
 
1 

 

 

 

 

Towards engineering biosystems with emergent collective functions 

Thomas E. Gorochowski1,*, Sabine Hauert2,#, Jan-Ulrich Kreft3,#, Lucia Marucci2,#, Namid R. 

Stillman2,#, T-Y. Dora Tang4,5,#, Lucia Bandiera6, Vittorio Bartoli2, Daniel O. R. Dixon7, Alex J. H. 

Fedorec8, Harold Fellermann9, Alexander G. Fletcher10, Tim Foster3, Luca Giuggioli2, Antoni 

Matyjaszkiewicz11, Scott McCormick2, Sandra Montes Olivas2, Jonathan Naylor9, Ana Rubio 

Denniss2, Daniel Ward1  

1 School of Biological Sciences, University of Bristol, UK 
2 Department of Engineering Mathematics, University of Bristol, UK 
3 School of Biosciences & Institute of Microbiology and Infection & Centre for Computational 

Biology, University of Birmingham, UK 
4 Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany 
5 Physics of Life, Cluster of Excellence, TU Dresden, Germany 
6 School of Engineering, University of Edinburgh, UK 
7 School of Biochemistry, University of Bristol, UK 
8 Division of Biosciences, University College London, UK 
9 School of Computing, Newcastle University, UK 

10 School of Mathematics and Statistics & Bateson Centre, University of Sheffield, UK 
11 The European Molecular Biology Laboratory, Barcelona, Spain 
 
# These authors all contributed equally to this work. 

* Correspondence should be addressed to T.E.G. (thomas.gorochowski@bristol.ac.uk) 

 

 

 

 

Keywords: synthetic biology; multi-agent modelling; individual-based modelling; agent-based 

modelling; systems biology; emergence; multi-scale; bioengineering; consortia; collectives   

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2020                   doi:10.20944/preprints202005.0058.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Front. Bioeng. Biotechnol. 2020, 8; doi:10.3389/fbioe.2020.00705

https://doi.org/10.20944/preprints202005.0058.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbioe.2020.00705


 
2 

Abstract 1 

Many complex behaviours in biological systems emerge from large populations of interacting 2 

molecules or cells, generating functions that go beyond the capabilities of the individual parts. 3 

Such collective phenomena are of great interest to bioengineers due to their robustness and 4 

scalability. However, engineering emergent collective functions is difficult because they arise as 5 

a consequence of complex multi-level feedback, which often spans multiple length-scales. 6 

Here, we present a perspective on how some of these challenges could be overcome by using 7 

multi-agent modelling as a design framework within synthetic biology. Using case studies 8 

covering the construction of synthetic ecologies to biological computation and synthetic 9 

cellularity, we show how multi-agent modelling can capture the core features of complex multi-10 

scale systems and provide novel insights into the underlying mechanisms which guide 11 

emergent functionalities across scales. The ability to unravel design rules underpinning these 12 

behaviours offers a means to take synthetic biology beyond single molecules or cells and 13 

towards the creation of systems with functions that can only emerge from collectives at multiple 14 

scales.  15 
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Introduction 16 

The evolution of living organisms has exploited the capabilities emerging from large interacting 17 

populations of molecules or cells that go beyond those of the individual parts. Likewise, the 18 

engineering of emergent collective behaviours could offer an intriguing path to biosystems with 19 

improved reliability, robustness and scalability. However, current approaches to biological 20 

design are ill-equipped for this task as they tend to focus on a single level of organisation and 21 

ignore potential feedbacks between different aspects/levels of a system. A common example is 22 

the design of transcriptional regulatory gene expression networks where it is assumed that the 23 

function of the entire system can be understood solely by the transcription factor binding and 24 

kinetics (Nielsen et al., 2016). While this simplification is useful and powerful, in some cases, if 25 

the genes regulated link to metabolic processes there is a chance that feedback via 26 

metabolism could break circuit function. Focusing purely on transcriptional networks makes it 27 

impossible to capture such behaviours. 28 

In physics, great strides have been made through techniques like statistical mechanics 29 

to understand emergent phenomena, e.g., using the Ising model to capture magnetic phase 30 

transitions (Taroni, 2015). Unfortunately, such simplified models are often unable to capture the 31 

broad diversity often present in the components of biological systems and the rules governing 32 

their interactions. 33 

An alternative approach is to use multi-agent modelling (also termed agent-based or 34 

individual-based modelling), which considers key components of a system as explicit 35 

entities/agents and allows for diverse interacting populations of these (Figure 1A). Specifically, 36 

a multi-agent model consists of autonomous agents that represent the lowest level components 37 

of the system. Each agent is assigned specific rules governing how it interacts with other 38 

agents and the local environment. Populations of these agents are then placed in a simulated 39 

environment that captures physical processes of relevance to the system. In biology, this might 40 

include the diffusion of chemicals, the flow of fluids, and the mechanical forces that cells can 41 

exert on one another. While this approach is capable of discovering some of the core 42 

ingredients needed for collective behaviours to emerge (Hellweger et al., 2016), its use to date 43 

in synthetic biology has been limited (Gorochowski, 2016). 44 

Here, we aim to highlight some of the key areas of synthetic biology where multi-agent 45 

modelling offers a unique way to tackle longstanding problems (Figure 1B). While the 46 

examples we cover are diverse, they all share a core characteristic: the emergence of 47 

behaviours in the systems cannot be explained by looking solely at their basic parts in isolation. 48 

This essence makes such systems special yet difficult to engineer via traditional means. We 49 

propose to extend bioengineering methods to encompass principles gleaned from multi-agent 50 

models and use them to guide the design of synthetics systems displaying emergent 51 
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phenomena. We end by discussing some of the practical challenges when using multi-agent 52 

modelling in synthetic biology and future directions for the marriage of these fields. 53 

 54 

Understanding the emergence of life 55 

When considering emergent phenomena, the quintessential example is the emergence of life. 56 

Putting aside the difficulty of defining precisely what life is, the ability of living systems to self-57 

replicate and create order/information out of chaos is an inspiration for many engineers. 58 

Bottom-up synthetic biology attempts to build chemical systems that display life-like behaviours 59 

using a minimal set of components. The hope is that these simplified systems might help us 60 

understand how life emerged from first principles. 61 

One attempt to reach this goal has been via the synthesis of artificial cells (protocells) 62 

with life-like properties. This requires the ability to bridge length scales by harnessing molecular 63 

self-assembly to create micron-sized compartments (Bayley et al., 2008; Li et al., 2014) and the 64 

intricate interactions between molecules and enzymes to form biochemical reaction networks 65 

(Hasty et al., 2002). The incorporation of these reaction networks within protocells has also 66 

been demonstrated (Adamala et al., 2017; Joesaar et al., 2019) and although chemically 67 

simple, such systems display an array of dynamical behaviours including pattern formation 68 

(Niederholtmeyer et al., 2015; Zadorin et al., 2017) and replication via controlled growth and 69 

division (Chen et al., 2004). By combining these systems with additional chemical modules and 70 

parts, this may offer a route to creating other key behaviours of living systems.  71 

 Building on these capabilities, functionalities can be scaled up further by constructing 72 

systems composed of populations of protocells or through interacting natural and artificial 73 

cellular communities (Lentini et al., 2014; Adamala et al., 2017; Tang et al., 2018). While such 74 

extensions offer a promising platform for probing emergent behaviours using simple self-75 

contained chemical units, it is difficult to know what parameters to engineer into these systems 76 

and the level of complexity required to drive a desired collective behaviour. This is where multi-77 

agent modelling, in combination with more traditional models of chemical reaction systems, 78 

could lead to a quantitative understanding of the key elements needed for the emergence of 79 

life-like behaviours. In particular, multi-agent models would allow for rapid exploration of 80 

potential systems using physically realistic parameters until the right combination of parts was 81 

found that resulted in a desired emergent functionality. 82 

Historically, mathematical models based on differential equations have proved effective 83 

for understanding the dynamics of minimal chemical systems (Rovinskii and Zhabotinskii, 84 

1984). However, these modelling approaches are not well suited to capturing the stochasticity 85 

and heterogeneity that is inherent across populations of natural and artificial cells (Perez-86 

Carrasco et al., 2016). In comparison, multi-agent modelling is able to explicitly capture such 87 

variation and consider simplified rules to express internal chemical reactions altering specific 88 
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characteristics of each component. Due to the chemical simplicity and programmability of 89 

minimal protocells, this abstraction is a good fit, allowing iterative refinement of model and 90 

experimental system. For example, due to the limited number of possible chemical reactions 91 

present in a minimal system, comprehensive direct measurements can be made to create 92 

highly predictive rules for how a protocell’s chemical state will change over time. These can 93 

then drive simulations of accurate protocell behaviours in a multi-agent model to explore the 94 

specific combination of reactions required for the emergence of higher population-level 95 

functionalities. This two-way cycle of development would be difficult, if not impossible, when 96 

using natural cells where complex evolutionary baggage masks those features essential for 97 

emergence. 98 

 99 

Distributed computation during development 100 

Living cells continually monitor their environment and adapt their physiology in order to survive. 101 

This requires the processing of information gathered from sensors to make suitable changes to 102 

gene expression. Synthetic biology enables us to reprogram cells by writing our own genetic 103 

programs to exploit the cells’ computational capabilities in new ways (Greco et al., 2019; 104 

Grozinger et al., 2019). So far, the majority of research in biological computation has revolved 105 

around the concept of genetic circuits and attempted to repurpose tools and methodologies 106 

from electronic circuit design (Nielsen et al., 2016; Gorochowski et al., 2017) and automatic 107 

verification (Dunn et al., 2014). While this approach has enabled the automated design of 108 

cellular programs able to perform basic logic, much of the information processing in native 109 

biological systems is distributed, relying on collective decision making (e.g. quorum sensing) 110 

and interactions between large numbers of parts. 111 

This feature is most evident in developmental biology where robust genetic programs 112 

must ensure that a complex multi-cellular organism emerges from a single cell. Cell growth, 113 

differentiation, migration and self-organisation are coordinated by a developmental program 114 

with dynamics at both the intra- and inter-cellular levels. These enable the generation of 115 

precise deterministic patterns from stochastic underlying components (Glen et al., 2019). In 116 

contrast to simple logic circuits, the complexity of the molecular interactions and mechanical 117 

forces underpinning this process motivates the use of multi-agent modelling to better 118 

understand how developmental programs work in morphogenetic systems. In particular, multi-119 

agent models are able to capture the role of cellular heterogeneity, proliferation and 120 

morphology, mechanical and environmental cues, movement of cells as well as the integration 121 

of multiple processes at diverse scales and the feedback between these (Montes-Olivas et al., 122 

2019). Such models have helped deepen our understanding of early mammalian 123 

embryogenesis (Godwin et al., 2017), as well as the formation of vascular networks (Perfahl et 124 
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al., 2017) and other complex structures and organs, including the skin, lungs (Stopka et al., 125 

2019), kidney (Lambert et al., 2018), and brain (Caffrey et al., 2014).  126 

 Although such work has provided insights into the computational architecture of native 127 

developmental programs, it has been difficult to apply this information to the creation of de 128 

novo morphogenetic systems because of a limited toolkit of parts available to build such 129 

systems. Synthetic biology may help solve this issue by facilitating the engineering of simplified 130 

multi-cellular systems (Velazquez et al., 2018) that implement developmental programs 131 

encompassing distributed feedback regulation (Ausländer and Fussenegger, 2016) and cell-to-132 

cell communication (Bacchus et al., 2012), to better understand how these factors can be used 133 

to contribute to emergent self-organisation (Morsut et al., 2016).  134 

 135 

Collective phenomena driving disease 136 

Many of the challenges treating diseases result from the malfunction of emergent multi-cellular 137 

properties, be it carcinogenesis (Deisboeck and Couzin, 2009; Ward et al., 2020), viral infection 138 

(Jacob et al., 2004), bacterial biofilm formation (Wu et al., 2020) and microbiome imbalances 139 

(Shreiner et al., 2015; Kumar et al., 2019). Multi-agent modelling of these conditions has 140 

helped demystify how the collective behaviour of large numbers of diverse cells and their 141 

interactions with each other and their environment can lead to negative clinical outcomes.  142 

Cancer is a complex multi-scale disease that includes environmental factors, genetic 143 

mutations and clonal selection, and complex interactions with the immune system and vascular 144 

system. As a result, computational models of cancer need to account for many of these factors 145 

considering the heterogeneity and interactions of single cells, yet contain sufficient numbers of 146 

them to predict emergent phenomena at a tumour scale (Metzcar et al., 2019). Using this 147 

approach, multi-agent models have been used to help understand metastasis (Waclaw et al., 148 

2015) and shown that cancer cells with stem cell-like properties can be a key determinant in 149 

cancer progression with fatal consequences (Scott et al., 2016, 2019).  150 

Beyond understanding the emergence of some diseases, multi-agent models can also 151 

identify novel ways of fixing their dynamics by considering how to disrupt cellular behaviours, 152 

and their interactions in space and time (Waclaw et al., 2015; Gallaher et al., 2018). 153 

Treatments themselves can even be designed to have collective emergent properties. For 154 

example, bacteria have already been engineered to use quorum sensing to trigger their 155 

delivery of drugs (Din et al., 2016) or they can be controlled using magnetic fields to penetrate 156 

cancerous tissue (Schuerle et al., 2019). Other collective behaviours used in cancer 157 

nanomedicine include self-assembly of nanoparticles to anchor imaging agents in tumours, 158 

disassembly of nanoparticles to increase tissue penetration, nanoparticles that compute the 159 

state of a tumour, nanoparticle-based remodelling of tumour environments to improve 160 
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secondary nanoparticle transport, or nanoparticle signalling of tumour location to amplify the 161 

accumulation of nanoparticles in tumours (Hauert et al., 2013; Hauert and Bhatia, 2014). 162 

The emergent properties inherent in many diseases, and the potential to harness such 163 

behaviours for new treatments, highlight the need for multi-scale modelling tools. Moreover, 164 

with the rapidly expanding field of “systems medicine”, integrated modelling pipelines able to 165 

predict multi-scale disease dynamics and assess novel synthetic biology treatments via large-166 

scale simulation and machine learning are positioned to revolutionise many areas of medicine 167 

(Stillman et al., 2020). 168 

 169 

Challenges in scaling-up biotechnology 170 

The ability for synthetic biology to reprogram cellular metabolisms offers an opportunity to 171 

convert cheap substrates (or even waste) into valuable chemicals and materials via microbial 172 

fermentation (Nielsen and Keasling, 2016). To make this economically viable, large bioreactors 173 

are often used. However, while our use of fermentation stems back millennia (McGovern et al., 174 

2004), we still struggle to reliably scale-up many processes from shake flasks in the lab to 175 

industrial-sized bioreactors (Lee and Kim, 2015).  176 

A major reason for this problem is the increasing difficulty and power consumption of 177 

mixing or aerating reactors as their volume increases, causing pockets to form where nutrient 178 

concentration, temperature, oxygen, pH and other factors differ (Alvarez et al., 2005). As a 179 

microbe travels through the bioreactor, it becomes exposed to a wide variety of environments, 180 

each causing changes in its physiology. Because the path of each cell is unique, a population 181 

of cells will therefore display a wide variety of physiological states. This differs from lab-scale 182 

experiments where environments are well-mixed and homogeneous, and causes predictions 183 

made from these conditions to significantly deviate from those observed during scale-up. 184 

Capturing the combined environmental and cellular variability present in a large 185 

bioreactor is difficult using standard differential-equation models. In contrast, multi-agent 186 

models are able to explicitly capture and link gene regulation, metabolism, and the cells’ local 187 

environment (Nieß et al., 2017; Haringa et al., 2018), as well as differences between individual 188 

cells and how cells change over time (González-Cabaleiro et al., 2017). In particular, hybrid 189 

models in which continuous descriptions of complex physical processes like fluid flows are 190 

coupled with multi-agent models allow for the efficient simulation of these systems. This 191 

approach can accurately predict the emergence of population heterogeneity and overall 192 

production rates and help guide bioreactor design to further improve yields (Haringa et al., 193 

2018). Some attempts have also been made to use control engineering principles to design 194 

cellular systems able to adapt to fluctuating environments (V. Hsiao et al., 2018). To date, 195 

these attempts have mostly focused on the basic genetic parts and regulatory motifs (e.g. 196 

negative feedback) needed to implement control algorithms (Ceroni et al., 2018; Aoki et al., 197 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2020                   doi:10.20944/preprints202005.0058.v1

Peer-reviewed version available at Front. Bioeng. Biotechnol. 2020, 8; doi:10.3389/fbioe.2020.00705

https://doi.org/10.20944/preprints202005.0058.v1
https://doi.org/10.3389/fbioe.2020.00705


 
8 

2019; Pedone et al., 2019; Bartoli et al., 2020). Moving forward, multi-agent models offer a 198 

means to make simulations of these systems more realistic by accurately capturing how 199 

individual cells and their complex environment change over time. 200 

 Another challenge faced during large-scale fermentation is the opportunity for mutants 201 

to arise of unwanted microbes to contaminate a process and out-compete their engineered 202 

counterparts (Kazamia et al., 2012; Louca and Doebeli, 2016). Multi-agent models of these 203 

complex environments and local competition when multiple types of organism are present, 204 

could help support the development of evolutionarily stable strategies (ESSs) that prevent the 205 

replacement of an engineered population by competitors (Schuster et al., 2010). 206 

 207 

Engineering synthetic ecologies 208 

At an even larger organisational level, synthetic biologists have begun to explore how to 209 

engineer interactions between communities to enable the future construction of synthetic 210 

ecologies (Ben Said and Or, 2017). With climate change, pollution and many other factors 211 

leading to the degradation of ecological systems, understanding how these systems emerge 212 

and function is crucial. Such knowledge would allow for effective restoration strategies (Solé et 213 

al., 2015) and potentially offer means to terraform other planets (e.g. Mars) for future human 214 

inhabitation (Conde-Pueyo et al., 2020). 215 

These applications require an understanding of how diverse organisms interact to 216 

create stable communities (Widder et al., 2016). This is difficult because the interactions that 217 

take place at the level of a population are governed by choices made by single-cells (Kreft et 218 

al., 2017). By using multi-agent modelling to rapidly test combinations of cell types, behaviours 219 

and interactions, and synthetic biology tools to engineer real-world microbial communities, it 220 

might become possible to design and test hypotheses regarding the principles for robust 221 

ecosystem design. For example, multi-agent modelling has been used to help understand how 222 

signalling and mutual cooperation can stabilise microbial communities (Kerényi et al., 2013). 223 

Furthermore, from a synthetic biology perspective many of the tools needed to engineer these 224 

systems already exist, e.g., biological parts able to implement cooperation (Shou et al., 2007), 225 

signalling (Bacchus et al., 2012), targeted death (Fedorec et al., 2019), and collective decision 226 

making (e.g. quorum sensing).  227 

Beyond engineering interactions between organisms, spatial structure can also play a 228 

crucial role in the functionalities of microbial communities. Multi-agent modelling has 229 

demonstrated the significant impact that spatio-temporal organisation can have on soil 230 

microbes (Jiang et al., 2018) and the success of auxotrophic interactions. Such interactions are 231 

particularly important for engineering minimal functional synthetic communities as plant seed 232 

treatments and for vertical farming under defined conditions. In this context, whether or not a 233 

single cell or division of labour is the evolutionarily stable solution depends on the metabolic 234 
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flux through the system, with high flux favouring division of labour (Kreft et al., 2020). Extending 235 

this modelling approach further to consider the thermodynamics of microbial growth and redox 236 

biochemistry could help ensure that resultant systems are ecologically and evolutionarily stable 237 

(Zerfaß et al., 2018). Alternatively, external control of the environment could be used to forcibly 238 

maintain a desired community structure (Treloar et al., 2020). In all cases, a combination of 239 

multi-agent modelling and engineerable biological systems provides a unique means to unravel 240 

principles guiding how these complex systems function.  241 

External feedback control has been proposed as another approach to control of cellular 242 

communities. By employing real-time single cell measurements (e.g. by time-lapse microscopy 243 

or flow-cytometry) and experimental systems able to send control signals to the cells via 244 

optogenetics (Toettcher et al., 2011) or chemical release in microfluidics (Menolascina et al., 245 

2014), a computer can monitor and signal to a population of cells in order to maintain a desired 246 

behaviour (e.g. the expression rate of a protein). More recently, it has been proposed to 247 

implement these control algorithms directly into cells, with the key aim of distributing tasks 248 

among different strains (Fiore et al., 2017; McCardell et al., 2017). Multi-agent modelling can 249 

be instrumental in the design of robust feedback mechanisms across multicellular populations, 250 

as it can reveal non-obvious effects of cell density, proliferation dynamics and spatial 251 

constraints on the effectiveness of control actions (Fiore et al., 2017). 252 

 253 

Discussion 254 

We have shown how multi-agent models can be applied to many areas of synthetic biology. 255 

The core features of these models provide insight into some of the basic building blocks and 256 

mechanisms needed for collective behaviours to emerge and, we believe, may offer a means to 257 

support the future predictive design of collective behaviours. 258 

A major hurdle to the widespread use of multi-agent modelling is the need to define and 259 

simulate complex models (Grimm et al., 2006). Although computational frameworks have been 260 

available since the 1980s to support this process, it is only during the past decade that tools 261 

have been tailored for synthetic biology applications and reached sufficient performance 262 

(Gorochowski et al., 2012; Oishi and Klavins, 2014; Goñi-Moreno and Amos, 2015). More 263 

recently, the effective use of highly parallel computing resources has expanded the complexity 264 

of biological models that can be simulated (Rudge et al., 2012; Naylor et al., 2017; Li et al., 265 

2019; Cooper et al., 2020). Automated coarse-graining of representations enable faster 266 

simulation without impacting on the accuracy of predictions (Graham et al., 2017), while 267 

advanced tools allow verification, validation and uncertainty quantification for such simulations 268 

(Richardson et al., 2020).  269 

Improved simulations do not only speed up the time to an answer but may open up 270 

opportunities to create new types of computational design environments. For example, high-271 
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performance models coupled to virtual reality allow for multiple researchers to interactively 272 

manipulate a system and immediately observe the outcomes of their design decisions. Such 273 

capabilities have already begun to be used for molecular design (O’Connor et al., 2018) and 274 

when, coupled to machine learning technologies, offer a unique setting in which to explore 275 

complex high-dimensional datasets that are common in biology and to distil the essential 276 

features needed to guide predictive design. Furthermore, hybrid approaches become possible 277 

where computational models dynamically augment an experimental setup by controlling 278 

physical features such as light (Rubio Denniss et al., 2019) or magnetism (Carlsen et al., 279 

2014). If agents within the experimental system are responsive to these stimuli, then various 280 

forms of interaction can be externally programmed and rapidly explored to better understand 281 

the necessary conditions for a particular collective behaviour to emerge. Once a desired set of 282 

rules for the interactions is found, the agents can be modified to implement these 283 

autonomously, removing the need for external control. 284 

As synthetic biology moves beyond simple parts and circuits, and toward large-285 

scale/multicellular systems, the available repertoire of design tools must also expand to support 286 

new requirements. Multi-agent modelling is perfectly placed to help make this leap and usher in 287 

new biological design methods focused on the engineering of emergent collective behaviours. 288 

Not only will this allow functionalities to span length scales, but it will also provide a way to 289 

engineer across the organisational levels of life through hierarchical composition of multi-scale 290 

model from basic molecules and cells through to entire ecosystems. 291 

 292 
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Figures and captions 586 

 587 

Figure 1: Multi-agent modelling can support the design of emergent collective functions 588 

in synthetic biology. (A) Key components of a multi-agent model. Populations of autonomous 589 

agents following user-prescribed behaviours (rules) are placed in a virtual environment that 590 

simulates relevant physical processes (e.g. physical collisions, chemical diffusion, movement, 591 

and fluid flows) Simulations of multi-agent models can be used to derive design principles that 592 

capture the basic ingredients (e.g. types of agent, behavioural rules, and physical processes) 593 

needed for particular types of emergent behaviour. (B) Potential applications of multi-agent 594 

modelling within synthetic biology and the underlying agents (bottom, dashed boxes) used to 595 

generate specific emergent collective behaviours (top): (left) exploring how to create life-like 596 

behaviours from basic chemical components with sender protocells (blue) able to spatially 597 

propagate a signal to receiver protocells and bacteria (grey when inactive, red when active) 598 

using a small diffusive chemical (small blue dots); (middle) understanding the developmental 599 

programs used during morphogenesis as a step towards the creation of synthetic multi-cellular 600 

life; (right) improving scale-up of microbial fermentations by accounting for heterogeneity 601 

across a bioreactor and designing engineered microbes able to robustly function under these 602 

conditions. 603 
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