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Abstract. One of the typical forms of linear matrix expressions (linear matrix-valued functions) is given by
A + B1X1C1 + · · · + BkXkCk, where X1, . . . , Xk are independent variable matrices of appropriate sizes, which include
almost all matrices with unknown entries as its special cases. The domain of the matrix expression is defined to be all
possible values of the matrix expressions with respect to X1, . . . , Xk. I this article, we approach some problems on the
relationships between the domains of two linear matrix expressions by means of the block matrix method (BMM), the
matrix rank method (MRM), and the matrix equation method (MEM). As application, we discuss some topics on the
relationships among general solutions of some linear matrix equations and their reduced equations.
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1 Introduction

Throughout this article, we denote by Cm×n the set of all m×n complex matrices; by A∗, r(A), and R(A) the
conjugate transpose, the rank, and the range (column space) of a matrix A ∈ Cm×n, respectively; by Im the
identity matrix of order m; and [A, B] be a row block matrix consisting of A and B. A matrix A ∈ Cm×m is
said to be EP (or range Hermitian) if R(A∗) = R(A) holds. We next introduce the definition and notation of
generalized inverses of a matrix. The Moore–Penrose inverse of A ∈ Cm×n, denoted by A†, is the unique matrix
X ∈ Cn×m satisfying the four Penrose equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA. (1.1)

A matrix X is called an {i, . . . , j}-generalized inverse of A, denoted by A(i,...,j), if it satisfies the ith, . . ., jth
equations in (1.1). The collection of all {i, . . . , j}-generalized inverses of A is denoted by {(A(i,...,j)}. There are
all 15 types of {i, . . . , j}-generalized inverses for a given matrix A by definition, but people are mainly interested
in the types that involve the first equation:

A†, A(1,3,4), A(1,2,4), A(1,2,3), A(1,4), A(1,3), A(1,2), A(1), (1.2)

which are usually called the eight commonly-used types of generalized inverses of A in the literature; see
e.g., [4, 5, 18]. In addition, we also denote by PA = Im − AA† and QA = In − A†A the orthogonal projectors
(Hermitian idempotent matrices) induced from A. The Kronecker product of any two matrices A and B is
defined to be A ⊗ B = (aijB). The vectorization operator of a matrix A = [a1, . . . ,an] is defined to be

vec(A) =
−→
A = [a>1 , . . . ,a

>
n ]>. A well-known property on the vec operator of a triple matrix product is

−−−→
AXB = (B> ⊗A)

−→
X ; see e.g., [3, 20].

Linear matrix expressions that involve variable matrices arise in a variety of problems in pure and applied
mathematics. In the present paper we pursue our study of a general linear matrix expressions of the form

f(X1, X2, . . . , Xk) = A+B1X1C1 +B2X2C2 + · · ·+BkXkCk, (1.3)

where A ∈ Cm×n, Bi ∈ Cm×pi , and Ci ∈ Cqi×n are given, and Xi ∈ Cpi×qi are variable matrices, i = 1, 2, . . . , k.
Eq. (1.3) is usually called a Linear Matrix-Valued Function (LMVF), while the collection of all possible matrix
values of (1.3), called the domain of (1.3), is denoted schematically by

Df = {f(X1, X2, . . . , Xk) | Xi ∈ Cpi×qi , i = 1, 2, . . . , k}. (1.4)

Eq. (1.3) includes many kinds of well-known matrix expressions with variable entries as its special cases, such
as, A+BX, A+BXC, A+BX + Y C, see e.g., [25,27], as well as various partially specified matrices, such as,[
A B
C ?

]
,

[
A ?
? D

]
,

[
A ?
? ?

]
, etc, see e.g., [1, 7, 8, 11, 12]. There are many natural modifications of considering

the LMVFs in mathematics and applications. Here we mention a few:
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(I) The general solution of a consistent linear matrix equation AX = B is X = A−B + (I − A−A)U , where
A− denotes a g-inverse of A and the matrix U is arbitrary; the general solution of a consistent linear
matrix equation AXB = C can be written as X = A−CB− + (I − A−A)U1 + U2(I − BB−), where U1

and U2 are two arbitrary matrices.

(II) The general expression of g-inverse A− can be written as A− = A† + (I −A†A)U1 + U2(I −AA†), where
A† is the Moore–Penrose inverse of A, and U1 and U2 are two arbitrary matrices.

(III) Consider a Gauss–Markov model {y, Xβ, σ2Σ}, where Σ is a known symmetric nonnegative definite
matrix and σ2 is an unknown positive parameter. The general expression of the weighted least-
squares estimator (WLSE) of β with respect to a given weight matrix W can be written as β̃ =(
(X ′WX)†X ′W + [Im − (X ′WX)†(X ′WX)]U

)
y, where U is an arbitrary matrix.

(IV) The best linear unbiased estimator (BLUE) of Xβ in M = {y, Xβ, σ2Σ} is Gy, where G =
[X, 0][X, ΣQX ]†+U( Im− [X, ΣQX ][X, ΣQX ]†), in which, U is an arbitrary matrix and QX = Im−XX†.

All these matrices are in fact LMVFs that involve one or two variable matrices. In such cases, people wish
to know properties of these matrix expressions, for example, uniqueness (invariance), maximum and minimum
possible ranks, range inclusions, norms, etc. The results obtained can be used to describe and solve the original
problems.

As is known to all, one of the fundamental tasks in algebra is to establish and describe various algebraic
equalities for operations of elements in the algebra. Assume that two matrix-valued functions f(X1, X2, . . . , Xk)
and g(Y1, Y2, . . . , Xl) of the same size are given, and one wish to know the connections between the two domains
Df and Dg. In this situations, we may divide the work into the following four situations

Df ∩ Dg 6= ∅, Df ⊇ Dg, Df ⊆ Dg, Df = Dg. (1.5)

Here we mention some examples on relations between two linear matrix expressions:

(a) When do two solvable linear matrix equations A1X1B1 = C1 and A2X2B2 = C2, where X1 and X2 have
the same size, have a common solution?

(b) When do the set inclusions {A−} ∩ {B−} = ∅, {D1 − C1A
−
1 B1} ∩ {D2 − C2A

−
2 B2} = ∅, and {A− +

B−} ∩ {C−} = ∅, as well as the set equalities {A−} = {B−}, {D1 − C1A
−
1 B1} = {D2 − C2A

−
2 B2}, and

{A− +B−} = {C−} hold?

(c) When do OLSEs and BLUEs under a {y, Xβ, σ2Σ} coincide? and when OLSEs and BLUEs under two
competing linear regression models {y, X1β, σ

2
1Σ1} and {y, X2β, σ

2
2Σ2} coincide?

These facts show that algebraic features and performances of the matrix set in (1.4) are necessarily worth for
investigation from both theoretical and applied points of view. In fact, a class of fundamental and meaningful
problems that have been identified in the matrix calculus is the characterization of relationships between two
given LMVFs under various assumptions. In view of the above facts, the present author intends to investigate
the relationships between two domains D1 and D2 generated from some special cases of (1.3) using the matrix
range and rank methodology. We also discuss the connections among general solutions of some linear matrix
equations and their reduced linear matrix equations.

2 Preliminaries

Block matrix, rank of matrix, and matrix equation are basic concepts in linear algebra, while the block matrix
method (BMM), the matrix rank method (MRM), and the matrix equation method (MEM) are three funda-
mental and traditional analytic methods that are widely used in matrix theory and applications because they
give one the ability to construct and analyze various complicated matrix expressions and matrix equalities in a
subtle and computationally tractable way.

We next present a group of well-known results on ranks of matrices and matrix equations that are described
by way of generalized inverses, MRM and BMM, which we shall use to deal with various matrix expressions
and matrix equalities.
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Lemma 2.1 ( [13]). Let A ∈ Cm×n, B ∈ Cm×k, and C ∈ Cl×n. Then

r[A, B] = r(A) + r(PAB) = r(B) + r(PBA), (2.1)

r

[
A
C

]
= r(A) + r(CQA) = r(C) + r(AQC), (2.2)

r

[
A B
C 0

]
= r(B) + r(C) + r(PBAQC). (2.3)

In particular, the following results hold.

(a) r[A, B] = r(A)⇔ R(A) ⊇ R(B)⇔ AA†B = B ⇔ PAB = 0.

(b) r

[
A
C

]
= r(A)⇔ R(C∗) ⊆ R(A∗)⇔ CA†A = C ⇔ CQA = 0.

(c) r

[
A B
C 0

]
= r(B) + r(C)⇔ PBAQC = 0.

Lemma 2.2 ( [26]). Let Ai ∈ Cm×ni , and denote Âi = [A1, . . . , Ai−1, Ai+1, . . . , Ak], i = 1, 2, . . . , k. Then

(k − 1)r[A1, A2, . . . , Ak] + dim[R(Â1) ∩R(Â2) ∩ · · · ∩R(Âk)] = r(Â1) + r(Â2) + · · ·+ r(Âk). (2.4)

In particular, the following three statements are equivalent:

(a) r[A1, A2, . . . , Ak] = r(A1) + r(A2) + · · ·+ r(Ak).

(b) (k − 1)r[A1, A2, . . . , Ak] = r(Â1) + r(Â2) + · · ·+ r(Âk).

(c) R(Â1) ∩R(Â2) ∩ · · · ∩R(Âk) = {0}.

We also use the following well-known results in the sequel.

Lemma 2.3 ( [19]). Let

AX = B (2.5)

be a given linear matrix equation, where A ∈ Cm×n and B ∈ Cm×p are known matrices, and X ∈ Cn×p is an
unknown matrix. Then, the following statements are equivalent:

(i) Eq. (2.5) is consistent.

(ii) R(A) ⊇ R(B).

(iii) r[A, B] = r(A).

(iv) AA†B = B.

In this case, the general solution of the equation can be written in the parametric form

X = A†B +QAU, (2.6)

where U ∈ Cn×p is an arbitrary matrix. In particular, (2.5) holds for all matrices X ∈ Cn×p if and only if both
A = 0 and B = 0, or equivalently, [A, B] = 0.

Lemma 2.4 ( [19]). Let

AXB = C (2.7)

be a given linear matrix equation, where A ∈ Cm×n, B ∈ Cp×q, and C ∈ Cm×q are given. Then, the following
statements are equivalent:

(i) Eq. (2.7) is consistent.

(ii) Both R(A) ⊇ R(C) and R(B∗) ⊇ R(C∗).
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(iii) Both r[A, C] = r(A) and r

[
B
C

]
= r(B).

(iv) AA†CB†B = C.

In this case, the general solution of (2.7) can be written in the parametric form

X = A†CB† +QAU + V PB , (2.8)

where U, V ∈ Cn×p are arbitrary matrices. In particular, (2.7) holds for all matrices X ∈ Cn×p if and only if

either [A, C] = 0 or

[
B
C

]
= 0. (2.9)

Lemma 2.5 ( [2]). The matrix equation

A1X1 +X2B2 = C (2.10)

is consistent if and only if

r

[
C A1

B2 0

]
= r(A1) + r(B2), (2.11)

or equivalently,

PA1CQB2 = 0. (2.12)

Eq. (2.10) holds for all matrices X1 and X2 if and only if one of the following four block matrix equalities holds[
C A1

B2 0

]
= 0. (2.13)

Lemma 2.6 ( [14]). The matrix equation

A1X1B1 +A2X2B2 = C (2.14)

is consistent if and only if the following four conditions hold

r[C, A1, A2] = r[A1, A2], r

[
C A1

B2 0

]
= r(A1) + r(B2), (2.15)

r

[
C A2

B1 0

]
= r(A2) + r(B1), r

CB1

B2

 = r

[
B1

B2

]
, (2.16)

or equivalently,

PAC = 0, PA1CQB2 = 0, PA2CQB1 = 0, CQB = 0, (2.17)

where A = [A1, A2] and B =

[
B1

B2

]
.

Lemma 2.7 ( [10, 22]). Equation (2.14) holds for all matrices X1 and X2 if and only if one of the following
four block matrix equalities holds

(i) [C, A1, A2] = 0, (ii)

[
C A1

B2 0

]
= 0, (iii)

[
C A2

B1 0

]
= 0, (iv)

CB1

B2

 = 0. (2.18)

Lemma 2.8 ( [21]). The matrix equation

A1X1 +X2B2 +A3X3B3 +A4X4B4 = C (2.19)
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is consistent iff the following four conditions hold

r

[
C A1 A3 A4

B2 0 0 0

]
= r[A1, A3, A4] + r(B2), (2.20)

r

C A1 A3

B2 0 0
B4 0 0

 = r

[
B2

B4

]
+ r[A1, A3], (2.21)

r

C A1 A4

B2 0 0
B3 0 0

 = r

[
B2

B3

]
+ r[A1, A4], (2.22)

r


C A1

B2 0
B3 0
B4 0

 = r

B2

B3

B4

+ r(A1). (2.23)

3 Some fundamental results on relationships between domains of
two linear matrix-valued functions

We start with two groups of known results on the relationships between two matrix sets generated from the two
simplest cases in (1.3).

Lemma 3.1 ( [25]). Given two domains of LMVFs:

D1 = {A1 +B1X1 |X1 ∈ Cp1×n } and D2 = {A2 +B2X2 |X2 ∈ Cp2×n }, (3.1)

where A1, A2 ∈ Cm×n, B1 ∈ Cm×p1 , and B2 ∈ Cm×p2 are known matrices, and X1 ∈ Cp1×n and X2 ∈ Cp2×n

are variable matrices, we have the following results:

(a) D1 ∩D2 6= ∅, i.e., there exist X1 and X2 such that A1 +B1X1 = A2 +B2X2 if and only if R(A1 −A2) ⊆
R[B1, B2].

(b) D1 ⊆ D2 if and only if R[A1 −A2, B1] ⊆ R(B2).

(c) D1 = D2 if and only if R(A1 −A2) ⊆ R(B1) = R(B2).

Lemma 3.2 ( [25]). Given two domains of LMVFs:

D1 = {A1 +B1X1C1 |X1 ∈ Cp1×q1 } and D2 = {A2 +B2X2C2 |X2 ∈ Cp2×q2 }, (3.2)

where Ai ∈ Cm×n, Bi ∈ Cm×pi , and Ci ∈ Cqi×n are given, and Xi ∈ Cpi×qi are variable matrices, i = 1, 2, we
have the following results:

(a) D1 ∩ D2 6= ∅ if and only if the following four conditions hold

R(A1 −A2) ⊆ R[B1, B2], R(A∗1 −A∗2) ⊆ R[C∗1 , C
∗
2 ],

r

[
A1 −A2 B1

C2 0

]
= r(B1) + r(C2), r

[
A1 −A2 B2

C1 0

]
= r(B2) + r(C1).

(b) D1 ⊆ D2 if and only if one of the following three conditions holds

(i) R[A1 −A2, B1] ⊆ R(B2) and R[A∗1 −A∗2, C∗1 ] ⊆ R(C∗2 ).

(ii) B1 = 0, R(A1 −A2) ⊆ R(B2), and R(A∗1 −A∗2) ⊆ R(C∗2 ).

(iii) C1 = 0, R(A1 −A2) ⊆ R(B2), and R(A∗1 −A∗2) ⊆ R(C∗2 ).

(c) D1 = D2 if and only if one of the following five conditions holds

(i) R(A1 −A2) ⊆ R(B1) = R(B2) and R(A∗1 −A∗2) ⊆ R(C∗1 ) = R(C∗2 ).

(ii) A1 = A2, B1 = 0, and B2 = 0.
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(iii) A1 = A2, B1 = 0, and C2 = 0.

(iv) A1 = A2, B2 = 0, and C1 = 0.

(v) A1 = A2, C1 = 0, and C2 = 0.

As an extension, we have the following result on relationships between domains of two general matrix-valued
functions, which we shall use in the latter part of the article.

Theorem 3.3. Given two domains of LMVFs:

D1 = {A1 +B1X1 + Y1C1 |X1 ∈ Cp1×n1 , Y1 ∈ Cm1×q1 }, (3.3)

D2 = {A2 +B2X2C2 +D2Y2E2 |X2 ∈ Cs2×t2 , Y2 ∈ Cu2×v2}. (3.4)

where A1 ∈ Cm×n, B1 ∈ Cm×p1 , C1 ∈ Cq1×n, A2 ∈ Cm×n, B2 ∈ Cm×s2 , C2 ∈ Ct2×n, D2 ∈ Cm×u2 , and
E2 ∈ Cv2×n are known matrices, we have the following results:

(a) D1 ∩ D2 6= ∅ if and only if the following four conditions hold

r

[
A2 −A1 B1 B2 D2

C1 0 0 0

]
= r[B1, B2, D2] + r(C1), (3.5)

r

A2 −A1 B1 B2

E2 0 0
C1 0 0

 = r

[
C1

E2

]
+ r[B1, B2], (3.6)

r

A2 −A1 B1 D2

C1 0 0
C2 0 0

 = r

[
C1

C2

]
+ r[B1, D2], (3.7)

r


A2 −A1 B1

C1 0
C2 0
E2 0

 = r

C1

C2

E2

+ r(B1). (3.8)

(b) D1 ⊇ D2 if and only if one of the following four conditions holds

r

[
A2 −A1 B1 B2 D2

C1 0 0 0

]
= r(B1) + r(C1), (3.9)

r

A2 −A1 B1 B2

E2 0 0
C1 0 0

 = r(B1) + r(C1), (3.10)

r

A2 −A1 B1 D2

C1 0 0
C2 0 0

 = r(B1) + r(C1), (3.11)

r


A2 −A1 B1

C1 0
C2 0
E2 0

 = r(B1) + r(C1). (3.12)
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(c) D1 ⊆ D2 if and only if one of the following four conditions holds

(i) r[B2, D2] = m or r

[
A1 −A2 B1 B2 D2

C1 0 0 0

]
= r[B2, D2], (3.13)

(ii) r(B2) = m or r(E2) = n or r

A1 −A2 B1 B2

C1 0 0
E2 0 0

 = r(B2) + r(E2), (3.14)

(iii) r(C2) = n or r(D2) = m or r

A1 −A2 B1 D2

C1 0 0
C2 0 0

 = r(C2) + r(D2), (3.15)

(iv) r

[
C2

E2

]
= n or r


A1 −A2 B1

C1 0
C2 0
E2 0

 = r

[
C2

E2

]
. (3.16)

(d) D1 = D2 if and only if both (b) and (c) hold.

Proof. The fact D1 ∩D2 6= ∅ is obviously equivalent to A1 +B1X1 + Y1C1 = A2 +B2X2C2 +D2Y2E2 for some
X1, Y1, X2, and Y2. Rewrite it as

B1X1 + Y1C1 −B2X2C2 −D2Y2E2 = A2 −A1, (3.17)

and applying Lemma 2.8 to (3.17) leads to Result (a).
By (2.10), (2.12), and (3.17), the fact D1 ⊇ D2 holds iff

PB1
(A2 −A1)QC1

+ PB1
B2X2C2QC1

+ PB1
D2Y2E2QC1

= 0 (3.18)

holds for all X2 and Y2. By Lemma 2.7, (3.18) holds for all X2 and Y2 iff

[PB1(A2 −A1)QC1 , PB1B2, PB1D2] = 0, (3.19)[
PB1

(A2 −A1)QC1
PB1

B2

E2QC1
0

]
= 0, (3.20)[

PB1(A2 −A1)QC1 PB1D2

C2QC1

]
= 0, (3.21)PB1

(A2 −A1)QC1

C2QC1

E2QC1

 = 0, (3.22)

which, by Lemma 2.1(c), are equivalent to (3.9)–(3.12).
By (3.17) and Lemma 2.7, the fact D1 ⊆ D2 holds iff one of the following four equations

PG(A1 −A2) + PGB1X1 + PGY1C1 = 0, (3.23)

PB2
(A1 −A2)QE2

+ PB2
B1X1QE2

+ PB2
Y1C1QE2

= 0, (3.24)

PD2
(A1 −A2)QC2

+ PD2
B1X1QC2

+ PD2
Y1C1QC2

= 0, (3.25)

(A1 −A2)QH +B1X1QH + Y1C1QH = 0 (3.26)

hold for all X1 and Y1. Further by Lemma 2.7, (3.23) holds for all X1 and Y1 iff one of the following two
conditions holds

PG = 0 or r

[
PG(A1 −A2) PGB1

C1 0

]
= 0,

which are equivalent to

r[B2, D2] = m or r

[
A1 −A2 B1 B2 D2

C1 0 0 0

]
= r[B2, D2];

(3.24) holds for all X1 and Y1 iff one of the following three conditions holds

PB2
= 0 or r

[
PB2

(A1 −A2)QE2
PB2

B1

C1QE2
0

]
= 0 or QE2

= 0,
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which are equivalent to

r(B2) = m or r

A1 −A2 B1 B2

C1 0 0
E2 0 0

 = r(B2) + r(E2) or r(E2) = n;

(3.25) holds for all X1 and Y1 iff one of the following four conditions holds

PD2
= 0 or r

[
PD2(A1 −A2)QC2 PD2B1

C1QC2
0

]
= 0 or QC2

= 0,

which are equivalent to

r(D2) = m or r

A1 −A2 B1 D2

C1 0 0
C2 0 0

 = r(C2) + r(D2) or r(C2) = n;

(3.26) holds for all X1 and Y1 iff one of the following four conditions holds

QH = 0 or r

[
(A1 −A2)QH B1

C1QH 0

]
= 0,

r

[
C2

E2

]
= n or r


A1 −A2 B1

C1 0
C2 0
E2 0

 = r

[
C2

E2

]
.

Combining them leads to (3.13)–(3.16).

The results in the above three lemmas can be used, as demonstrated below, to solve many concrete problems
on the relationships between solutions of matrix equations, as well as relations between generalized inverses of
matrices.

4 Relationships between solutions of two fundamental linear matrix
equations

It is well known since Penrose [19] that general solutions of linear matrix equations can be represented certain
linear matrix expressions composed with the given matrices in the matrix equations and their generalized
inverses. In this situation, we can use the previous results to characterize various relationships between solutions
of linear matrix equations. There are many linear matrix equations for which the general solution can explicitly
be written as certain explicit linear matrix-valued functions as given in (4.1). In this section, we present a
variety of results and facts on relationships between linear transformations of solutions of some fundamental
linear matrix equations.

Theorem 4.1. Assume that the following two matrix equations

A1X1 = B1 and A2X2 = B2 (4.1)

are consistent, respectively, where Ai ∈ Cmi×ni and Bi ∈ Cmi×p are given, i = 1, 2. Also we denote by

D1 = {S1X1 + T1 | A1X1 = B1 } and D2 = {S2X2 + T2 | A2X2 = B2 }, (4.2)

the domains of two constrained LMVFs, where Si ∈ Cs×ni and Ti ∈ Cs×p are given, i = 1, 2. Then the following
results hold.

(a) D1 ∩ D2 6= ∅ if and only if r

S1 S2 T1 − T2
A1 0 −B1

0 A2 B2

 = r

S1 S2

A1 0
0 A2

 .
(b) D1 ⊆ D2 if and only if r

S1 S2 T1 − T2
A1 0 −B1

0 A2 B2

 = r

[
S2

A2

]
+ r(A1).
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(c) D1 = D2 if and only if r

S1 S2 T1 − T2
A1 0 −B1

0 A2 B2

 = r

[
S1

A1

]
+ r(A2) = r

[
S2

A2

]
+ r(A1).

Proof. By Lemma 2.3, the general solutions of the two equations in (4.1) can be expressed as

X1 = A†1B1 + S1QA1
U1, X2 = A†2B2 + S2QA2

U2, (4.3)

where U1 ∈ Cn1×p and U2 ∈ Cn2×p are arbitrary matrices. Then the two sets in (4.2) can be represented as

D1 = {S1A
†
1B1 + S1QA1

U1 + T1 } and D2 = {S2A
†
2B2 + S2QA2

U2 + T2 }. (4.4)

Applying Lemma 3.1(a) to (4.4), we obtain that D1 ∩ D2 6= ∅ if and only if

r[S1QA1 , S2QA2 , S1A
†
1B1 − S2A

†
2B2 + T1 − T2] = r[S1QA1 , S2QA2 ], (4.5)

where by (2.2),

r[S1QA1 , S2QA2 , S1A
†
1B1 − S2A

†
2B2 + T1 − T2]

= r

S1 S2 S1A
†
1B1 − S2A

†
2B2 + T1 − T2

A1 0 0
0 A1 0

− r(A1)− r(A2)

= r

S1 S2 T1 − T2
A1 0 −B1

0 A2 B2

− r(A1)− r(A2), (4.6)

r[S1QA1
, S2QA2

] = r

S1 S2

A1 0
0 A2

− r(A1)− r(A2). (4.7)

Substituting (4.6) and (4.7) into (4.5) yields r

S1 S2 T1 − T2
A1 0 −B1

0 A2 B2

 = r

S1 S2

A1 0
0 A2

, establishing (a).

Applying Lemma 3.1(b) to (4.5), we obtain that D1 ∩ D2 6= ∅ if and only if

r[S1QA1 , S2QA2 , S1A
†
1B1 − S2A

†
2B2 + T1 − T2] = r(S2QA2), (4.8)

where by (2.2),

r(S2QA2
) = r

[
S2

A2

]
− r(A2). (4.9)

Substituting (4.6) and (4.9) into (4.8) yields Result (b). By a similar approach, we obtain that D1 ⊇ D2 if and

only if r

S1 S2 T1 − T2
A1 0 −B1

0 A2 B2

 = r

[
S1

A1

]
+ r(A2). Combining it with Result (b) leads to Result (c).

Corollary 4.2. Assume that A1X1 = B1 and A2X2 = B2 in (4.1) are consistent, respectively, and denote by

D1 = {X1 | A1X1 = B1 } and D2 = {X2 | A2X2 = B2 } (4.10)

the sets of all solutions of the two equations, respectively. Then the following results hold.

(a) The two equations in (4.1) have a common solution if and only if r

[
A1 B1

A2 B2

]
= r

[
A1

A2

]
, i.e., R

[
B1

B2

]
⊆

R

[
A1

A2

]
.

(b) D1 ⊆ D2 if and only if r

[
A1 B1

A2 B2

]
= r(A1), i.e., R

[
B1

B2

]
⊆ R

[
A1

A2

]
and R(A∗2) ⊆ R(A∗1).
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(c) D1 = D2 if and only if r

[
A1 B1

A2 B2

]
= r(A1) = r(A2), i.e., R

[
B1

B2

]
⊆ R

[
A1

A2

]
and R(A∗2) = R(A∗1).

Corollary 4.3. Let A ∈ Cm×n and B ∈ Cm×p be given, and suppose AX = B is consistent. Also denote

D1 = {SX | AX = B } and D2 = {SX | MAX = MB }, (4.11)

where M ∈ Ct×m and S ∈ Cs×n. Then the following results hold.

(a) D1 ⊆ D2 always holds.

(b) D1 = D2 if and only if r

[
MA
S

]
= r

[
A
S

]
+ r(MA)− r(A).

Corollary 4.4. Assume that AX = B in (2.5) is consistent, and denote

D1 = {X | AX = B } and D2 = {X | MAX = MB }, (4.12)

where M ∈ Cs×m. Then, the following results hold.

(a) D1 ⊆ D2 always holds.

(b) D1 = D2 if and only if r(MA) = r(A).

Assume that the matrix equation in (2.5) is consistent, and partition it as

AX = A1X1 +A2X2 + · · ·+AkXk = B, (4.13)

where Ai ∈ Cm×ni , with A = [A1, . . . , Ak], Xi ∈ Cni×p are unknown matrices with X = [X ′1, . . . , X
′
k]′ and

p = p1 + · · ·+ pk, and pre-multiplying (4.13) with PYi
yields the following reduced linear matrix equations

PYi
AX = PYi

AiXi = PYi
B, i = 1, . . . , k, (4.14)

where Yi = [A1, . . . , Ai−1, 0, Ai+1, . . . , Ak], i = 1, . . . , k. Then the family of equations in (4.14) are consistent,
respectively. In such cases, We denote by

Di = {Xi | A1X1 +A2X2 + · · ·+AkXk = B } and Hi = {Xi | EYi
AiXi = EYi

B }, i = 1, . . . , k, (4.15)

the matrix sets composed by the partial solutions Xi of (4.13) and (4.14) respectively; and denote by

D = {X | AX = B } and H = { [XT
1 , X

T
2 , . . . , X

T
k ]T | EYiAiXi = EYiB, i = 1, . . . , k}. (4.16)

In this section, we first discuss the relationships between Di and Hi in (4.15), i = 1, . . . , k, as well as the two
sets in (4.16).

Theorem 4.5. Assume that the matrix equation in (4.13) is consistent, and let Di and Hi be as given in (4.15),
i = 1, . . . , k. Then the following matrix set equalities

Di = Hi (4.17)

always hold, i = 1, . . . , k.

Proof. Set S = [0 . . . , Ini
, . . . , 0] andM = EYi

in (4.11), i = 1, . . . , k. Then we obtain by (2.5) and simplifications
that

r

[
EYiAi

S

]
− r
[
A
S

]
− r(EYi

Ai) + r(A) = r

[
A Yi
S 0

]
− r
[
A
S

]
− r[Zi, Ai] + r(A)

= r

[
0 Yi
S 0

]
− r
[
Yi
S

]
− r(A) + r(A) = 0.

Thus (4.17) holds by Corollary 4.3(c).

Theorem 4.6. Assume that the matrix equation in (4.13) is consistent, and let D and H be as given in (5.4).
Then the following results hold.
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(a) D ⊆ H always holds.

(b) The following statements are equivalent:

(i) D = H.
(ii) (k − 1)r(A) = r(Y1) + r(Y2) + · · ·+ r(Yk).

(iii) r(A) = r(A1) + r(A2) + · · ·+ r(Ak).

(iv) R(Y1) ∩R(Y2) ∩ · · · ∩R(Yk) = {0}.

Proof. By Lemma 2.3, the general solutions of (4.14) are given by

Xi = (PYi
Ai)
†PYi

B + [Ini
− (PYi

Ai)
†(PYi

Ai)]Ui, (4.18)

where Ui ∈ Cni×p are arbitrary, i = 1, . . . , k. Substituting (2.6) and (4.18) into (4.16) gives

D = {A†B +QAU }, (4.19)

H =


(PY1A1)†PY1B

...
(PYk

Ak)†PYk
B

+

In1 − PY1A1(PY1A1)† . . . 0
...

. . .
...

0 . . . Ink
− PYk

Ak(PYk
Ak)†


U1

...
Uk


 . (4.20)

Applying Lemma 3.1(b) to (4.19) and (4.20), we see that D ⊆ H if and only if

r

A†B −
(PY1A1)†PY1B

...
(PYk

Ak)†PYk
B

, QA,

In1 − (PY1A1)†(PY1A1) . . . 0
...

. . .
...

0 . . . Ink
− (PYk

Ak)†(PYk
Ak)




= r

In1 − (PY1A1)†(PY1A1) . . . 0
...

. . .
...

0 . . . Ink
− (PYk

Ak)†(PYk
Ak)

 , (4.21)

where by

r

A†B −
(PY1

A1)†PY1
B

...
(PYk

Ak)†PYk
B

, QA,

In1
− (PY1

A1)†(PY1
A1) . . . 0

...
. . .

...
0 . . . Ink

− (PYk
Ak)†(PYk

Ak)




= r



A†B −

(PY1
A1)†PY1

B
...

(PYk
Ak)†PYk

B

 In

In1
. . . 0

...
. . .

...
0 . . . Ink


0 A 0

0 0

PY1
A1 . . . 0

...
. . .

...
0 . . . PYk

Ak




− r(A)− r(PY1

A1)− · · · − r(PYk
Ak)

= r


0 In 0
−B 0 −APY1B

...
PYk

B

 0

PY1
A1 . . . 0

...
. . .

...
0 . . . PYk

Ak



− r(A)− r(PY1
A1)− · · · − r(PYk

Ak)

= n− r(PY1
A1)− · · · − r(PYk

Ak), (4.22)

and

r

In1
− (PY1

A1)†(PY1
A1) . . . 0

...
. . .

...
0 . . . Ink

− (PYk
Ak)†(PYk

Ak)

 = n− r(PY1
A1)− · · · − r(PYk

Ak). (4.23)
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Both (4.22) and (4.23) mean that (4.21) is an identity, thus establishing (a).
Substituting (4.18) into (4.13) gives

[A1 −A1(PY1
A1)†(PY1

A1)]U1 + · · ·+ [Ak −Ak(PYk
Ak)†(PYk

Ak)]Uk

= B −A1(PY1
A1)†PY1

B + · · ·+Ak(PYk
Ak)†PYk

B. (4.24)

It is obvious that D ⊇ H holds if and only if the matrix equation in (4.24) holds for all U1, . . . , Uk, which by
Lemma 2.3 is equivalent to

[B −A1(PY1A1)†PY1B + · · ·+Ak(PYk
Ak)†PYk

B, A1 −A1(PY1A1)†(PY1A1),

. . . , Ak −Ak(PYk
Ak)†(PYk

Ak)] = 0, (4.25)

where by (2.5),

r[B −A1(PY1A1)†PY1B − · · · −Ak(PYk
Ak)†PYk

B, A1 −A1(PY1A1)†(PY1A1),

· · · , Ak −Ak(PYk
Ak)†(PYk

Ak)]

= r


B −A1(PY1A1)†PY1B − · · · −Ak(PYk

Ak)†PYk
B A1 . . . Ak

0 PY1
A1 . . . 0

...
...

. . .
...

0 0 . . . PYk
Ak


− r(PY1

A1)− · · · − r(PYk
Ak)

= r


B A1 . . . Ak

PY1B PY1A1 . . . 0
...

...
. . .

...
PYk

B 0 . . . PYk
Ak

− r(PY1
A1)− · · · − r(PYk

Ak)

= r


B A1 . . . Ak 0 . . . 0
B A1 . . . 0 Y1 . . . 0
...

...
. . .

...
...

. . .
...

B 0 . . . Ak 0 . . . Yk

− kr(A) = r


B A 0 . . . 0
B A Y1 . . . 0
...

...
...

. . .
...

B A 0 . . . Yk

− kr(A)

= r


0 A 0 . . . 0
0 0 Y1 . . . 0
...

...
...

. . .
...

0 0 0 . . . Yk

− kr(A) = r(Y1) + · · ·+ r(Yk)− (k − 1)r(A).

Thus (4.25) is equivalent to (k − 1)r(A) = r(Y1) + · · · + r(Yk). Combining this facts with (a) leads to the
equivalence of (i) and (ii) in (b). The equivalence of (ii), (iii), and (iv) in (b) follows from Lemma 2.2.

5 Relationships among solutions of A1X1B1+A2X2B2 = C and its four
reduced equations

Eq. (2.14) is well known in matrix theory and applications, which solvability condition and general solution
were precisely established using the ranks, ranges, and generalized inverses of the given matrices in the equation;
see e.g., [2, 14,22,23,28] and the relevant literature quoted there.

It is easy to see that we can construct from (2.14) some small or transformed linear matrix equations. For
instance, pre- and post-multiplying (2.14) with PAi and QBi respectively yield the following four reduced matrix
equations

PA2
(A1X1B1 +A2X2B2) = PA2

A1X1B1 = PA2
C, (5.1)

PA1
(A1X1B1 +A2X2B2) = PA1

A2X2B2 = PA1
C, (5.2)

(A1X1B1 +A2X2B2)QB2
= A1X1B1QB2

= CQB2
, (5.3)

(A1X1B1 +A2X2B2)QB1
= A2X2B2QB1

= CQB1
, (5.4)

respectively. Each of (5.1)–(5.4) is consistent as well, if the matrix equation in (2.14) is consistent. Concerning
the relationships among the solutions of (2.14) and (5.1)–(5.4), we have the following results.
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Theorem 5.1. Assume that the matrix equation in (2.14) is consistent, and denote by

D = { (X1, X2) | A1X1B1 +A2X2B2 = C }, (5.5)

H1 = { (X1, X2) | PA2
A1X1B1 = PA2

C and PA1
A2X2B2 = PA1

C}, (5.6)

H2 = { (X1, X2) | PA2
A1X1B1 = PA2

C and A2X2B2QB1
= CQB1

}, (5.7)

H3 = { (X1, X2) | A1X1B1QB2
= CQB2

and PA1
A2X2B2 = PA1

C}, (5.8)

H4 = { (X1, X2) | A1X1B1QB2
= CQB2

and A2X2B2QB1
= CQB1

}, (5.9)

the collections of all pairs of solutions of (2.14) and (5.1)–(5.4), respectively. Then the following results hold.

(a) D ⊆ Hi always hold, i = 1, 2, 3, 4.

(b) D = H1 if and only if R(A1) ∩R(A2) = {0} or [B∗1 , B
∗
2 ] = 0.

(c) D = H2 if and only if A2 = 0, or B1 = 0, or R(A1) ∩R(A2) = {0} and R(B∗1) ∩R(B∗2) = {0}.

(d) D = H3 if and only if A1 = 0, or B2 = 0, or R(A1) ∩R(A2) = {0} and R(B∗1) ∩R(B∗2) = {0}.

(e) D = H4 if and only if [A1, A2] = 0 or R(B∗1) ∩R(B∗2) = {0}.

Proof. Result (a) follows directly from (5.1)–(5.4). By Lemma 2.4, the general solutions of (5.1)–(5.4) are given
by

X1 = (PA2
A1)†PA2

CB†1 + [Ip1
− (PA2

A1)†(PA2
A1)]U1 + V1(Iq1 −B1B

†
1), (5.10)

X2 = (PA1
A2)†PA1

CB†2 + [Ip2
− (PA1

A2)†(PA1
A2)]U2 + V2(Iq2 −B2B

†
2), (5.11)

X1 = A†1CQB2
(B1QB2

)† + (Ip1
−A†1A1)U3 + V3[Iq1 − (B1QB2

)(B1QB2
)†], (5.12)

X2 = A†2CQB1(B2QB1)† + (Ip2 −A
†
2A2)U4 + V4[Iq2 − (B2QB1)(B2QB1)†], (5.13)

respectively, where Ui and Vi are arbitrary matrices, i = 1, 2, 3, 4. Substituting (5.10)–(5.11) into (2.14) gives
the following matrix equation

A1[Ip1
− (PA2

A1)†(PA2
A1)]U1B1 +A2[Ip2

− (PA1
A2)†(PA1

A2)]U2B2

= C −A1(PA2
A1)†PA2

C −A2(PA1
A2)†PA1

C, (5.14)

A1[Ip1 − (PA2A1)†(PA2A1)]U1B1 +A2V4[Iq2 − (B2QB1)(B2QB1)†]B2

= C −A1(PA2A1)†PA2C − CQB1(B2QB1)†B2, (5.15)

A1V3[Iq1 − (B1QB2)(B1QB2)†]B1 +A2[Ip2 − (PA1A2)†(PA1A2)]U2B2

= C − CQB2
(B1QB2

)†B1 −A2(PA1
A2)†PA1

C, (5.16)

A1V3[Iq1 − (B1QB2
)(B1QB2

)†]B1 +A2V4[Iq2 − (B2QB1
)(B2QB1

)†]B2

= C − CQB2
(B1QB2

)†B2 − CQB1
(B2QB1

)†B2, (5.17)

respectively. By Lemma 2.5(b), (5.14) holds for all U1 and U2 if and only if one of the following four equalities

[A1[Ip1 − (PA2A1)†(PA2A1)], A2[Ip2 − (PA1A2)†(PA1A2)],

C −A1(PA2A1)†PA2C −A2(PA1A2)†PA1C] = 0, (5.18)[
C −A1(PA2A1)†PA2C −A2(PA1A2)†PA1C A1[Ip1 − (PA2A1)†(PA2A1)]

B2 0

]
= 0, (5.19)[

C −A1(PA2A1)†PA2C −A2(PA1A2)†PA1C A2[Ip2 − (PA1A2)†(PA1A2)]
B1 0

]
= 0, (5.20)C −A1(PA2

A1)†PA2
C −A2(PA1

A2)†PA1
C

B1

B2

 = 0. (5.21)
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It is easy to verify that the ranks of the left-hand sides of (5.18)–(5.21) are given by

r[A1[Ip1
− (PA2

A1)†(PA2
A1)], A2[Ip2

− (PA1
A2)†(PA1

A2)], C −A1(PA2
A1)†PA2

C −A2(PA1
A2)†PA1

C]

= r(A1) + r(A2)− r[A1, A2], (5.22)

r

[
C −A1(PA2

A1)†PA2
C −A2(PA1

A2)†PA1
C A1[Ip1

− (PA2
A1)†(PA2

A1)]
B2 0

]
= r(A1) + r(A2)− [A1, A2] + r(B2), (5.23)

r

[
C −A1(PA2A1)†PA2C −A2(PA1A2)†PA1C A2[Ip2 − (PA1A2)†(PA1A2)]

B1 0

]
= r(A1) + r(A2)− [A1, A2] + r(B1), (5.24)

r

C −A1(PA2
A1)†PA2

C −A2(PA1
A2)†PA1

C
B1

B2

 = r

[
B1

B2

]
. (5.25)

Combining (5.18)–(5.21) with (5.22)–(5.25) leads to the equivalence in (b).
By Lemma 2.5(b), (5.15) holds for all U1 and V4 if and only if one of the following four equalities

[C −A1(PA2A1)†PA2C −A2(PA1A2)†PA1C, A1[Ip1 − (PA2A1)†(PA2A1)], A2] = 0, (5.26)[
C −A1(PA2

A1)†PA2
CB†1B1 −A2A

†
2CQB1

(B2QB1
)†B2 A1[Ip1

− (PA2
A1)†(PA2

A1)]
[Iq2 − (B2QB1

)(B2QB1
)†]B2 0

]
= 0, (5.27)[

C −A1(PA2
A1)†PA2

CB†1B1 −A2A
†
2CQB1

(B2QB1
)†B2 A1

B2 0

]
= 0, (5.28)C −A1(PA2

A1)†PA2
CB†1B1 −A2A

†
2CQB1

(B2QB1
)†B2

B1

[Iq2 − (B2QB1)(B2QB1)†]B2

 = 0. (5.29)

It is easy to verify that the ranks of the left-hand sides of (5.26)–(5.29) are given by

r[C −A1(PA2
A1)†PA2

C −A2(PA1
A2)†PA1

C, A1[Ip1
− (PA2

A1)†(PA2
A1)], A2] = r(A2), (5.30)

r

[
C −A1(PA2

A1)†PA2
CB†1B1 −A2A

†
2CQB1

(B2QB1
)†B2 A1[Ip1

− (PA2
A1)†(PA2

A1)]
[Iq2 − (B2QB1

)(B2QB1
)†]B2 0

]
= r(A1) + r(A2) + r(B1) + r(B2)− r[A1, A2]− r

[
B1

B2

]
, (5.31)

r

[
C −A1(PA2

A1)†PA2
CB†1B1 −A2A

†
2CQB1

(B2QB1
)†B2 A1

B2 0

]
= r(A1) + r(B2), (5.32)

r

C −A1(PA2
A1)†PA2

CB†1B1 −A2A
†
2CQB1

(B2QB1
)†B2

B1

[Iq2 − (B2QB1
)(B2QB1

)†]B2

 = r(B1). (5.33)

Combining (5.26)–(5.29) with (5.30)–(5.33) leads to the equivalence in (c). Results (d) and (e) can be established
by a similar approach.

Theorem 5.2. Assume that the matrix equation in (2.14) is consistent, and let

D1 = {X1 | A1X1B1 +A2X2B2 = C }, (5.34)

D2 = {X2 | A1X1B1 +A2X2B2 = C }, (5.35)

H1 = {X1 | A1X1B1 −A2A
†
2A1X1B1B

†
2B2 = C −A2A

†
2CB

†
2B2}, (5.36)

H2 = {X2 | A2X2B2 −A1A
†
1A2X2B2B

†
1B1 = C −A1A

†
1CB

†
1B1}, (5.37)

D = { (X1, X2) | A1X1B1 +A2X2B2 = C }, (5.38)

H = { (X1, X2) | X1 ∈ H1 and X2 ∈ H2}. (5.39)

Then the following results hold.
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(a) The matrix set equalities Di = Hi always hold, i = 1, 2.

(b) D ⊆ H always holds.

(c) D = H if and only if R(B>1 ⊗A1) ∩R(B>2 ⊗A2) = {0}.

Proof. By the vec operation of matrix, (2.14) can equivalently be expressed as

(B>1 ⊗A1)
−→
X 1 + (B>2 ⊗A2)

−→
X 2 =

−→
C , (5.40)

which is a special case of (4.13). Pre-multiplying (5.40) with PB>
i ⊗Ai

yields the following reduced linear matrix
equation equations

PB>
2 ⊗A2

(B>1 ⊗A1)
−→
X 1 = PB>

2 ⊗A2

−→
C , PB>

1 ⊗A1
(B>2 ⊗A2)

−→
X 2 = PB>

2 ⊗A2

−→
C . (5.41)

Now denote

D̂i = {
−→
X i | (B>1 ⊗A1)

−→
X 1 + (B>2 ⊗A2)

−→
X 2 =

−→
C }, i = 1, 2, (5.42)

Ĥ1 = {
−→
X 1 | PB>

2 ⊗A2
(B>1 ⊗A1)

−→
X 1 = PB>

2 ⊗A2

−→
C }, (5.43)

Ĥ2 = {
−→
X 2 | PB>

1 ⊗A1
(B>2 ⊗A2)

−→
X 2 = PB>

1 ⊗A1

−→
C }. (5.44)

Then by Corollary 4.5,

D̂i = Ĥi, i = 1, 2 (5.45)

always hold. On the other hand, it is easy to verify that

PB>
i ⊗Ai

= Imn − (B>i ⊗Ai)(B
>
i ⊗Ai)

† = Imn − (B>i ⊗Ai)[(B
>
i )† ⊗A†i ] = Imn − (B†iBi)

> ⊗AiA
†
i , i = 1, 2,

and

PB>
2 ⊗A2

(B>1 ⊗A1) = B>1 ⊗A1 − [(B†2B2)> ⊗A2A
†
2](B>1 ⊗A1) = B>1 ⊗A1 − (B1B

†
2B2)> ⊗A2A

†
2A1,

PB>
1 ⊗A1

(B>2 ⊗A2) = B>2 ⊗A2 − (B†1B1)> ⊗A1A
†
1(B>2 ⊗A2) = B>2 ⊗A2 − (B2B

†
1B1)> ⊗A1A

†
1A2.

Thus the two equations in (5.41) by the vectorization operation of matrix are equivalent to

A1X1B1 −A2A
†
2A1X1B1B

†
2B2 = C −A2A

†
2CB

†
2B2,

A2X2B2 −A1A
†
1A2X2B2B

†
1B1 = C −A1A

†
1CB

†
1B1,

respectively. Thus the two set equalities in (5.45) are equivalent to the set equalities in (a). Results (b) and (c)
follow from applying Theorem 4.6 to (5.40).

In addition to the LMVF in (1.3), there are many types of multilinear and nonlinear matrix-valued functions
that occur in matrix theory and applications, such as,

f(X1, . . . , Xk) = (A1 +B1X1C1)(A2 +B2X2C2) · · · (Ak +BkXkCk),

g(X1, Y1, . . . , Xk, Yk) = (A1 +B1X1C1 +D1Y1E1) · · · (Ak +BkXkCk +DkYkEk),

etc. In these cases, it would be of interest but are also challenging to investigate the connections between a pair
of such matrix-valued functions under various specified assumptions.
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[9] R.E. Hartwig. The reverse order law revisited. Linear Algebra Appl. 76(1986), 241–246.

[10] B. Jiang, Y. Tian. Necessary and sufficient conditions for nonlinear matrix identities to always hold. Aequat. Math.
93(2019), 587–600.

[11] C. Jordán, J.R. Torregrosa, A. Urbano. On the jordan form of completions of partial upper triangular matrices.
Linear Algebra Appl. 1997, 254(1997), 241–250.

[12] M. Krupnik. Geometric multiplicities of completions of partial triangular matrices. Linear Algebra Appl. 220(1995),
215–227.

[13] G. Marsaglia, G.P.H. Styan. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2(1974),
269–292.
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