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Abstract: This paper studies the integrated design problems of control and guidance with parameter
uncertainties, target disturbances, input constraints and actuator faults. Firstly, based on the integrated
design idea of the missile guidance and control, the auxiliary variable is used to establish and transform
it into a cascade system with input constraints, actuator faults and disturbances of unknown upper
bounds. Secondly, the adaptive anti-saturation dynamic surface fault-tolerant controller is designed by
using the back-stepping method, adaptive control, auxiliary system and tracking differentiator. By
introducing the tracking differentiator and tangent barrier Lyapunov function, the computational
explosion problem in the traditional back-stepping method is avoided and the angle of attack can be
guaranteed in prospective range, respectively. Finally, the theoretical proof of the designed control
strategy is given to ensure that the states of the closed-loop system are bounded. At the same time, the
digital simulation of the maneuvering target of different maneuvering forms is carried out, which

further illustrate the effectiveness and robustness of the designed control schemes.

Keywords: Missile guidance and control; Dynamic surface control; state constraints; Input saturation;

Actuator faults

1. Introduction

The design of the missile guidance and control system is the key factor for the missile flight success
and accurate strike [1]. In the traditional missile design method, the interaction between the guidance
system and the control system is often neglected. When it is flying at big angles of attack and aimed at
intercepting large maneuvering targets, the coupling relationship between the guidance and control
systems may cause the degradation of the system performance, and even the failure of intercepting

missions [2]. Therefore, the design method of integrated guidance and control has attracted the
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attention of many scholars.

In recent years, the nonlinear control theory has been widely used in the integrated guidance and
control of flight control systems [3-6]. In [6], the adaptive dynamic surface sliding mode control law
was designed based on the integrated guidance and control model of missile pitch channel to improve
the missile guidance precision. In [7-8], the integrated guidance and control law was designed by using
the sliding mode control and back-stepping control. In [9], the integrated model of guidance and
control was transformed into the block diagonal model of attitude and velocity subsystem. Based on the
sliding mode control theory and fuzzy control theory, the analytical solution of block diagonal
combination was obtained. In [10-11], for the integrated model of missile guidance and system, the
integrated controller of guidance and control was designed through the adaptive control technology and
neural network theory. Integrated missile guidance and control with state constraints in practical
systemst*?, In [13], in order to avoid the influence large angle of attack, flight strategy with
angle-limited was designed. In [14-15], the back-stepping control with states constraints was designed
for nonlinear systems constrained by using barrier Lyapunov function. In [16], the adaptive
back-stepping controllers with state constraints was proposed for hypersonic vehicle. In [17], an
adaptive dynamic surface controller was proposed for systems with state constraints by using the
differentiator and barrier Lyapunov function.

In the actual design process of control system, the input saturation problem must be considered
[18-20], If the input constraint is not considered in the controller design, the actuator may be saturated
during the actual execution of the control law, which may lead to the degradation of the guidance
performance or even the instability of the guidance system. In [21-22], an anti-saturation adaptive
back-stepping controller was designed by introducing an instruction constraint system. In [23-24], the
guidance law was designed through the adaptive technology and auxiliary systems, which can solve the
input saturation problem. In addition, due to the external disturbances, model parameter uncertainties
and input saturation of the missile guidance and control system, which can more likely to lead to
actuator fault. In [25], the dynamic surface fault-tolerant controller was proposed by using the extended
state observer and dynamic surface control method. In [26], an adaptive back-stepping sliding mod
fault-tolerant controller was proposed for integrated guidance and control system. In [27], an adaptive
fault-tolerant controller was provided for the integrated guidance and control system with state

constraints and actuator faults, however the input saturation is not considered. In order to further solve
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the problem of integrated missile guidance and control, this paper aims at the integrated control model
of the missile pitch plane and maneuver target with unknown upper bound. Based on the dynamic
surface control, adaptive control technology, auxiliary system and tangent barrier Lyapunov function,
the adaptive anti-saturation fault-tolerant controller is designed, which can make the angle of attack
satisfying in prospective ranges. Compared with the existing works, the main contributions of the thesis
are shown as follows:

(1) A novel tracking differentiator filter is developed in conjunction with the back-stepping control
that eliminates the complexity problem.

(2) The tangent barrier Lyapunov function is introduced in the adaptive fault-tolerant control strategy
to guarantee the angle of attack keep within the certain ranges.

(3) Input saturation, actuator faults and state constraints are taken into account to design controller,
which makes the designed controllers have practical significance.

The structure of the rest of the thesis is organized in following manner. Section 2 presents an
integrated guidance and control system model. Section 3, an adaptive anti-saturation dynamic surface
fault-tolerant controller is proposed. Section 4 gives numerical simulations of the proposed controllers.

In Section 5, the conclusion of the thesis is presented.

2. Problem statements

The two-dimensional plane intercept geometry of the missile-target is shown in Fig.1, The M and T
represent the missile and target respectively. The dynamic equation of the relative motion of the
missile-target can be obtained [6].

Vi

Pt
q
M

Fig.1. Two-dimensional engagement geometry
F =V, cos(qd—-¢,) -V, cos(d-¢,) @
rq :_Vt Sin(q—(ﬂt)+Vm Sin(q—(ﬁm) 2
@ =alV, 3)
Pn =2y IV, (4)

where randq represent relative distance and line-of-sight angle, respectively. fand g denote relative
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velocity and line-of-sight angular rate. V,,, ¢, anda, represent velocity, flight path angle and lateral
accelerations of the missile, respectively. V,, ¢, and a, denote velocity, flight path angle and lateral

accelerations of the target respectively.

Computing the first order derivative of (2), yields

rq + rq = _Q[Vt Cos(q - ¢t) _Vm COS(q —®n )] +

. ) (®)
Vig, c0s(d - ¢,) ~Vy @y, €0S(4 - ;)
Let V,=rq,a =V,¢,,a, =Vy@,, using (1)-(4) can be derived
. r
Vo ==V, +a,005(d-¢,) -2, cos(q - ¢,) (6)
Refer to [11], the differential equations of pitch motion can be described as
mV,, dg’t“" =Y —mgcosg,, @)
dw
— =M 8
: dt 2 8
dx
m =V,, cos¢,, 9)
dv
2w 10
el (10)
a=Vv-0, (12)
From (7), we can have
. 1
a, =V, oy = H(Y —mg cosg,, ) (12)
Substituting (12) into (6) yields:
; f 1
V, = _FVC' +a; cos(q—gr )_E(Y —mg cos¢,, )cos(q—py, ) (13)
Based on (10) and (11) can be rearranged as
G=w, ——t (Y —mgcosg,, ) (14)
Lomy,,
According to (8), we get
dw M
L2 15
dat  J, (15)
The lift force and pitching moment of the missile are defined as
Y =57.305(cya +¢;5, ) (16)
2,2,
M, = qs‘l/iwz +57.3gsIm? e +57.3qsIm’* 5, (17)

M

Substituting (16)-(17) into (13)-(15) and applying cos(q—g,, )~1, The following integrated
guidance and control model can be derived

i 57.3gsc?

V, = _qu - Lo+ g cosg, cos(q-p, )+dy, (18)




Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 May 2020

57.3qgsc?
_¢a+w +M+d (19)

4 a
mV,, M

a=

SZ

a 2 W,
__573qsim;  gsl'my* . 57.3qsim, S +d, (20)

T JZ JZVM ’

where d,, ,d, andd,, are the bounded terms produced by parameter uncertainties, aerodynamic

z

uncertainties and external disturbances.

Let
§ 57.3gscy 57.3gscy
Q== Oy == Oy ==
r m mv,, 21)
57.3qsm* gsl’m." 57.3qsl’m?:
Ogpp == 10y = b=
J, J.m J,
According to (21), then (18)-(20)can be rewritten as:
V, =V, + a0+ gcosg, cos(q-g, )+, (22)
d=a22a+wz+m+da (23)
M
W, = a0 + W, +bo, +d,, (24)
Further, then(22)-(24) can be derived as
% = f(%)+ % +A,(X,) (25)
% =,(%)+%+A,(X,) (26)
% = f5(X;)+bu+A;(X,, X;,u) (27)
where x, =V, /a, , X,=a , X,=W, , u=6, , A(X)=d,/a, , Ay=d, , A,=d, ,
gcosy,
f. (%) =X +9cosg, cos(q—¢, ), f,(X,)=a,X, +V—¢, f5(Xy) = X, + Xy -

In this paper, the following actuator-fault model and input saturation of missile are considered

u=psat(v)+0 (28)
where v is the fin deflection command to be determined, O<p<1 denotes the actuation

effectiveness, U is the additive fault.

Considering (28) the integrated guidance and control model can be rewritten as

% = (x)+%+A,(%) (29)
% =, (%) + X +A, (X, %) (30)
%y = f3(X;)+b(psat(v)+T)+ A, (X, X, X;,1) (31)

Assumption 1: The external disturbances A, (x,), A,(X,X,) and A;(x,,X;,u) in(29)-(31) are

assumed to be bounded, and satisfy the following condition
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|4, (%) < M, |A, (X4 % )| < My, |Ag (X, %, X3, 0)| < M, (32)
where M;, M, and M, are unknown positive constants.

Lemma 1: For n+1 order tracking differentiator(33), if the input signal ¢, contains a bounded

noise |y, —a,| <, there exist positive constant v,, T that make inequality (34) hold:
= _r1|)(1 - arlﬁ sign (Zl _ar)+ X2
H =2 = 2l sion (1 — Aia) + 2 (33)

L .
/}:/n = _rn |/1/n _/’f.//n—1|2 Slgn(ln _Zn—1)+ Xna
/"{n+l :_rn Sign(;(m-l_/i/n)

n+2—i

|;(i —a,i|SviKW,i =12,..,n

(34)

n+l-j

<Tx o j=12,..,n-1

‘Uj % (jh)

where r (i=12,..,n+1) is positive constant, a, represents j order differential of ¢, .

j+1)
3. Controller Design

The adaptive anti-saturation dynamic surface fault-tolerant controller is design for the integrated
guidance model based on the back-stepping method, tracking differentiators, adaptive control, auxiliary
system and tangent barrier Lyapunov function, which can guarantee the angle of attack meets the actual
constraint requirements.

Stepl: Define the error variable z, as follows:

2, =% =% (35)
where x,. is reference signal.

Computing the derivative of (35), it can be obtained that

jlz).(l_).(iczfl(xl)+x2+A1(X2)_ch (36)
According to (36), the virtual control X, is designed as follows

X

, == T, (%) —kz, — K, sig" (z,)+ M, sign (z, ) + %, (37)
Mlz p1(|21|_|1'\7|1) (38)

where k;,k,, p,andl, are positive constants,0 <y, <1.

Choose the Lyapunov function as

w:1ﬁ+iLMf (39)
2 2p,


javascript:;
javascript:;
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where M, = M, — M, is the estimation error of adaptive parameter

Applying (37) and(38), the time derivative of the (39) can be written as

. _ . 1 ~ A
Vl=zl(fl(x1)+zz+x2+A1(x2)—x1c)——MlM1

1

. P 1
=—k,z’ —k,z, 519" (2,) + 2,2, +21(A1(x2)— M15|gn(zl))—F MM,
1

. A 1 ~ &
s-klzf—kzzlS|g”(zl)+zlzzJrzl(Ml—Mlmgn(zl))—FMlMl (40)
1
s-klzf—kzzlsig”(zl)+zlzz+|zl||\7ll—|\7ll(|zl|—lll\7ll)
<—kz? —k,z,5ig" (2, ) + 2,2, + ,M,M,
< —k, 27 —k,z,sig" (zl)—%lll\ﬂl2 +2,2, +%I1Mf

To avoid the derivative of virtual controller X, , the tracking differentiator (41) is introduced as

1
Xoa :_H|ZZ,1_¥2|2 Sign(lz,l_iz)"'lz,z (41)
X2z =—581ON( 25, = Z21)
where r, and r, are positive constants.

Apply Lemmal, inequality (42) can be obtained:

|Zz,1 - Y2| <=1y, |Zz,1 - Y2| <=l,, (42)
where I,, and 1,, are positive constants.

Step2: Define the error variable z, as follows:

Z,=%—X, (43)
The derivative of (43) can be written as

22:)'(2—);(22fz(X2)+X3+A2(X2)—?2 (44)
To guarantee the angle of attack satisfying |22| <A with A>0 being positive constants, respect to

(44), the virtual control X, is designed as follows

A (gz? 772
X, = —k,——sin Z lcos| —=2 |- f,(x
P (ZAZJ (ZAZ 2 (%)

1 P . r
_;(szz - 2,2, + M, sign(7)+ #,, —1,, S|gn(r))

(45)

'Olz =P, (|Zz|_I2M2)

: ) (46)
|2,2 =P (|Zz| - |3I2,2)

. N\ 2
where K;, Ky K, p,, p;. 1, and I, are positive constants, K, > Ky, , Ky = [%] +0 ,0 s positive

constant,0 <y, <1

The tangent barrier Lyapunov function is designed as
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2 2
V= tan| P2 |y Loz L 47)
Vd 2A 2p, 2p,
3
where 7 =2z/cos? [;ﬁ:@j M, =M, -M,andl,, =1,,1,,.

The derivative of V, can be written as

. 2AA 7Z'ZZ A — =
v, ZTtan(z—AZz]—[K]rzz+r(f2(x2)+ 2,4+ %+ 4, (%,)-%, )

I (48)
__M M I~2,2|A2,2

P, Ps
Substituting (45)-(46) into (48) vyields:

. 2AA 72 A _ N 1 -~ =& 1~ +
VZ:Tta {ZAZZJ_(KJTZZ+T(fZ(X2)+Z3+X3+A2(X2)_X2)__MZMZ__ o

. 2 a
- Z%tan [%} ) (%)Tzz —KyZ, + 2,7 - 2,2, + T(Az (%,)~M,sign (T)) (49)

R Ly 1 - 1~ -
+r(;(2‘1—x2—lzv25|gn(r)) [k _Sm(ZAZJCOS[ZAZD p_MZMZ_FIZ,ZIZ,Z
2 2

The following inequality can be derived
2 2 2 2 2
—kariisin ”—222 Ccos ”222 :—ksitan ”222 (50)
, 7w 2A 2A V4 2A

A 2 2 2 2 2
—ZQA tan { Z;ZZ J 2: i tan ( ;Z;ZZ J < —ZKjOTA tan ( Z;ZZ J (51)

(52)

where k; =k, — 2Ky, -

According to (50)-(51), then (52) can be further simplified as

. . A z

st—k37tan ZAZZ +2,0 - 2,2, + M, |t| +1,,|c| - M (|r|—| ) 22(|r| 322)
. A 7z}

T 2N

2 2
A g; +Qr—44—%gmg—%u§+%gmg+%u;

To avoid the derivative of virtual controller X, , the tracking differentiator (54) is introduced as

+2,0 -2, +L,M,M, + 11,1, (53)

Xa1 =", |7(31 X |2 Slgn(lm )+7532
Hap =1 SION( 75, — Zs1)
where r, and r, are positive constants.

(54)
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Apply Lemmal, as the following inequality holds:

|Zs,1 - X3| <=y, |7(3,1 - 73| <=1y,

where 1, and |,, are positive constants.
Step3: Define the error variable z, as follows:

Z, =X =X
The derivative of (56) is given by

2, =% =%, = f,(x,)+b(psat(v)+T)+A, (X, X;,u)— X,

In order to solve the input constraint, the auxiliary system is designed as follows

Z.bpAv|+ 0.5bAV?
e P
&= M
0, |§| <n

&—bAv—k,sigh (&), [¢]=n

where & is the state variable of the auxiliary system, k; , k; and 7

constants, 0< y, <1, Av =sat(v)—-V,

c*

The adaptive anti-saturation dynamic surface fault-tolerant controller v, is proposed as

Ve =—f,(%,)—kezs — 72, — kg sSig™ (2,) — l\7I35i9n(23)+j(3l1 —I;,Z sign(z;) +k,&

M, = p, (|23|—I4I\7I3)
I;z =P, (|23|—I5IA3,2)
1y = pov, 11,
7= p,z,tan [%)—Iﬂz

where kK, K, K;, Pss Pyr Pgo P75 140 150 15, 1; and & are positive constants, 0 <y, <1.

(55)

(56)

(57)

(58)

are positive

(59)

(60)

(61)

(62)

Theorem 1: Considering the system model (29)-(31)with Assumptionl, then applying the guidance

law (59), the line-of-sight angle rate ¢ will converge to the region in finite time.

2, <NV (0)+T =A(i=1273)

Poof: The Lyapunov function is chosen as follows

Appling(59) the derivative of (65) can be obtained

(63)

(64)

(65)
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R T R R I
Vy=22,—— MMy —— 1, l,, —— (0—— 7y + &8
4 p5 pB 7
_ P R R SV R
:23(fa(x3)+b(psat(v)+u)+A3(x2,x3,u)—x3)——M3M3——I312I3v2——M——;{;{+§§
P, Ps Ps 7
_ PN O A R S R
=zg(fg(x3)+bpvc+prv+bu+A3(x2,x3,u)—xg)—p—Mng——IMI&Z——M——;(;(+§§
4 5 6 7
_ 1 ~ A ~r 1 .: :
=7, ( f,(Xs)+V, =V, + bV, +bT +bpAV+ A, (X,, X, U)X )——M M, Sl 10— gy + &
P, ps Ps 7
= —Kyz5 —KsZ, 5197 (2,) — 72,2, + 23V, + Z,bpV, + Z,0T + 2,0 pAV + 2, (A3 (X,, X5, U) = M, sign (23))
. = r - 1 ~ A 1 & ﬂ,'*'" l ~ A >
+Z, (Zs,l — X _Is,z Slgn(zs))+ zk,& ——M;M, __|3,2|3,2 ——U——xx+éE
P, Ps Pe 7

< —kszi —Kg2, 8107 (2,) — 72,2, + 23V, + Zbpv, + K, E+12, [;( —jtan (QD + 2,0 pAv
&
+23k7§+23(A3(x2,x3,u)— Mgsign(zs))+23(;'(3,1—?3—@,2 sign(zg))

_iZZJri;Z(—fH pyzstan(ﬁn—i'\/' M, - X oo+
D, D, & P, P

(66)
As

/lﬂév2
Zbpv, < ———— < 45, - Alv, (67)
Cv +0,

x [|z3| —z,tan (éj] <kye (68)
&

Substituting (67)-(68) into (66) yields

< —Kg22 —Ke2,Sig7 (25) — 72,2, + 2V, + A5, — AV, + K, & + Kye + Z0pAv

+zak7§+23(A3(x2,x3,u)—I\?Issign(zs))Jr23(;'(311—i3—f3'23ign(23))

A~r 1 ; z 1cs .
——M+—;2(—;2+p z tan(—sjj——M M Il +&

p6 p7 773 c p4 p5 3,2°3,2
< —ksz5 —Ko2, 8107 (25) — 7232, + A8, + 2K, E + kye + 20pAv (69)

~ - ~ - - - Alg ~

+|23|M3+|23|I3Y2—M3(|z3|—I4M3)—I312(|23|—I5I3'2) o, M+p— Ju+EE
< —ksz5 —KsZ, 107 (25) — 7232, + A5, + K€ + ZPpAV + 2.k, &

+l, M M +I5I32I32+/1—|62Z+i;2;2+§§
Ps 7

Substituting (58) into (69) yields

V, < k27 —Ks2, 8197 (2,) — 72,2, + A5, + ke + 2K, & + 2,0 pAV

. TN R
+I5I32I32 %fﬂ+i;};(

6 p7

| |2 & —bAv —Kk, sig” (S)J (70)
—KsZySig7 (2;) —Ke&® —KoESIQ7 (&) — 72,2, + AS, + Ky + 1,K,E + b pAV

+1,M +I5I32I32+A£€+izg—|z bpAv|+0.5bAVZ — EbAv
P p

6 7

+1,M,M
( |zsprv| +0.5bAV?
—k.z
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As

2.k, & — EbAv < %k7 |zi|" + &2 +%bAV2

(711)
z;bpAV —|z2.ppAv| <0
According to(71),then(70) can be derived
. 1 . .
V, < —(ks —Ek7)z§ —KszySig7 (2;) = (Kg —1) &% —Ko& SiQ7 (E) — 72,2, + A6, + ke
+1,M,M +I5I32I32+ﬂ£€+ixg
Ps P,
1 . .
< _(ks _Ek7JZ§ _kez3 Slg“ (Zs)_(ka _1)52 _k9§S|gy3(§) (72)
_1|4|\7|32_1|5|~322_/1_Iez,2_i;~(2_z_2322+ ! )22
2 2" |o6 2p, 2p,
Al ~s
+—1 —I MZ+= I5I S +KyE
2p;
Computing the derivatlve of V and applying(40), (53) and(72), yields
V< _k1212 —k3222 _(ks _%k7)Z§ _(ka _1)9(:2 —kZZlSig” (Zl)—k422 sig” (Zz)
. . 1, -, 1 -, 1 = 1 -
—ksz3s|g’3(23)—kg§S|g73(§)——I1Mf——I2M22 2'3'22 |M2 2'5'3%2
Moo 1 7+ —IM +—I M2 +—I3I222 —I MZ+= |5|322 s 52
Pe 2P, 2P,
+i;22+/151+1c;(g (73)
2p,
<—k,z —k,z2 - kq ——k 2 (ks —1)& ——||v|2 |2|\7|22 1|3|~22 ZIL,M2 - 1|5|~;2
27 2 2 2" 2°°
—l—lskz—i~2+1I1Mf+—I2M22+—I3I§2+—I4M§+1I5I§2+/1—|6@2+i;22
2P, 2p, 2 2 2°7° 2 2770 2p 2p,
+Ad, +Kxye
<-¢V +p
where
. 1
(p=mln{2k1,2k2,2(k5—§k7),2(k8—l),|lpl,|2p2,|4p4,|3p3,|5p5,l,1}
(74)
1 1 1 1 1 Al ~ 1 .
p=+EI1M12+E|2M22+EI3I22’2+§|4M32+EISI;2+2_[£3€2+HZZ+151+K;(€
The e” multiply both sides of equation (73)
(V (t)+oV (t))e“"t < pe”t (75)
Form (75) can be derived:
V(t)<(V(0)-T)e”+T (76)

where T'=p/¢p.

Based on the above (76), the inequalities (77) can be hold as:
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2, <V (0)+T =A,(=1273) (77

Therefore, we conclude that z,; will converge to the region A, in finite time.

Then the Theorem 1 is proved.

4. Simulations

In order to further validate the effectiveness that chaser can realize missile air-intercepting the
maneuvering target under the adaptive anti-saturation dynamic surface fault-tolerant control
scheme, numerical simulations are conducted in this section.

The missile’s initial value: velocity is 1032m/s, initial position x,=0km,y, =16km angle of
attack «(0)=10" «(0)=10"and flight path angle ¢, =0". The target’s initial value initial position
X, =1km, y, =16km, flight path angle ¢, =10".The maximum the deflection angle of the missile

is30°.

The nominal aerodynamic parameters of the missile are

57.3gsc” 57.3gsc’: «
TS0y 387,200 g g, 2T _ 17801
M mVM z
2., 2.5,
m = _0_2741,m =-31.26
IV, J,
The steering engine model is defined as
5,(s) 1
5,.(s) 0.0Is+1

In order to show the effectiveness and robustness of the guidance strategy designed in this paper, the
simulation is compared with the [6]. For the purpose of simplicity, the Neural network controller
proposed in [6] is abbreviated as NNC. And the targets are divided into two cases to be simulated:
constant maneuver and sine maneuver.

Casel: a =5g.

Case 2: a, =7gsin(t).

(1) Simulation analysis for constant maneuvering.

The parameters of adaptive anti-saturation dynamic surface fault-tolerant guidance law(59) are
chosenas. k =k,=k;=k, =k, =0.1,k,;, =06, |,=1,=0.02, I,=I,=1.=1,=1,=0.02, =0.01
n=r,=r=r=005, y,=y,=y=y,=065, p=p,=p,=p,=pP; =P, =P, =0.01,k, =0.05,

k, =k =kg =0.05. To show the robustness of the proposed method, the time-varying factor of actuator
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faults are assumed as u=0.1sint*sat (v)+0.3 .The simulation curves of the missile-target are shown

in Figs.2(a)-(f). Table 1 presents the miss distances for two cases, and also reveals interception times

Table 1 Miss distances and interception times

Guidance laws | The kinds of target accelerations  Miss distance(m) Interception time(s)
a, =5¢g 0.342m 7.652
Proposed mehtod .
a, =7gsin(t) 0.76 7.823
=5 0.766 7.454
NNC % g
a, =7gsin(t) 0.975 7.812

Fig.2(a)-Fig.2(b) show the relative distance and the trajectories of missile and target under the two
control strategies, respectively. And the missile can accurately intercept the targets. From Table 1, we
can see that proposes the miss distance of the guidance method when actuator failure occurs in this
paper is 0.342 m, which is more precise than the miss distance of 0.76m by the NNC. It can be clearly
seen from Fig. 2(c) that for the constant target maneuvers, under the two control schemes, in the initial
stage the line-of-sight angle rate can quickly and smoothly converge to the expected neighborhood of
expected values. However, under the NNC guidance law the line-of-sight angle rate curve has a large
chattering during the convergence process, which will cause a large miss distance (see Table 1). In Fig.
2(d)-Fig. 2(e), the curves of the angle of attack and the pitch angular rate the missile under two
guidance strategies are respectively shown. From the results, it can be observed clearly that the angle of
attack and pitch angular can meet within the expected value range during the control process under the

proposed method, however, the angle of attack under the action of NNC does not meet the state

constraint |zz| <10". In Fig. 2(e), the curves of deflection angle under the two guidance laws are given.

It can be seen that the deflection angle is bounded in the whole control process without chattering
which meet the requirement of input saturation compare with NNC.

Based on the results presented in Fig. 2, it can be concluded that the missile can realize accurately
intercepting constant maneuvering target using the adaptive dynamic surface fault-tolerant controller

with external disturbances, input saturation, actuator faults, and state constraints.
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Fig. 2 Comparison results under these two guidance laws for case 1

(2) Simulation analysis for snake maneuvering

The control parameters in the simulation analysis of case 2 are the same as in case 1, and the
simulation results are shown in Fig. 3.

In Fig.3 (a)-Fig.3 (f), the relative distance, trajectories of missile and target, the curve of line-of-sight
rate, the angle of attack and pitch rate and the curve of deflection angle are given. In Fig. 3(a)-Fig. 3(b),
it can be seen that under two control strategies, the maneuver target of snake form has a small miss
distance and a precise intercept snake target. From Fig. 3(c) it can be seen that the curve of line-of-sight
rate converge to a small neighourhood of zero rapidly in finite time, according to the parallel approach

method, the effectiveness of the control strategies is demonstrated. In Fig.3(d)-Fig.3(e), it can be seen
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that the change range of both the angle of attack and the pitch rate can meet the physical constraint

requirements. It can be seen from Fig. 3(f), the compensation term of input constraints is introduced in

the proposed method. Compared with NNC, the deflection angle has a smoother and meets the physical

requirements of the actuator.

In summary, the guidance strategy designed in this paper is effective for different maneuver target

forms.
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Fig.3 Comparison results under these two guidance laws for case 2

In this thesis, an adaptive dynamic surface fault-tolerant control scheme considering input saturation,
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actuator failure, and state constraints is studied and analyzed. The major conclusions of this paper are
as follows:

(1) By means of adopting tangent barrier Lyapunov function and auxiliary system in the dynamic
surface controller, which can handle partial state constraints and input saturation problem, respectively.

(2) For the situations of unknown upper bound of system disturbances and actuator failures, the
adaptive control is adopted to estimate the upper bound of the disturbance and actuator failures which
are not required to be known in advance, respectively.

(3) Under the designed fault-tolerant control strategy, according to the theory and simulation results
show that when the requirements of input saturation and state constraint are met and targets with
different maneuvering forms are intercepted, good guidance precision can be obtained, which indicates
the robustness and effectiveness of the designed control scheme.
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