

Towards engineering biosystems with emergent collective functions

Thomas E. Gorochowski^{1,*}, Sabine Hauert^{2,#}, Jan-Ulrich Kreft^{3,#}, Lucia Marucci^{2,#}, Namid R. Stillman^{2,#}, T-Y. Dora Tang^{4,5,#}, Lucia Bandiera⁶, Vittorio Bartoli², Daniel O. R. Dixon⁷, Alex J. H. Fedorec⁸, Harold Fellermann⁹, Alexander G. Fletcher¹⁰, Tim Foster³, Luca Giuggioli², Antoni Matyjaszkiewicz¹¹, Scott McCormick², Sandra Montes Olivas², Jonathan Naylor⁹, Ana Rubio Denniss², Daniel Ward¹

¹ School of Biological Sciences, University of Bristol, UK

² Department of Engineering Mathematics, University of Bristol, UK

³ School of Biosciences & Institute of Microbiology and Infection & Centre for Computational Biology, University of Birmingham, UK

⁴ Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany

⁵ Physics of Life, Cluster of Excellence, TU Dresden, Germany

⁶ School of Engineering, University of Edinburgh, UK

⁷ School of Biochemistry, University of Bristol, UK

⁸ Division of Biosciences, University College London, UK

⁹ School of Computing, Newcastle University, UK

¹⁰ School of Mathematics and Statistics & Bateson Centre, University of Sheffield, UK

¹¹ The European Molecular Biology Laboratory, Barcelona, Spain

These authors all contributed equally to this work.

* Correspondence should be addressed to T.E.G. (thomas.gorochowski@bristol.ac.uk)

Keywords: synthetic biology; multi-agent modelling; individual-based modelling; agent-based modelling; systems biology; emergence; multi-scale; bioengineering; consortia; collectives

1 Abstract

2 Many complex behaviours in biological systems emerge from large populations of interacting
3 molecules or cells, generating functions that go beyond the capabilities of the individual parts.
4 Such collective phenomena are of great interest to bioengineers due to their robustness and
5 scalability. However, engineering emergent collective functions is difficult because they arise as
6 a consequence of complex multi-level feedback, which often spans multiple length-scales.
7 Here, we present a perspective on how some of these challenges could be overcome by using
8 multi-agent modelling as a design framework within synthetic biology. Using case studies
9 covering the construction of synthetic ecologies to biological computation and synthetic
10 cellularity, we show how multi-agent modelling can capture the core features of complex multi-
11 scale systems and provide novel insights into the underlying mechanisms which guide
12 emergent functionalities across scales. The ability to unravel design rules underpinning these
13 behaviours offers a means to take synthetic biology beyond single molecules or cells and
14 towards the creation of systems with functions that can only emerge from collectives at multiple
15 scales.

16 Introduction

17 The evolution of living organisms has exploited the capabilities emerging from large interacting
18 populations of molecules or cells that go beyond those of the individual parts. Likewise, the
19 engineering of emergent collective behaviours could offer an intriguing path to biosystems with
20 improved reliability, robustness and scalability. However, current approaches to biological
21 design are ill-equipped for this task as they tend to focus on a single level of organisation and
22 ignore potential feedbacks between different aspects/levels of a system. A common example is
23 the design of transcriptional regulatory gene expression networks where it is assumed that the
24 function of the entire system can be understood solely by the transcription factor binding and
25 kinetics (Nielsen et al., 2016). While this simplification is useful and powerful, in some cases, if
26 the genes regulated link to metabolic processes there is a chance that feedback via
27 metabolism could break circuit function. Focusing purely on transcriptional networks makes it
28 impossible to capture such behaviours.

29 In physics, great strides have been made through techniques like statistical mechanics
30 to understand emergent phenomena, e.g., using the Ising model to capture magnetic phase
31 transitions (Taroni, 2015). Unfortunately, such simplified models are often unable to capture the
32 broad diversity often present in the components of biological systems and the rules governing
33 their interactions.

34 An alternative approach is to use multi-agent modelling (also termed agent-based or
35 individual-based modelling), which considers key components of a system as explicit
36 entities/agents and allows for diverse interacting populations of these (**Figure 1A**). Specifically,
37 a multi-agent model consists of autonomous agents that represent the lowest level components
38 of the system. Each agent is assigned specific rules governing how it interacts with other
39 agents and the local environment. Populations of these agents are then placed in a simulated
40 environment that captures physical processes of relevance to the system. In biology, this might
41 include the diffusion of chemicals, the flow of fluids, and the mechanical forces that cells can
42 exert on one another. While this approach is capable of discovering some of the core
43 ingredients needed for collective behaviours to emerge (Hellweger et al., 2016), its use to date
44 in synthetic biology has been limited (Gorochowski, 2016).

45 Here, we aim to highlight some of the key areas of synthetic biology where multi-agent
46 modelling offers a unique way to tackle longstanding problems (**Figure 1B**). While the
47 examples we cover are diverse, they all share a core characteristic: the emergence of
48 behaviours in the systems cannot be explained by looking solely at their basic parts in isolation.
49 This essence makes such systems special yet difficult to engineer via traditional means. We
50 propose to extend bioengineering methods to encompass principles gleaned from multi-agent
models and use them to guide the design of synthetic systems displaying emergent

52 phenomena. We end by discussing some of the practical challenges when using multi-agent
53 modelling in synthetic biology and future directions for the marriage of these fields.

54

55 **Understanding the emergence of life**

56 When considering emergent phenomena, the quintessential example is the emergence of life.
57 Putting aside the difficulty of defining precisely what life is, the ability of living systems to self-
58 replicate and create order/information out of chaos is an inspiration for many engineers.
59 Bottom-up synthetic biology attempts to build chemical systems that display life-like behaviours
60 using a minimal set of components. The hope is that these simplified systems might help us
61 understand how life emerged from first principles.

62 One attempt to reach this goal has been via the synthesis of artificial cells (protocells)
63 with life-like properties. This requires the ability to bridge length scales by harnessing molecular
64 self-assembly to create micron-sized compartments (Bayley et al., 2008; Li et al., 2014) and the
65 intricate interactions between molecules and enzymes to form biochemical reaction networks
66 (Hasty et al., 2002). The incorporation of these reaction networks within protocells has also
67 been demonstrated (Adamala et al., 2017; Joesaar et al., 2019) and although chemically
68 simple, such systems display an array of dynamical behaviours including pattern formation
69 (Niederholtmeyer et al., 2015; Zadorin et al., 2017) and replication via controlled growth and
70 division (Chen et al., 2004). By combining these systems with additional chemical modules and
71 parts, this may offer a route to creating other key behaviours of living systems.

72 Building on these capabilities, functionalities can be scaled up further by constructing
73 systems composed of populations of protocells or through interacting natural and artificial
74 cellular communities (Lentini et al., 2014; Adamala et al., 2017; Tang et al., 2018). While such
75 extensions offer a promising platform for probing emergent behaviours using simple self-
76 contained chemical units, it is difficult to know what parameters to engineer into these systems
77 and the level of complexity required to drive a desired collective behaviour. This is where multi-
78 agent modelling, in combination with more traditional models of chemical reaction systems,
79 could lead to a quantitative understanding of the key elements needed for the emergence of
80 life-like behaviours. In particular, multi-agent models would allow for rapid exploration of
81 potential systems using physically realistic parameters until the right combination of parts was
82 found that resulted in a desired emergent functionality.

83 Historically, mathematical models based on differential equations have proved effective
84 for understanding the dynamics of minimal chemical systems (Rovinskii and Zhabotinskii,
85 1984). However, these modelling approaches are not well suited to capturing the stochasticity
86 and heterogeneity that is inherent across populations of natural and artificial cells (Perez-
87 Carrasco et al., 2016). In comparison, multi-agent modelling is able to explicitly capture such
88 variation and consider simplified rules to express internal chemical reactions altering specific

89 characteristics of each component. Due to the chemical simplicity and programmability of
90 minimal protocells, this abstraction is a good fit, allowing iterative refinement of model and
91 experimental system. For example, due to the limited number of possible chemical reactions
92 present in a minimal system, comprehensive direct measurements can be made to create
93 highly predictive rules for how a protocell's chemical state will change over time. These can
94 then drive simulations of accurate protocell behaviours in a multi-agent model to explore the
95 specific combination of reactions required for the emergence of higher population-level
96 functionalities. This two-way cycle of development would be difficult, if not impossible, when
97 using natural cells where complex evolutionary baggage masks those features essential for
98 emergence.

99

100 **Distributed computation during development**

101 Living cells continually monitor their environment and adapt their physiology in order to survive.
102 This requires the processing of information gathered from sensors to make suitable changes to
103 gene expression. Synthetic biology enables us to reprogram cells by writing our own genetic
104 programs to exploit the cells' computational capabilities in new ways (Greco et al., 2019;
105 Grozinger et al., 2019). So far, the majority of research in biological computation has revolved
106 around the concept of genetic circuits and attempted to repurpose tools and methodologies
107 from electronic circuit design (Nielsen et al., 2016; Gorochowski et al., 2017) and automatic
108 verification (Dunn et al., 2014). While this approach has enabled the automated design of
109 cellular programs able to perform basic logic, much of the information processing in native
110 biological systems is distributed, relying on collective decision making (e.g. quorum sensing)
111 and interactions between large numbers of parts.

112 This feature is most evident in developmental biology where robust genetic programs
113 must ensure that a complex multi-cellular organism emerges from a single cell. Cell growth,
114 differentiation, migration and self-organisation are coordinated by a developmental program
115 with dynamics at both the intra- and inter-cellular levels. These enable the generation of
116 precise deterministic patterns from stochastic underlying components (Glen et al., 2019). In
117 contrast to simple logic circuits, the complexity of the molecular interactions and mechanical
118 forces underpinning this process motivates the use of multi-agent modelling to better
119 understand how developmental programs work in morphogenetic systems. In particular, multi-
120 agent models are able to capture the role of cellular heterogeneity, proliferation and
121 morphology, mechanical and environmental cues, movement of cells as well as the integration
122 of multiple processes at diverse scales and the feedback between these (Montes-Olivas et al.,
123 2019). Such models have helped deepen our understanding of early mammalian
124 embryogenesis (Godwin et al., 2017), as well as the formation of vascular networks (Perfahl et

125 al., 2017) and other complex structures and organs, including the skin, lungs (Stopka et al.,
126 2019), kidney (Lambert et al., 2018), and brain (Caffrey et al., 2014).

127 Although such work has provided insights into the computational architecture of native
128 developmental programs, it has been difficult to apply this information to the creation of *de*
129 *novo* morphogenetic systems because of a limited toolkit of parts available to build such
130 systems. Synthetic biology may help solve this issue by facilitating the engineering of simplified
131 multi-cellular systems (Velazquez et al., 2018) that implement developmental programs
132 encompassing distributed feedback regulation (Ausländer and Fussenegger, 2016) and cell-to-
133 cell communication (Bacchus et al., 2012), to better understand how these factors can be used
134 to contribute to emergent self-organisation (Morsut et al., 2016).

135

136 **Collective phenomena driving disease**

137 Many of the challenges treating diseases result from the malfunction of emergent multi-cellular
138 properties, be it carcinogenesis (Deisboeck and Couzin, 2009; Ward et al., 2020), viral infection
139 (Jacob et al., 2004), bacterial biofilm formation (Wu et al., 2020) and microbiome imbalances
140 (Shreiner et al., 2015; Kumar et al., 2019). Multi-agent modelling of these conditions has
141 helped demystify how the collective behaviour of large numbers of diverse cells and their
142 interactions with each other and their environment can lead to negative clinical outcomes.

143 Cancer is a complex multi-scale disease that includes environmental factors, genetic
144 mutations and clonal selection, and complex interactions with the immune system and vascular
145 system. As a result, computational models of cancer need to account for many of these factors
146 considering the heterogeneity and interactions of single cells, yet contain sufficient numbers of
147 them to predict emergent phenomena at a tumour scale (Metzcar et al., 2019). Using this
148 approach, multi-agent models have been used to help understand metastasis (Waclaw et al.,
149 2015) and shown that cancer cells with stem cell-like properties can be a key determinant in
150 cancer progression with fatal consequences (Scott et al., 2016, 2019).

151 Beyond understanding the emergence of some diseases, multi-agent models can also
152 identify novel ways of fixing their dynamics by considering how to disrupt cellular behaviours,
153 and their interactions in space and time (Waclaw et al., 2015; Gallaher et al., 2018).
154 Treatments themselves can even be designed to have collective emergent properties. For
155 example, bacteria have already been engineered to use quorum sensing to trigger their
156 delivery of drugs (Din et al., 2016) or they can be controlled using magnetic fields to penetrate
157 cancerous tissue (Schuerle et al., 2019). Other collective behaviours used in cancer
158 nanomedicine include self-assembly of nanoparticles to anchor imaging agents in tumours,
159 disassembly of nanoparticles to increase tissue penetration, nanoparticles that compute the
160 state of a tumour, nanoparticle-based remodelling of tumour environments to improve

161 secondary nanoparticle transport, or nanoparticle signalling of tumour location to amplify the
162 accumulation of nanoparticles in tumours (Hauert et al., 2013; Hauert and Bhatia, 2014).

163 The emergent properties inherent in many diseases, and the potential to harness such
164 behaviours for new treatments, highlight the need for multi-scale modelling tools. Moreover,
165 with the rapidly expanding field of “systems medicine”, integrated modelling pipelines able to
166 predict multi-scale disease dynamics and assess novel synthetic biology treatments via large-
167 scale simulation and machine learning are positioned to revolutionise many areas of medicine
168 (Stillman et al., 2020).

169

170 Challenges in scaling-up biotechnology

171 The ability for synthetic biology to reprogram cellular metabolisms offers an opportunity to
172 convert cheap substrates (or even waste) into valuable chemicals and materials via microbial
173 fermentation (Nielsen and Keasling, 2016). To make this economically viable, large bioreactors
174 are often used. However, while our use of fermentation stems back millennia (McGovern et al.,
175 2004), we still struggle to reliably scale-up many processes from shake flasks in the lab to
176 industrial-sized bioreactors (Lee and Kim, 2015).

177 A major reason for this problem is the increasing difficulty and power consumption of
178 mixing or aerating reactors as their volume increases, causing pockets to form where nutrient
179 concentration, temperature, oxygen, pH and other factors differ (Alvarez et al., 2005). As a
180 microbe travels through the bioreactor, it becomes exposed to a wide variety of environments,
181 each causing changes in its physiology. Because the path of each cell is unique, a population
182 of cells will therefore display a wide variety of physiological states. This differs from lab-scale
183 experiments where environments are well-mixed and homogeneous, and causes predictions
184 made from these conditions to significantly deviate from those observed during scale-up.

185 Capturing the combined environmental and cellular variability present in a large
186 bioreactor is difficult using standard differential-equation models. In contrast, multi-agent
187 models are able to explicitly capture and link gene regulation, metabolism, and the cells' local
188 environment (Nieß et al., 2017; Haringa et al., 2018), as well as differences between individual
189 cells and how cells change over time (González-Cabaleiro et al., 2017). In particular, hybrid
190 models in which continuous descriptions of complex physical processes like fluid flows are
191 coupled with multi-agent models allow for the efficient simulation of these systems. This
192 approach can accurately predict the emergence of population heterogeneity and overall
193 production rates and help guide bioreactor design to further improve yields (Haringa et al.,
194 2018). Some attempts have also been made to use control engineering principles to design
195 cellular systems able to adapt to fluctuating environments (V. Hsiao et al., 2018). To date,
196 these attempts have mostly focused on the basic genetic parts and regulatory motifs (e.g.
197 negative feedback) needed to implement control algorithms (Ceroni et al., 2018; Aoki et al.,

198 2019; Pedone et al., 2019; Bartoli et al., 2020). Moving forward, multi-agent models offer a
199 means to make simulations of these systems more realistic by accurately capturing how
200 individual cells and their complex environment change over time.

201 Another challenge faced during large-scale fermentation is the opportunity for mutants
202 to arise of unwanted microbes to contaminate a process and out-compete their engineered
203 counterparts (Kazamia et al., 2012; Louca and Doebeli, 2016). Multi-agent models of these
204 complex environments and local competition when multiple types of organism are present,
205 could help support the development of evolutionarily stable strategies (ESSs) that prevent the
206 replacement of an engineered population by competitors (Schuster et al., 2010).

207

208 **Engineering synthetic ecologies**

209 At an even larger organisational level, synthetic biologists have begun to explore how to
210 engineer interactions between communities to enable the future construction of synthetic
211 ecologies (Ben Said and Or, 2017). With climate change, pollution and many other factors
212 leading to the degradation of ecological systems, understanding how these systems emerge
213 and function is crucial. Such knowledge would allow for effective restoration strategies (Solé et
214 al., 2015) and potentially offer means to terraform other planets (e.g. Mars) for future human
215 inhabitation (Conde-Pueyo et al., 2020).

216 These applications require an understanding of how diverse organisms interact to
217 create stable communities (Widder et al., 2016). This is difficult because the interactions that
218 take place at the level of a population are governed by choices made by single-cells (Kreft et
219 al., 2017). By using multi-agent modelling to rapidly test combinations of cell types, behaviours
220 and interactions, and synthetic biology tools to engineer real-world microbial communities, it
221 might become possible to design and test hypotheses regarding the principles for robust
222 ecosystem design. For example, multi-agent modelling has been used to help understand how
223 signalling and mutual cooperation can stabilise microbial communities (Kerényi et al., 2013).
224 Furthermore, from a synthetic biology perspective many of the tools needed to engineer these
225 systems already exist, e.g., biological parts able to implement cooperation (Shou et al., 2007),
226 signalling (Bacchus et al., 2012), targeted death (Fedorec et al., 2019), and collective decision
227 making (e.g. quorum sensing).

228 Beyond engineering interactions between organisms, spatial structure can also play a
229 crucial role in the functionalities of microbial communities. Multi-agent modelling has
230 demonstrated the significant impact that spatio-temporal organisation can have on soil
231 microbes (Jiang et al., 2018) and the success of auxotrophic interactions. Such interactions are
232 particularly important for engineering minimal functional synthetic communities as plant seed
233 treatments and for vertical farming under defined conditions. In this context, whether or not a
234 single cell or division of labour is the evolutionarily stable solution depends on the metabolic

235 flux through the system, with high flux favouring division of labour (Kreft et al., 2020). Extending
236 this modelling approach further to consider the thermodynamics of microbial growth and redox
237 biochemistry could help ensure that resultant systems are ecologically and evolutionarily stable
238 (Zerfaß et al., 2018). Alternatively, external control of the environment could be used to forcibly
239 maintain a desired community structure (Treloar et al., 2020). In all cases, a combination of
240 multi-agent modelling and engineerable biological systems provides a unique means to unravel
241 principles guiding how these complex systems function.

242 External feedback control has been proposed as another approach to control of cellular
243 communities. By employing real-time single cell measurements (e.g. by time-lapse microscopy
244 or flow-cytometry) and experimental systems able to send control signals to the cells via
245 optogenetics (Toettcher et al., 2011) or chemical release in microfluidics (Menolascina et al.,
246 2014), a computer can monitor and signal to a population of cells in order to maintain a desired
247 behaviour (e.g. the expression rate of a protein). More recently, it has been proposed to
248 implement these control algorithms directly into cells, with the key aim of distributing tasks
249 among different strains (Fiore et al., 2017; McCardell et al., 2017). Multi-agent modelling can
250 be instrumental in the design of robust feedback mechanisms across multicellular populations,
251 as it can reveal non-obvious effects of cell density, proliferation dynamics and spatial
252 constraints on the effectiveness of control actions (Fiore et al., 2017).

253

254 **Discussion**

255 We have shown how multi-agent models can be applied to many areas of synthetic biology.
256 The core features of these models provide insight into some of the basic building blocks and
257 mechanisms needed for collective behaviours to emerge and, we believe, may offer a means to
258 support the future predictive design of collective behaviours.

259 A major hurdle to the widespread use of multi-agent modelling is the need to define and
260 simulate complex models (Grimm et al., 2006). Although computational frameworks have been
261 available since the 1980s to support this process, it is only during the past decade that tools
262 have been tailored for synthetic biology applications and reached sufficient performance
263 (Gorochowski et al., 2012; Oishi and Klavins, 2014; Goñi-Moreno and Amos, 2015). More
264 recently, the effective use of highly parallel computing resources has expanded the complexity
265 of biological models that can be simulated (Rudge et al., 2012; Naylor et al., 2017; Li et al.,
266 2019; Cooper et al., 2020). Automated coarse-graining of representations enable faster
267 simulation without impacting on the accuracy of predictions (Graham et al., 2017), while
268 advanced tools allow verification, validation and uncertainty quantification for such simulations
269 (Richardson et al., 2020).

270 Improved simulations do not only speed up the time to an answer but may open up
271 opportunities to create new types of computational design environments. For example, high-

272 performance models coupled to virtual reality allow for multiple researchers to interactively
273 manipulate a system and immediately observe the outcomes of their design decisions. Such
274 capabilities have already begun to be used for molecular design (O'Connor et al., 2018) and
275 when, coupled to machine learning technologies, offer a unique setting in which to explore
276 complex high-dimensional datasets that are common in biology and to distil the essential
277 features needed to guide predictive design. Furthermore, hybrid approaches become possible
278 where computational models dynamically augment an experimental setup by controlling
279 physical features such as light (Rubio Denniss et al., 2019) or magnetism (Carlsen et al.,
280 2014). If agents within the experimental system are responsive to these stimuli, then various
281 forms of interaction can be externally programmed and rapidly explored to better understand
282 the necessary conditions for a particular collective behaviour to emerge. Once a desired set of
283 rules for the interactions is found, the agents can be modified to implement these
284 autonomously, removing the need for external control.

285 As synthetic biology moves beyond simple parts and circuits, and toward large-
286 scale/multicellular systems, the available repertoire of design tools must also expand to support
287 new requirements. Multi-agent modelling is perfectly placed to help make this leap and usher in
288 new biological design methods focused on the engineering of emergent collective behaviours.
289 Not only will this allow functionalities to span length scales, but it will also provide a way to
290 engineer across the organisational levels of life through hierarchical composition of multi-scale
291 model from basic molecules and cells through to entire ecosystems.

292

293 **Acknowledgements**

294 This work captures discussions between participants at the 'Multi-agent modelling meets
295 synthetic biology' workshop held on the 16–17 May 2019 at the University of Bristol, UK and
296 funded by BrisSynBio, a BBSRC/EPSRC Synthetic Biology Research Centre (grant
297 BB/L01386X/1). T.E.G. was supported by a Royal Society University Research Fellowship
298 (grant UF160357). D.O.R.D. and V.B. were supported by the University of Bristol and the
299 EPSRC & BBSRC Centre for Doctoral Training in Synthetic Biology (grant EP/L016494/1). L.B.
300 was supported by EPSRC (grant EP/P017134/1-COND SYC). A.J.H.F. received funding from
301 the European Research Council under the European Union's Horizon 2020 research and
302 innovation programme (grant 770835). L.M. was supported by the Medical Research Council
303 (grant MR/N021444/1), and the Engineering and Physical Sciences Research Council (grants
304 EP/R041695/1 and EP/S01876X/1). S.M.O. was supported by a Mexico Consejo Nacional de
305 Ciencia y Tecnología (CONACYT) PhD scholarship. T.F. and J.-U.K. are grateful to the UK
306 National Centre for the Replacement, Refinement & Reduction of Animals in Research
307 (NC3Rs) for funding their development of individual-based models (IBMs) for the gut
308 environment (eGUT grant NC/K000683/1 and PhD training grant NC/R001707/1). S.H., N.S.,

309 and S.M. received funding from the European Union's Horizon 2020 FET Open programme
310 (grant 800983). T.-Y.D.T acknowledges financial support from the MaxSynBio Consortium
311 (jointly funded by the Federal Ministry of Education and Research, Germany and the Max
312 Planck Society); and the MPI-CBG and the Cluster of Excellence Physics of Life of TU Dresden
313 and EXC-1056 for funding.

314

315 **Author contributions**

316 T.E.G., S.H., J.-U.K., L.M., N.S., T.-Y.D.T. wrote the manuscript. All other authors helped with
317 editing or provided feedback.

318

319 **Conflicts of interest**

320 The authors declare no competing financial interests.

321 **References**

322 Adamala, K. P., Martin-Alarcon, D. A., Guthrie-Honea, K. R., and Boyden, E. S. (2017).
323 Engineering genetic circuit interactions within and between synthetic minimal cells. *Nat.*
324 *Chem.* **9**, 431–439. doi:10.1038/nchem.2644.

325 Alvarez, M. M., Guzmán, A., and Elías, M. (2005). Experimental visualization of mixing
326 pathologies in laminar stirred tank bioreactors. *5th Int. Symp. Mix. Ind. Process. ISMIP5*
327 **60**, 2449–2457. doi:10.1016/j.ces.2004.11.049.

328 Aoki, S. K., Lillacci, G., Gupta, A., Baumschlager, A., Schweingruber, D., and Khammash, M.
329 (2019). A universal biomolecular integral feedback controller for robust perfect
330 adaptation. *Nature* **570**, 533–537. doi:10.1038/s41586-019-1321-1.

331 Ausländer, S., and Fussenegger, M. (2016). Engineering Gene Circuits for Mammalian Cell–
332 Based Applications. *Cold Spring Harb. Perspect. Biol.* **8**.
333 doi:10.1101/cshperspect.a023895.

334 Bacchus, W., Lang, M., El-Baba, M. D., Weber, W., Stelling, J., and Fussenegger, M. (2012).
335 Synthetic two-way communication between mammalian cells. *Nat. Biotechnol.* **30**, 991–
336 996. doi:10.1038/nbt.2351.

337 Bartoli, V., Meaker, G. A., di Bernardo, M., and Gorochowski, T. E. (2020). Tunable genetic
338 devices through simultaneous control of transcription and translation. *Nat. Commun.*
339 doi:10.1038/s41467-020-15653-7.

340 Bayley, H., Cronin, B., Heron, A., Holden, M. A., Hwang, W. L., Syeda, R., et al. (2008). Droplet
341 interface bilayers. *Mol. Biosyst.* **4**, 1191–1208. doi:10.1039/B808893D.

342 Ben Said, S., and Or, D. (2017). Synthetic Microbial Ecology: Engineering Habitats for Modular
343 Consortia. *Front. Microbiol.* **8**, 1125. doi:10.3389/fmicb.2017.01125.

344 Caffrey, J. R., Hughes, B. D., Britto, J. M., and Landman, K. A. (2014). An in silico agent-based
345 model demonstrates Reelin function in directing lamination of neurons during cortical
346 development. *PLoS One* **9**, e110415. doi:10.1371/journal.pone.0110415.

347 Carlsen, R. W., Edwards, M. R., Zhuang, J., Pacoret, C., and Sitti, M. (2014). Magnetic steering
348 control of multi-cellular bio-hybrid microswimmers. *Lab. Chip* **14**, 3850–3859.
349 doi:10.1039/C4LC00707G.

350 Ceroni, F., Boo, A., Furini, S., Gorochowski, T. E., Borkowski, O., Ladak, Y. N., et al. (2018).
351 Burden-driven feedback control of gene expression. *Nat. Methods* 15, 387–393.
352 doi:10.1038/nmeth.4635.

353 Chen, I. A., Roberts, R. W., and Szostak, J. W. (2004). The Emergence of Competition
354 Between Model Protocells. *Science* 305, 1474. doi:10.1126/science.1100757.

355 Conde-Pueyo, N., Vidiella, B., Sardanyés, J., Berdugo, M., Maestre, T. F., de Lorenzo, V., et al.
356 (2020). Synthetic Biology for Terraformation Lessons from Mars, Earth, and the
357 Microbiome. *Life* 10. doi:10.3390/life10020014.

358 Cooper, F. R., Baker, R. E., Bernabeu, M. O., Bordas, R., Bowler, L., Bueno-Orovio, A., et al.
359 (2020). Chaste: Cancer, Heart and Soft Tissue Environment. *J. Open Source Softw.* 5,
360 1848. doi:10.21105/joss.01848.

361 Deisboeck, T. S., and Couzin, I. D. (2009). Collective behavior in cancer cell populations.
362 *BioEssays* 31, 190–197. doi:10.1002/bies.200800084.

363 Din, M. O., Danino, T., Prindle, A., Skalak, M., Selimkhanov, J., Allen, K., et al. (2016).
364 Synchronized cycles of bacterial lysis for in vivo delivery. *Nature* 536, 81–85.
365 doi:10.1038/nature18930.

366 Dunn, S.-J., Martello, G., Yordanov, B., Emmott, S., and Smith, A. G. (2014). Defining an
367 essential transcription factor program for naïve pluripotency. *Science* 344, 1156.
368 doi:10.1126/science.1248882.

369 Fedorec, A. J. H., Karkaria, B. D., Sulu, M., and Barnes, C. P. (2019). Killing in response to
370 competition stabilises synthetic microbial consortia. *bioRxiv*, 2019.12.23.887331.
371 doi:10.1101/2019.12.23.887331.

372 Fiore, G., Matyjaszkiewicz, A., Annunziata, F., Grierson, C., Savery, N. J., Marucci, L., et al.
373 (2017). In-Silico Analysis and Implementation of a Multicellular Feedback Control
374 Strategy in a Synthetic Bacterial Consortium. *ACS Synth. Biol.* 6, 507–517.
375 doi:10.1021/acssynbio.6b00220.

376 Gallaher, J. A., Enriquez-Navas, P. M., Luddy, K. A., Gatenby, R. A., and Anderson, A. R. A.
377 (2018). Spatial Heterogeneity and Evolutionary Dynamics Modulate Time to Recurrence
378 in Continuous and Adaptive Cancer Therapies. *Cancer Res.* 78, 2127.
379 doi:10.1158/0008-5472.CAN-17-2649.

380 Glen, C. M., Kemp, M. L., and Voit, E. O. (2019). Agent-based modeling of morphogenetic
381 systems: Advantages and challenges. *PLOS Comput. Biol.* **15**, e1006577.
382 doi:10.1371/journal.pcbi.1006577.

383 Godwin, S., Ward, D., Pedone, E., Homer, M., Fletcher, A. G., and Marucci, L. (2017). An
384 extended model for culture-dependent heterogenous gene expression and proliferation
385 dynamics in mouse embryonic stem cells. *Npj Syst. Biol. Appl.* **3**, 19.
386 doi:10.1038/s41540-017-0020-5.

387 Goñi-Moreno, A., and Amos, M. (2015). DiSCUS: A Simulation Platform for Conjugation
388 Computing. in *Unconventional Computation and Natural Computation*, eds. C. S.
389 Calude and M. J. Dinneen (Cham: Springer International Publishing), 181–191.

390 González-Cabaleiro, R., Mitchell, A. M., Smith, W., Wipat, A., and Ofișeru, I. D. (2017).
391 Heterogeneity in Pure Microbial Systems: Experimental Measurements and Modeling.
392 *Front. Microbiol.* **8**, 1813. doi:10.3389/fmicb.2017.01813.

393 Gorochowski, T. E. (2016). Agent-based modelling in synthetic biology. *Essays Biochem.* **60**,
394 325. doi:10.1042/EBC20160037.

395 Gorochowski, T. E., Espah Borujeni, A., Park, Y., Nielsen, A. A., Zhang, J., Der, B. S., et al.
396 (2017). Genetic circuit characterization and debugging using RNA-seq. *Mol. Syst. Biol.*
397 **13**, 952. doi:10.15252/msb.20167461.

398 Gorochowski, T. E., Matyjaszkiewicz, A., Todd, T., Oak, N., Kowalska, K., Reid, S., et al.
399 (2012). BSim: An Agent-Based Tool for Modeling Bacterial Populations in Systems and
400 Synthetic Biology. *PLOS ONE* **7**, e42790. doi:10.1371/journal.pone.0042790.

401 Graham, J. A., Essex, J. W., and Khalid, S. (2017). PyCGTOOL: Automated Generation of
402 Coarse-Grained Molecular Dynamics Models from Atomistic Trajectories. *J. Chem. Inf.
403 Model.* **57**, 650–656. doi:10.1021/acs.jcim.7b00096.

404 Greco, F. V., Tarnowski, M. J., and Gorochowski, T. E. (2019). Living computers powered by
405 biochemistry. *The Biochemist* **41**, 14–18.

406 Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A
407 standard protocol for describing individual-based and agent-based models. *Ecol. Model.*
408 **198**, 115–126. doi:10.1016/j.ecolmodel.2006.04.023.

409 Grozinger, L., Amos, M., Gorochowski, T. E., Carbonell, P., Oyarzún, D. A., Stoof, R., et al.
410 (2019). Pathways to cellular supremacy in biocomputing. *Nat. Commun.* **10**, 5250.
411 doi:10.1038/s41467-019-13232-z.

412 Haringa, C., Tang, W., Wang, G., Deshmukh, A. T., van Winden, W. A., Chu, J., et al. (2018).
413 Computational fluid dynamics simulation of an industrial *P. chrysogenum* fermentation
414 with a coupled 9-pool metabolic model: Towards rational scale-down and design
415 optimization. *Chem. Eng. Sci.* **175**, 12–24. doi:10.1016/j.ces.2017.09.020.

416 Hasty, J., McMillen, D., and Collins, J. J. (2002). Engineered gene circuits. *Nature* **420**, 224–
417 230. doi:10.1038/nature01257.

418 Hauert, S., Berman, S., Nagpal, R., and Bhatia, S. N. (2013). A computational framework for
419 identifying design guidelines to increase the penetration of targeted nanoparticles into
420 tumors. *Nano Today* **8**, 566–576. doi:10.1016/j.nantod.2013.11.001.

421 Hauert, S., and Bhatia, S. N. (2014). Mechanisms of cooperation in cancer nanomedicine:
422 towards systems nanotechnology. *Trends Biotechnol.* **32**, 448–455.
423 doi:10.1016/j.tibtech.2014.06.010.

424 Hellweger, F. L., Clegg, R. J., Clark, J. R., Plugge, C. M., and Kreft, J.-U. (2016). Advancing
425 microbial sciences by individual-based modelling. *Nat. Rev. Microbiol.* **14**, 461–471.
426 doi:10.1038/nrmicro.2016.62.

427 Jacob, C., Litorco, J., and Lee, L. (2004). Immunity Through Swarms: Agent-Based Simulations
428 of the Human Immune System. in *Artificial Immune Systems*, eds. G. Nicosia, V.
429 Cutello, P. J. Bentley, and J. Timmis (Berlin, Heidelberg: Springer Berlin Heidelberg),
430 400–412.

431 Jiang, X., Zerfaß, C., Feng, S., Eichmann, R., Asally, M., Schäfer, P., et al. (2018). Impact of
432 spatial organization on a novel auxotrophic interaction among soil microbes. *ISME J.*
433 **12**, 1443–1456. doi:10.1038/s41396-018-0095-z.

434 Joesaar, A., Yang, S., Bögels, B., van der Linden, A., Pieters, P., Kumar, B. V. V. S. P., et al.
435 (2019). DNA-based communication in populations of synthetic protocells. *Nat.*
436 *Nanotechnol.* **14**, 369–378. doi:10.1038/s41565-019-0399-9.

437 Kazamia, E., Aldridge, D. C., and Smith, A. G. (2012). Synthetic ecology – A way forward for
438 sustainable algal biofuel production? *Photosynth. Microorg. Bio-Fuel Prod. Sun Light*
439 **162**, 163–169. doi:10.1016/j.jbiotec.2012.03.022.

440 Kerényi, Á., Bihary, D., Venturi, V., and Pongor, S. (2013). Stability of Multispecies Bacterial
441 Communities: Signaling Networks May Stabilize Microbiomes. *PLOS ONE* 8, e57947.
442 doi:10.1371/journal.pone.0057947.

443 Kreft, J.-U., Griffin, B. M., and González-Cabaleiro, R. (2020). Evolutionary causes and
444 consequences of metabolic division of labour: why anaerobes do and aerobes don't.
445 *Curr. Opin. Biotechnol.* 62, 80–87. doi:10.1016/j.copbio.2019.08.008.

446 Kreft, J.-U., Plugge, C. M., Prats, C., Leveau, J. H. J., Zhang, W., and Hellweger, F. L. (2017).
447 From Genes to Ecosystems in Microbiology: Modeling Approaches and the Importance
448 of Individuality. *Front. Microbiol.* 8, 2299. doi:10.3389/fmicb.2017.02299.

449 Kumar, M., Ji, B., Zengler, K., and Nielsen, J. (2019). Modelling approaches for studying the
450 microbiome. *Nat. Microbiol.* 4, 1253–1267. doi:10.1038/s41564-019-0491-9.

451 Lambert, B., MacLean, A. L., Fletcher, A. G., Combes, A. N., Little, M. H., and Byrne, H. M.
452 (2018). Bayesian inference of agent-based models: a tool for studying kidney branching
453 morphogenesis. *J. Math. Biol.* 76, 1673–1697. doi:10.1007/s00285-018-1208-z.

454 Lee, S. Y., and Kim, H. U. (2015). Systems strategies for developing industrial microbial
455 strains. *Nat. Biotechnol.* 33, 1061–1072. doi:10.1038/nbt.3365.

456 Lentini, R., Santero, S. P., Chizzolini, F., Cecchi, D., Fontana, J., Marchioretto, M., et al.
457 (2014). Integrating artificial with natural cells to translate chemical messages that direct
458 *E. coli* behaviour. *Nat. Commun.* 5, 4012. doi:10.1038/ncomms5012.

459 Li, B., Taniguchi, D., Gedara, J. P., Gogulancea, V., Gonzalez-Cabaleiro, R., Chen, J., et al.
460 (2019). NUFEB: A massively parallel simulator for individual-based modelling of
461 microbial communities. *PLOS Comput. Biol.* 15, e1007125.
462 doi:10.1371/journal.pcbi.1007125.

463 Li, M., Huang, X., Tang, T.-Y. D., and Mann, S. (2014). Synthetic cellularity based on non-lipid
464 micro-compartments and protocell models. *Synth. Biol. • Synth. Biomol.* 22, 1–11.
465 doi:10.1016/j.cbs.2014.05.018.

466 Louca, S., and Doebeli, M. (2016). Transient dynamics of competitive exclusion in microbial
467 communities. *Environ. Microbiol.* 18, 1863–1874. doi:10.1111/1462-2920.13058.

468 McCardell, R. D., Huang, S., Green, L. N., and Murray, R. M. (2017). Control of bacterial
469 population density with population feedback and molecular sequestration. *bioRxiv*,
470 225045. doi:10.1101/225045.

471 McGovern, P. E., Zhang, J., Tang, J., Zhang, Z., Hall, G. R., Moreau, R. A., et al. (2004).
472 Fermented beverages of pre- and proto-historic China. *Proc. Natl. Acad. Sci. U. S. A.*
473 101, 17593. doi:10.1073/pnas.0407921102.

474 Menolascina, F., Fiore, G., Orabona, E., De Stefano, L., Ferry, M., Hasty, J., et al. (2014). In-
475 Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene
476 Networks. *PLOS Comput. Biol.* 10, e1003625. doi:10.1371/journal.pcbi.1003625.

477 Metzcar, J., Wang, Y., Heiland, R., and Macklin, P. (2019). A Review of Cell-Based
478 Computational Modeling in Cancer Biology. *JCO Clin. Cancer Inform.*, 1–13.
479 doi:10.1200/CCCI.18.00069.

480 Montes-Olivas, S., Marucci, L., and Homer, M. (2019). Mathematical Models of Organoid
481 Cultures. *Front. Genet.* 10, 873. doi:10.3389/fgene.2019.00873.

482 Morsut, L., Roybal, K. T., Xiong, X., Gordley, R. M., Coyle, S. M., Thomson, M., et al. (2016).
483 Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch
484 Receptors. *Cell* 164, 780–791. doi:10.1016/j.cell.2016.01.012.

485 Naylor, J., Fellermann, H., Ding, Y., Mohammed, W. K., Jakubovics, N. S., Mukherjee, J., et al.
486 (2017). Simbiotics: A Multiscale Integrative Platform for 3D Modeling of Bacterial
487 Populations. *ACS Synth. Biol.* 6, 1194–1210. doi:10.1021/acssynbio.6b00315.

488 Niederholtmeyer, H., Sun, Z. Z., Hori, Y., Yeung, E., Verpoorte, A., Murray, R. M., et al. (2015).
489 Rapid cell-free forward engineering of novel genetic ring oscillators. *eLife* 4, e09771.
490 doi:10.7554/eLife.09771.

491 Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., et al.
492 (2016). Genetic circuit design automation. *Science* 352, aac7341.
493 doi:10.1126/science.aac7341.

494 Nielsen, J., and Keasling, J. D. (2016). Engineering Cellular Metabolism. *Cell* 164, 1185–1197.
495 doi:10.1016/j.cell.2016.02.004.

496 Nieß, A., Löffler, M., Simen, J. D., and Takors, R. (2017). Repetitive Short-Term Stimuli
497 Imposed in Poor Mixing Zones Induce Long-Term Adaptation of *E. coli* Cultures in
498 Large-Scale Bioreactors: Experimental Evidence and Mathematical Model. *Front.*
499 *Microbiol.* 8, 1195. doi:10.3389/fmicb.2017.01195.

500 O'Connor, M., Deeks, H. M., Dawn, E., Metatla, O., Roudaut, A., Sutton, M., et al. (2018).
501 Sampling molecular conformations and dynamics in a multiuser virtual reality
502 framework. *Sci. Adv.* **4**, eaat2731. doi:10.1126/sciadv.aat2731.

503 Oishi, K., and Klavins, E. (2014). Framework for Engineering Finite State Machines in Gene
504 Regulatory Networks. *ACS Synth. Biol.* **3**, 652–665. doi:10.1021/sb4001799.

505 Pedone, E., Postiglione, L., Aulicino, F., Rocca, D. L., Montes-Olivas, S., Khazim, M., et al.
506 (2019). A tunable dual-input system for on-demand dynamic gene expression
507 regulation. *Nat. Commun.* **10**, 4481. doi:10.1038/s41467-019-12329-9.

508 Perez-Carrasco, R., Guerrero, P., Briscoe, J., and Page, K. M. (2016). Intrinsic Noise
509 Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable
510 Genetic Switches. *PLOS Comput. Biol.* **12**, e1005154.
511 doi:10.1371/journal.pcbi.1005154.

512 Perfahl, H., Hughes, B. D., Alarcón, T., Maini, P. K., Lloyd, M. C., Reuss, M., et al. (2017). 3D
513 hybrid modelling of vascular network formation. *J. Theor. Biol.* **414**, 254–268.
514 doi:10.1016/j.jtbi.2016.11.013.

515 Richardson, R. A., Wright, D. W., Edeling, W., Jancauskas, V., Lakhili, J., and Coveney, P. V.
516 (2020). EasyVVUQ: A Library for Verification, Validation and Uncertainty Quantification
517 in High Performance Computing. *J. Open Res. Softw.* **8**, 11. doi:10.5334/jors.303.

518 Rovinskii, A. B., and Zhabotinskii, A. M. (1984). Mechanism and mathematical model of the
519 oscillating bromate-ferroin-bromomalonic acid reaction. *J. Phys. Chem.* **88**, 6081–6084.
520 doi:10.1021/j150669a001.

521 Rubio Denniss, A. M., Gorochowski, T. E., and Hauert, S. (2019). Augmented reality for the
522 engineering of collective behaviours in microsystems. *2019 IEEE Int. Conf. Manip.
523 Autom. Robot. Small Scales MARSS 2019*.

524 Rudge, T. J., Steiner, P. J., Phillips, A., and Haseloff, J. (2012). Computational Modeling of
525 Synthetic Microbial Biofilms. *ACS Synth. Biol.* **1**, 345–352. doi:10.1021/sb300031n.

526 Schuerle, S., Soleimany, A. P., Yeh, T., Anand, G. M., Häberli, M., Fleming, H. E., et al. (2019).
527 Synthetic and living micropropellers for convection-enhanced nanoparticle transport.
528 *Sci. Adv.* **5**, eaav4803. doi:10.1126/sciadv.aav4803.

529 Schuster, S., Kreft, J.-U., Brenner, N., Wessely, F., Theißen, G., Ruppin, E., et al. (2010).
530 Cooperation and cheating in microbial exoenzyme production – Theoretical analysis for
531 biotechnological applications. *Biotechnol. J.* **5**, 751–758. doi:10.1002/biot.200900303.

532 Scott, J. G., Fletcher, A. G., Anderson, A. R. A., and Maini, P. K. (2016). Spatial Metrics of
533 Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model.
534 *PLOS Comput. Biol.* **12**, e1004712. doi:10.1371/journal.pcbi.1004712.

535 Scott, J. G., Maini, P. K., Anderson, A. R., and Fletcher, A. G. (2019). Inferring Tumor
536 Proliferative Organization from Phylogenetic Tree Measures in a Computational Model.
537 *Syst. Biol.* doi:10.1093/sysbio/syz070.

538 Shou, W., Ram, S., and Vilar, J. M. G. (2007). Synthetic cooperation in engineered yeast
539 populations. *Proc. Natl. Acad. Sci.* **104**, 1877. doi:10.1073/pnas.0610575104.

540 Shreiner, A. B., Kao, J. Y., and Young, V. B. (2015). The gut microbiome in health and in
541 disease. *Curr. Opin. Gastroenterol.* **31**. Available at: https://journals.lww.com/coga/gastroenterology/Fulltext/2015/01000/The_gut_microbiome_in_health_and_in_disease.12.aspx.

544 Solé, R. V., Montañez, R., and Duran-Nebreda, S. (2015). Synthetic circuit designs for earth
545 terraformation. *Biol. Direct* **10**, 37. doi:10.1186/s13062-015-0064-7.

546 Stillman, N. R., Kovacevic, M., Balaz, I., and Hauert, S. (2020). In silico modelling of cancer
547 nanomedicine, across scales and transport barriers.

548 Stopka, A., Kokic, M., and Iber, D. (2019). Cell-based simulations of biased epithelial lung
549 growth. *Phys. Biol.* **17**, 016006. doi:10.1088/1478-3975/ab5613.

550 Tang, T.-Y. D., Cecchi, D., Fracasso, G., Accardi, D., Coutable-Pennarun, A., Mansy, S. S., et
551 al. (2018). Gene-Mediated Chemical Communication in Synthetic Protocell
552 Communities. *ACS Synth. Biol.* **7**, 339–346. doi:10.1021/acssynbio.7b00306.

553 Taroni, A. (2015). 90 years of the Ising model. *Nat. Phys.* **11**, 997–997.
554 doi:10.1038/nphys3595.

555 Toettcher, J. E., Gong, D., Lim, W. A., and Weiner, O. D. (2011). Light-based feedback for
556 controlling intracellular signaling dynamics. *Nat. Methods* **8**, 837–839.
557 doi:10.1038/nmeth.1700.

558 Treloar, N. J., Fedorec, A. J. H., Ingalls, B., and Barnes, C. P. (2020). Deep reinforcement
559 learning for the control of microbial co-cultures in bioreactors. *PLoS Comput. Biol.* **16**,
560 e1007783. doi:10.1371/journal.pcbi.1007783.

561 V. Hsiao, A. Swaminathan, and R. M. Murray (2018). Control Theory for Synthetic Biology:
562 Recent Advances in System Characterization, Control Design, and Controller
563 Implementation for Synthetic Biology. *IEEE Control Syst. Mag.* **38**, 32–62.

564 Velazquez, J. J., Su, E., Cahan, P., and Ebrahimkhani, M. R. (2018). Programming
565 Morphogenesis through Systems and Synthetic Biology. *Trends Biotechnol.* **36**, 415–
566 429. doi:10.1016/j.tibtech.2017.11.003.

567 Waclaw, B., Bozic, I., Pittman, M. E., Hruban, R. H., Vogelstein, B., and Nowak, M. A. (2015). A
568 spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity.
569 *Nature* **525**, 261–264. doi:10.1038/nature14971.

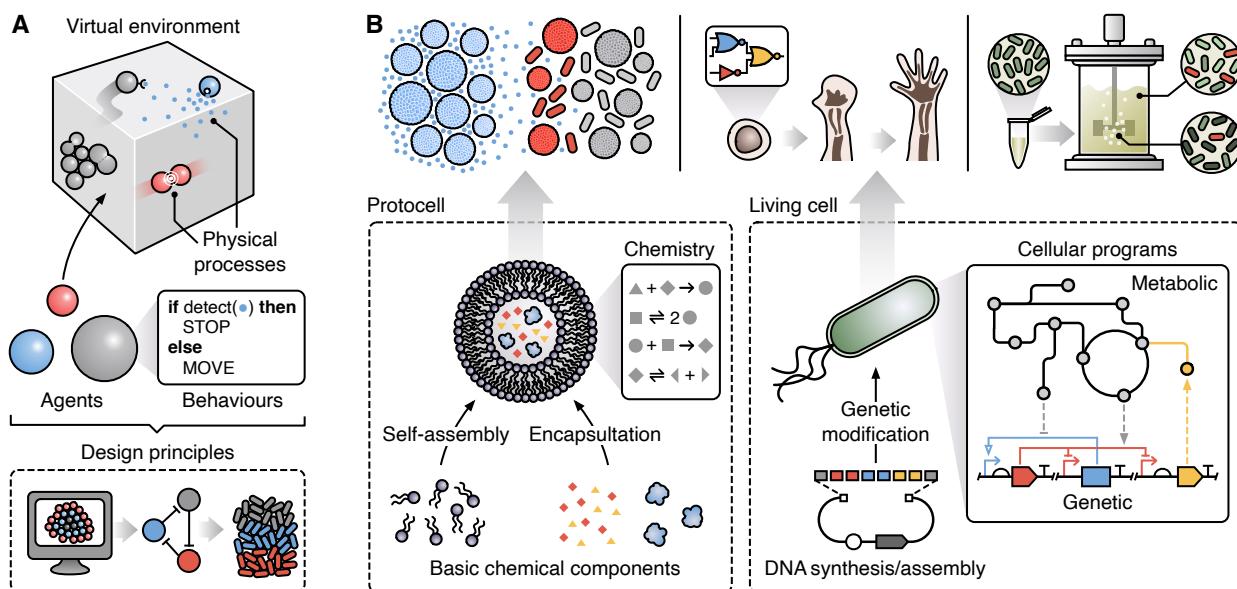
570 Ward, D., Montes Olivas, S., Fletcher, A., Homer, M., and Marucci, L. (2020). Cross-talk
571 between Hippo and Wnt signalling pathways in intestinal crypts: Insights from an agent-
572 based model. *Comput. Struct. Biotechnol. J.* **18**, 230–240.
573 doi:10.1016/j.csbj.2019.12.015.

574 Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., et al. (2016).
575 Challenges in microbial ecology: building predictive understanding of community
576 function and dynamics. *ISME J.* **10**, 2557–2568. doi:10.1038/ismej.2016.45.

577 Wu, S., Liu, J., Liu, C., Yang, A., and Qiao, J. (2020). Quorum sensing for population-level
578 control of bacteria and potential therapeutic applications. *Cell. Mol. Life Sci.* **77**, 1319–
579 1343. doi:10.1007/s00018-019-03326-8.

580 Zadorin, A. S., Rondelez, Y., Gines, G., Dilhas, V., Urtel, G., Zambrano, A., et al. (2017).
581 Synthesis and materialization of a reaction–diffusion French flag pattern. *Nat. Chem.* **9**,
582 990–996. doi:10.1038/nchem.2770.

583 Zerfaß, C., Chen, J., and Soyer, O. S. (2018). Engineering microbial communities using
584 thermodynamic principles and electrical interfaces. *Energy Biotechnol. • Environ.*
585 *Biotechnol.* **50**, 121–127. doi:10.1016/j.copbio.2017.12.004.

586 **Figures and captions**

588 **Figure 1: Multi-agent modelling can support the design of emergent collective functions**
 589 **in synthetic biology.** (A) Key components of a multi-agent model. Populations of autonomous
 590 agents following user-prescribed behaviours (rules) are placed in a virtual environment that
 591 simulates relevant physical processes (e.g. physical collisions, chemical diffusion, movement,
 592 and fluid flows) Simulations of multi-agent models can be used to derive design principles that
 593 capture the basic ingredients (e.g. types of agent, behavioural rules, and physical processes)
 594 needed for particular types of emergent behaviour. (B) Potential applications of multi-agent
 595 modelling within synthetic biology and the underlying agents (bottom, dashed boxes) used to
 596 generate specific emergent collective behaviours (top): (left) exploring how to create life-like
 597 behaviours from basic chemical components with sender protocells (blue) able to spatially
 598 propagate a signal to receiver protocells and bacteria (grey when inactive, red when active)
 599 using a small diffusive chemical (small blue dots); (middle) understanding the developmental
 600 programs used during morphogenesis as a step towards the creation of synthetic multi-cellular
 601 life; (right) improving scale-up of microbial fermentations by accounting for heterogeneity
 602 across a bioreactor and designing engineered microbes able to robustly function under these
 603 conditions.