, depending upon the �ve Love-
lock coupling constants and mass, in terms of only two
(𝜖 and 𝑎1) or three (when 𝑎2 is added) parameters of the
parametrization (21). From Table III we can see not only
the values of observable quantities, but also the corre-

sponding deviations from their Schwarzschild limit when
calculated for the parametrized black hole at the �rst (𝜖
and 𝑎1 are non-zero) and second (𝑎2 is not zero as well)
order of the parametrization. It is natural to assume
that if the e�ect is at least one order larger than the er-
ror, the approximation is su�ciently accurate. From the
above example for the particular values of the coupling
constants we see that while the shadow radius and the
Lyapunov exponent can be calculated with the relative
error which is one order smaller than the e�ect already
at the �rst order of the parametrization, this is not so for
the frequency at the innermost stable orbit, for which the
e�ect is only 5 times larger than the error. The second
order remedy this situation.

In general, we observe that a) the three parameter (𝜖,
𝑎1 and 𝑎2) approximation (21) is su�cient to represent
4𝐷 Einstein-Lovelock black hole with many coupling con-
stants for the most part of the range of values of the cou-
pling constants ̃︀𝛼𝑚, if the black hole is su�ciently far
from the threshold of instability and b) when the cou-
pling constants are relatively small and decreasing by
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absolute value when going over to higher orders of the
Lovelock series, the description via the two parameters
only (𝜖 and 𝑎1) gives the relative error at least one order
smaller than the e�ect. Therefore the parametrization
converges very fast, when we are limited by strictly posi-
tive coupling constants because of the natural cut-o� on
the values the higher order couplings.

V. CONCLUSIONS

Here we have studied properties of the 4𝐷 Einstein-
Lovelock black holes obtained as a result of the dimen-
sional regularization suggested in [17, 18] in a similar
fashion with the recent approach for the 4𝐷 Einstein-
Gauss-Bonnet black hole [15]. In particularly, we have
learned what is the role of higher curvature corrections
given by the Lovelock terms and how to describe the
multi-parameter black holes when a lot of Lovelock terms
are taken into consideration, so that analysis of various
e�ects on every parameter would be very cumbersome
problem. When we are limited by positive values of the
coupling constants, the eikonal instability of the black
hole gives the answer to the �rst question: higher or-
der Lovelock terms have swiftly decreasing upper bound
on the absolute value of the corresponding coupling con-
stant, so that its in�uence decreases quickly and only a
few �rst Lovelock terms can lead to noticeable e�ect on
the geometry, while higher order can be safely ignored.
When negative couplings are allowed, this is not so, de-

spite in�uence of higher orders are smaller as well. If
implying the low-energy limit description of small black
holes with positive coupling constants, when decreas-
ing the black-hole size, higher order Lovelock corrections
should play more important role, as the corresponding
coupling constant is divided by the radius of the black
hole at some power. At the same the instability will cut
o� the values of the coupling constant, so that a few
�rst order of the Lovelock series will be always enough
for an adequate description of even small black holes.
This remarkable results does not take place in the 𝐷 > 4
Einstein-Lovelock theory for which the instability does
not cut-o� higher orders of the Lovelock series [8].
We also �nd an elegant answer to the question how

to treat the black hole geometry when many coupling
constants due to Lovelock terms come into play. Using
the general parametrization for the arbitrary spherically
symmetric black holes we �nd that approximate descrip-
tion of the black hole geometry is possible with only two
or three parameters when the black hole is su�ciently far
from the instability threshold.
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