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Characterization of relationships between the domains of two linear
matrix-valued functions with applications

Yongge Tian
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Abstract. One of the typical forms of linear matrix expressions (linear matrix-valued functions) is given by
A+ B1X:Cy + -+ 4+ B X Cg, where Xi,..., Xy are independent variable matrices of appropriate sizes, which include
almost all matrices with unknown entries as its special cases. The domain of the matrix expression is defined to be all
possible values of the matrix expressions with respect to Xi,..., Xg. I this article, we approach some problems on the
relationships between the domains of two linear matrix expressions by means of the block matrix method (BMM), the
matrix rank method (MRM), and the matrix equation method (MEM). As application, we discuss some topics on the
relationships among general solutions of some linear matrix equations and their reduced equations.
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1 Introduction

Throughout this article, we denote by C™*™ the set of all m x n complex matrices; by A*, r(A), and Z(A) the
conjugate transpose, the rank, and the range (column space) of a matrix A € C™*", respectively; by I, the
identity matrix of order m; and [A, B] be a row block matrix consisting of A and B. A matrix A € C™*"™ is
said to be EP (or range Hermitian) if Z(A*) = Z(A) holds. We next introduce the definition and notation of
generalized inverses of a matrix. The Moore-Penrose inverse of A € C™*", denoted by Af, is the unique matrix
X € C™*™ gatisfying the four Penrose equations

(1) AXA=A, (i) XAX = X, (iii) (AX)* = AX, (iv) (XA)* = X A. (1.1)

A matrix X is called an {i, ..., j}-generalized inverse of A, denoted by A7) if it satisfies the ith, ..., jth
equations in (T.1]). The collection of all {i, ..., j}-generalized inverses of A is denoted by {(A(7)}. There are

all 15 types of {i, ..., j}-generalized inverses for a given matrix A by definition, but people are mainly interested
in the types that involve the first equation:
At A0S 4024) 0 4(1238) 0 404 g(13) 0 A(2) - 4O (1.2)

which are usually called the eight commonly-used types of generalized inverses of A in the literature; see
e.g., . In addition, we also denote by P4 = I,, — AAT and Q4 = I, — AT A the orthogonal projectors
(Hermitian idempotent matrices) induced from A. The Kronecker product of any two matrices A and B is
defined to be A ® B = (a;;B). The vectorization operator of a matrix A = [aj,...,a,] is defined to be
vec(A) = X 11T, A well-known property on the vec operator of a triple matrix product is

= [a],...,a
m:(BT(@Aé see e.g., l.

Linear matrix expressions that involve variable matrices arise in a variety of problems in pure and applied
mathematics. In the present paper we pursue our study of a general linear matrix expressions of the form

f(Xl,XQ, . 7ch) =A+ Blecl + B2X202 —+ -4 BkaCk, (13)

where A € C™*™ B; € C™*Pi and C; € C%*" are given, and X; € CPi*% are variable matrices, i = 1,2,..., k.
Eq. (1.3) is usually called a Linear Matrix-Valued Function (LMVF), while the collection of all possible matrix
values of (1.3), called the domain of (1.3), is denoted schematically by

Df = {f(XhXQ,...,Xk) | X; € (Cpin@" 1= 1,2,...,]€}. (14)

Eq. (1.3) includes many kinds of well-known matrix expressions with variable entries as its special cases, such
as, A+ BX, A+ BXC, A+ BX +YC, see e.g., II7 as well as various partially specified matrices, such as,
112

? ?
[é E} {é D}’ 1;1 '}, etc, see e.g., I

e LMVFs in mathematics and applications. Here we mention a few:

There are many natural modifications of considering
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(I) The general solution of a consistent linear matrix equation AX = Bis X = A-B+ (I — A~ A)U, where
A~ denotes a g-inverse of A and the matrix U is arbitrary; the general solution of a consistent linear
matrix equation AXB = C can be written as X = A—CB~ + (I — A~ A)U; + Ux(I — BB™), where Uy
and Uj are two arbitrary matrices.

(IT) The general expression of g-inverse A~ can be written as A~ = AT + (I — ATA)U; + Uy(I — AAT), where
A" is the Moore—Penrose inverse of A, and U; and U, are two arbitrary matrices.

(IT1) Consider a Gauss—Markov model {y, X3, 0?3}, where ¥ is a known symmetric nonnegative definite
matrix and o2 is an unknown positive parameter. The general expression of the weighted least-
squares estimator (WLSE) of 8 with respect to a given weight matrix W can be written as B =
(X'WX)'X'W + [I,, - (X'WX)(X'WX)]U) y, where U is an arbitrary matrix.

(IV) The best linear unbiased estimator (BLUE) of X3 in .# = {y, X8, 0?2} is Gy, where G =
(X, 0][X, 2Qx|T+U(I,,—[X, 2Qx][X, XQx]"), in which, U is an arbitrary matrix and Qx = I, — X X .

All these matrices are in fact LMVFs that involve one or two variable matrices. In such cases, people wish
to know properties of these matrix expressions, for example, uniqueness (invariance), maximum and minimum
possible ranks, range inclusions, norms, etc. The results obtained can be used to describe and solve the original
problems.

As is known to all, one of the fundamental tasks in algebra is to establish and describe various algebraic
equalities for operations of elements in the algebra. Assume that two matrix-valued functions f(X;, Xs, ..., Xx)
and g(Y1,Ys, ..., X;) of the same size are given, and one wish to know the connections between the two domains
D¢ and D,. In this situations, we may divide the work into the following four situations

Dy N D, £ 0, Dy 2Dy, Dy €Dy, Dy =TD,. (1.5)
Here we mention some examples on relations between two linear matrix expressions:

(a) When do two solvable linear matrix equations A; X1B; = C1 and A2 X2By = Co, where X; and X, have
the same size, have a common solution?

(b) When do the set inclusions {A~}N{B~} = 0, {D; — C1AT B1} N {Dy — CoA; Bo} = (), and {A~ +
B~} N{C~} =0, as well as the set equalities {A~} = {B~}, {D1 — C14] B1} = {Dy — C3A; By}, and
(A~ + B~} = {C"} hold?

(c) When do OLSEs and BLUEs under a {y, X3, 02X} coincide? and when OLSEs and BLUEs under two
competing linear regression models {y, X1, 02¥1} and {y, X203, 0535} coincide?

These facts show that algebraic features and performances of the matrix set in are necessarily worth for
investigation from both theoretical and applied points of view. In fact, a class of fundamental and meaningful
problems that have been identified in the matrix calculus is the characterization of relationships between two
given LMVFs under various assumptions. In view of the above facts, the present author intends to investigate
the relationships between two domains D; and Ds generated from some special cases of (1.3) using the matrix
range and rank methodology. We also discuss the connections among general solutions of some linear matrix
equations and their reduced linear matrix equations.

2 Preliminaries

Block matrix, rank of matrix, and matrix equation are basic concepts in linear algebra, while the block matrix
method (BMM), the matrix rank method (MRM), and the matrix equation method (MEM) are three funda-
mental and traditional analytic methods that are widely used in matrix theory and applications because they
give one the ability to construct and analyze various complicated matrix expressions and matrix equalities in a
subtle and computationally tractable way.

We next present a group of well-known results on ranks of matrices and matrix equations that are described
by way of generalized inverses, MRM and BMM, which we shall use to deal with various matrix expressions
and matrix equalities.
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Lemma 2.1 ( [13]). Let A€ C™*" B € C™** and C € C*™. Then

r[A, B] = r(A) + r(PaB) = 7(B) + r(PgA), (2.1)
r [é} = 1(A4) + 7(CQa) = 7(C) + r(AQc), (2.2)
e 8] =r®)+r0)+ riPmae) (2.3

In particular, the following results hold.
(a) 7[A, Bl =7(A) & %(A) 2 #(B) & AA'B = B < P4B =0.

(b) 7 [é] = r(A) & B(C*) C R(A*) & CAtA=C & CQa =0.

(©) r {g ]g — +(B) +1(C) & PyAQe = 0.

Lemma 2.2 ( ) Let A; € C™*"i  and denote 21 =[A1,..., A1, Aip1,. ., Ag), i =1,2,... k. Then

~

(k — 1)r[Ay, A, ..., Ay] + dim[2 (A1) N 2(A2) N -+ N B(Ay)] = r(Ay) + r(A2) + -+ r(Ag). (2.4)
In particular, the following three statements are equivalent:
(a) 7[A1, A, .. Ap) = 7(AL) +7(A2) + -+ 7(Ag).
(b) (k—1)r[Ar, As, ..., Ap) = r(Ay) + r(A2) + -+ r(Ag).
(c) Z(A)NR(A)N---NR(A) = {0}.
We also use the following well-known results in the sequel.
Lemma 2.3 ( [19]). Let
AX =8B (2.5)

be a given linear matriz equation, where A € C™*™ and B € C™*P are known matrices, and X € C"*P is an
unknown matriz. Then, the following statements are equivalent:

(i) Eq. is consistent.
(i) #(4) 2 2(B).
(iii) r[A, B] = r(A).
(iv) AATB = B.
In this case, the general solution of the equation can be written in the parametric form
X =A'B+QuU, (2.6)

where U € C"*P 4s an arbitrary matriz. In particular, (2.5) holds for all matrices X € C™*? if and only if both
A =0 and B =0, or equivalently, [A, B] = 0.

Lemma 2.4 ( [19]). Let
AXB=C (2.7)

be a given linear matriz equation, where A € C™*" B € CP*4 and C € C™*? are given. Then, the following
statements are equivalent:

(i) Eq. is consistent.
(ii) Both Z(A) D Z(C) and Z(B*) 2 Z(C*).
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(iii) Both r[A, C]=1r(A) andr [g} =r(B).

(iv) AATCBIB = C.
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In this case, the general solution of (2.7) can be written in the parametric form

X = ATCB" + QU + V Pp,

(2.8)

where U,V € C"*P are arbitrary matrices. In particular, (2.7) holds for all matrices X € C"*? if and only if

either [A, C]=0 or [g] =0.

Lemma 2.5 ( [2]). The matriz equation
A1X1 + XQBQ =C
is comsistent if and only if

{C’ Ay
r

By 0:| :r(A1)+r(BQ)7

or equivalently,

P4, CQp, =0.

(2.9)

(2.10)

(2.11)

(2.12)

Eq. (2.10) holds for all matrices X1 and X5 if and only if one of the following four block matrixz equalities holds

c A
{Bg O} =0. (2.13)
Lemma 2.6 ( [14]). The matriz equation
A1X1B1 + A2X232 =C (214)
is consistent if and only if the following four conditions hold
cC A
T[C, Al, AQ] = T[Al, AQ], T 32 0 = T‘(Al) + T‘(BQ), (215)
C
T ¢ Az _ r(A3)+7(B1), 7|B1| =7 By , (2.16)
By 0 By
By
or equivalently,
PsC =0, P4,CQp, =0, P4,CQp, =0, CQp =0, (2.17)

where A = [Ay, As] and B = [gl] .
2

Lemma 2.7 ( [10L[22]). Equation (2.14) holds for all matrices X1 and Xo if and only if one of the following

four block matriz equalities holds

C
(1) [C, A1, Ao} =0, (i) ¢ Ay 0, (iii) ] 0, (iv) |Bi| =0. (2.18)
By O B 0
By
Lemma 2.8 ( [21]). The matriz equation
A1 X, + XoBo + A3 X3Bs + Ay Xy By = C (2.19)
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is consistent iff the following four conditions hold

C A Az A4

T -B2 0 0 0 :| = ’I“[Al, 1437 A4] =+ ’I“(BQ), (220)
[C A Aj5] B

r|Bs 0 0= T[BZ} + r[Ay, As), (2.21)
By 0 0] :
(¢ A A)] B

r|Ba 0 0= T[BQ} +r[Ay, A4, (2.22)
B 0 0| °
oAl

|2 =7 |Bs| +r(A). (2.23)
B; 0 B
By 0 *

3 Some fundamental results on relationships between domains of
two linear matrix-valued functions

We start with two groups of known results on the relationships between two matrix sets generated from the two
simplest cases in (1.3).

Lemma 3.1 ( [25]). Given two domains of LMVFs:
Dy = {Al + B1 X, |X1 S (Cplxn} and Dy = {AQ + By X, |X2 € (szxn}’ (31)

where A1, Ay € C™*" By € C"™*Pt, gnd By € C™*P2 gre known matrices, and X1 € CP**™ and X, € CP2*"
are variable matrices, we have the following results:

(a) D1NDy #, i.e., there exist X1 and X5 such that A1 + B1 X1 = Ay + BaXs if and only if Z(A; — Ay) C
Z|Bi1, Ba].

(b) Dy C Dy if and only if Z[A1 — Ag, B1] C Z(Bs).
(¢) Dy =Dy if and only if Z(A1 — As) C Z(B1) = #(Bs).
Lemma 3.2 ( [25]). Given two domains of LMVFs:
Dy ={A1+B1X,C, | X; € CP**" } and Dy = { Ay + By X505 | Xy € CP27X92 }, (3.2)

where A; € Cm*" B; € C"™*Pi_ and C; € CE*"™ are given, and X; € CPi*% qre variable matrices, i = 1,2, we
have the following results:

(a) D1 NDy # 0 if and only if the following four conditions hold

H(Ar — Az) C Z[B1, By, H(A] — A3) C Z[CY, C3],
A — Ay, B A1 —A B
7“|: 102 2 Ol] =r(By) + r(C2), 7‘[ 101 2 02:| =r(By) +r(Cy).

(b) D1 C Dy if and only if one of the following three conditions holds
(i) Z|A1 — Az, B1] C #(B2) and Z[A] — A3, C1] € Z(C3).
(ii) By =0, Z(A; — Ay) C Z(By), and Z(A; — A35) C Z(C3).
(ili) C1 =0, Z(A1 — A2) C Z(Bz), and (A} — A3) € Z(C3).
(¢) Dy =Dy if and only if one of the following five conditions holds
(i) 2(Ay — A3) C RB(By) = R(Bs) and Z(AT — A3) C A(CY) = R(Cy).
(11) A1 = AQ, Bl = 0, and B2 =0.
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(lll) A1 = AQ, Bl = O, and 02 =0.
(iV) A1 = AQ, BQ = 0, and Cl =0.
(V) Al = AQ, C1 = 0, and CQ =0.

As an extension, we have the following result on relationships between domains of two general matrix-valued
functions, which we shall use in the latter part of the article.

Theorem 3.3. Given two domains of LMVFs:
D, :{A1+BlX1+Y101|X1 E(Cplxnl, Yi € CmXa }, (33)
Dy = {AQ + By X5C5 + DoYs Fo ‘ X5 € (Cs2><t2, Y; € CuQXUz}.

where Ay € C™*™ By € C™*P1 (C; € C1*" Ay € C™*" By € C™*s52 (5 € (Ct2><n, Dy € C™*¥2 gnd
Ey € C2%™ gre known matrices, we have the following results:

(a) D1 NDy # 0 if and only if the following four conditions hold

(Ay — Ay By By D
" o0 o 02] = r[By, Bz, D] +1(C1), (3.5)
_AZ - Al B1 BQ_ C
r E, 0 O0f|=r {El} + r[B1, B2, (3.6)
a0 0] 2
_A2 - Al Bl D2- C
i G 0 0f=r {Cl} + 7By, D), (3.7)
e 0 0] 2
Azg Ay B;)1 o
T 1 =7 |Cy| +7(By). (3.8)
Cy 0 5
| B2 0 ?

(b) D1 2 Dy if and only if one of the following four conditions holds

(A, — Ay By By D

r| 201 ! 01 02 02 =7(By) +r(Cy), (3.9)
_AQ — Al B, BQ_

r Es 0 0] = 7“(81) + ’I“(Cl), (310)
i 1 0 0 ]
_AQ — A1 B4 D2_

r 4 0 0 ZT(Bl)+T(C1), (311)
i Cy 0 0 ]
_AQ — A1 B4

S

oo, ol = r(By) +r(Ch). (3.12)

| Es 0
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(¢c) D1 C Dy if and only if one of the following four conditions holds

A1 — Ag B1 BQ D2
Ch 0O 0 O

A1 — A2 Bl BQ

(i) r[B2, D2 =m or r = 7[Ba, Ds], (3.13)

(ii) 7(Ba)=mor r(Ex)=norr| C 0 0| =r(Bs2)+r(Ey), (3.14)
By 0 0
Al — A2 By Do
(iii) r(Cy)=mnorr(Dy)=morr| Cy 0 0| =r(C2)+r(Ds), (3.15)
Cs 0 O
Al — Ay B

- 01—, [02] : (3.16)

(iv) r G =norr
EQ 02 0
Es 0
(d) Dy =Dy if and only if both (b) and (c) hold.

Proof. The fact D1 N'Dy # O is obviously equivalent to A; + B1 X + Y101 = Ag + B3 X5Co + DyY3 E5 for some
X1, Y7, Xo, and Ys. Rewrite it as

Ble + chl — BQXQCQ — D2Y2E2 = A2 — Ah (317)

and applying Lemma [2.8| to (3.17) leads to Result (a).
By (2.10), (2.12), and (3.17), the fact D; 2 Dy holds iff

Pp, (A2 — A1)Qc, + Pp, BoX2CoQc, + P, D2Y2EoQc, =0 (3.18)
holds for all X5 and Y5. By Lemma (3.18) holds for all X5 and Y5 iff

[Pp, (A2 — A1)Qc,, Pp, B2, Pp, D3] =0, (3.19)
[Pp, (A2 — A1)Qc, Pp, B2
' ' Sl =0 3.20
I E>Qc, 0 : (3.20)
[Pp, (A2 — A1)Qc, Pp, Do
! ! ! =0 3.21
| Qo ! (3.21)
[P, (A2 — 41)Qc,
C2Qc, =0, (3.22)
E2QC1

which, by Lemma c), are equivalent to (3.9)—(3.12).

By (3.17) and Lemma 2.7, the fact D; C D5 holds iff one of the following four equations

Pg (A1 — Ap) + PgB1 X1 + PeY1C1 =0, (3.23)
Pp, (A1 — A2)Qp, + Pp,B1X1QE, + Pp,Y1C1QE, = 0, (3.24)
Pp,(A1 — A2)Qc, + Pp,B1X1Qc, + Pp,Y1C1Qc, = 0, (3.25)
(A1 — A2)Qu + B1 X1Qp +Y1C1Qu =0 (3.26)

hold for all X; and Y;. Further by Lemma 2.7, (3.23) holds for all X; and Y; iff one of the following two
conditions holds

P =0 or r[PG(Al — A2) PGBl] =0,

Ch 0
which are equivalent to

Al — A2 Bl Bg D2

r[Ba, Da] =m or r[ o 0 0 o0

} = r[Ba, Ds);

(3.24) holds for all X; and Y7 iff one of the following three conditions holds

P, =0 or T{PBQ(AC{;Q;?)QEQ PB(z)Bl] =0 or Qp, =0,
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which are equivalent to

A1—Ay B1 B
r(By)=m or r| C 0 0| =r(Bg)+r(Ey) or r(Ey)=mn;
by 0 0

(3.25) holds for all X; and Y7 iff one of the following four conditions holds

r Pp,(A1 — A2)Qc, Pp,Bi

Pp, =0 or CiQc, 0

=0 or QCzZOa

which are equivalent to

A1 — Ay By Do
r(Dy)=m or r| Cy 0 0| =r(Cy)+r(Dsy)orr(Cy)=mn;
Cy 0 0

(3-26)) holds for all X; and Y; iff one of the following four conditions holds

_ (A1 —A2)Qu  Bi| _
Qg =0 or r{ C10n 0 =0,
Al — A2 By
ng =n or r a 0 —7'02
Es| Cy 0| ' |Es|
E, 0
Combining them leads to (3.13))—(3.16)). O

The results in the above three lemmas can be used, as demonstrated below, to solve many concrete problems
on the relationships between solutions of matrix equations, as well as relations between generalized inverses of
matrices.

4 Relationships between solutions of two fundamental linear matrix
equations

It is well known since Penrose [19] that general solutions of linear matrix equations can be represented certain
linear matrix expressions composed with the given matrices in the matrix equations and their generalized
inverses. In this situation, we can use the previous results to characterize various relationships between solutions
of linear matrix equations. There are many linear matrix equations for which the general solution can explicitly
be written as certain explicit linear matrix-valued functions as given in . In this section, we present a
variety of results and facts on relationships between linear transformations of solutions of some fundamental
linear matrix equations.

Theorem 4.1. Assume that the following two matriz equations
A1 X1 =B, and Ay Xy = By (4.1)
are consistent, respectively, where A; € C™*™ and B; € C™*P are given, i = 1,2. Also we denote by
D ={SX1+Th | A1Xi=B1} and Dy ={5Xos+ T | A2 X2 = By}, (4.2)

the domains of two constrained LMVFs, where S; € C**™i and T; € C**P are given, i = 1,2. Then the following
results hold.

Sl SQ T1 - T2 _Sl 52
(a) D1NDy #0 if and only if 7| A1 0 —-B; | =7r|4; 0
0 A2 B2 L 0 A2
ST Sy T 1T, 9.
(b) D1 C Dy if and only if r|A; 0 =By | =r A2 +r(Ay).
2
0 A, By -
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S S T -1 g g
(¢) Dy =Dy if and only if r| A1 0 —By | =77 +r(Ay) =7 |72 +r(A)).
Ay Ao
0 A, By
Proof. By Lemma the general solutions of the two equations in (4.1) can be expressed as
X, = AIB) 4+ 81Qa, Ui, Xo= ALBy + 55Qa,Us, (4.3)
where Uy € C"**P and Uy € C™2*P are arbitrary matrices. Then the two sets in (4.2]) can be represented as

Dl = {SlAIBl + SIQAlUl + Tl } and DQ = {SQA;BQ + SQQA2U2 +T2 } (44)

Applying Lemma a) to (4.4), we obtain that D; N Dy # P if and only if

r[51Q4,, $2Qu,, S1A1B1 — S2 AL By +T1 — To] = 7(S1Q,, 52Qa), (4.5)
where by ([2.2)),
r[$1Qa,, S2Qa,, S1AIB;, — SQA;BQ + Ty — Ty
[S) Sy S1AIB) — S,ALBy + Ty — T
=r|4; 0 0 —7(A1) —r(Az)
0 4 0
[S1 S2 Ty —T»
=r{A; 0 —By | —r(4;) —r(A4y), (4.6)
0 4, B
S1 S
r[S1Qa,, S2Qa,] =7 A1 0 | —r(A1) —7(A2). (4.7)
0 A,
Sl SQ Tl — TQ Sl SZ
Substituting and ([4.7) into (L.5) yields 7|4y 0 =By | =r|A; 0 |, establishing (a).
0 A2 Bg 0 A2
Applying Lemma 3.1(b) to (4.5), we obtain that D; N Dy # 0 if and only if
r[S1Qa,. S2Qa,, SIA{B) — S2A}By + T — T = 1(S2Qu,), (4.8)
where by (2.2),
So
r(S2Qa,) =7 1 r(Asz). (4.9)
2

Substituting (4.6) and into (4.8) yields Result (b). By a similar approach, we obtain that D; D Ds if and
Sy Sy Ty -1, S
onlyifr|A4; 0 -B; | =7 [Al] + 7(Az). Combining it with Result (b) leads to Result (c). O
0 Ay B !
Corollary 4.2. Assume that A1 X1 = By and A3 Xs = Bs in (4.1) are consistent, respectively, and denote by
Dl = {Xl | A1X1 = Bl} and D2 == {XQ | AQXQ == BQ} (410)

the sets of all solutions of the two equations, respectively. Then the following results hold.

(a) The two equations in (4.1) have a common solution if and only if r A Bl r 4 , b6, X By C
A2 B2 AQ BQ
%Pﬂ

Ay

(b) D1 € Do if and only zfr{ﬁ; gj =r(Ay), i.e., %’[g;] C %’[ﬁj and #(A3) € Z(AT).
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Al Bl

A2 B2

(¢) Dy =Dy if and only ifr[ A
2

} — 1(A) = r(A3), ice., %[Bl] c {Al] and (A3) = B(AL).

Corollary 4.3. Let A € C™*" and B € C™*P be given, and suppose AX = B is consistent. Also denote
D ={SX | AX =B} and Dy ={SX | MAX = MB}, (4.11)
where M € Ct*™ and S € CS*™. Then the following results hold.
(a) D1 C Dy always holds.

(b) Dy = Dy if and only if r %A] . {g‘} +r(MA) = r(A).

Corollary 4.4. Assume that AX = B in (2.5) is consistent, and denote
Dy ={X|AX =B} and Dy={X | MAX = MB}, (4.12)
where M € C**™. Then, the following results hold.
(a) D1 C Dy always holds.
(b) Dy =Dy if and only if r(MA) =r(A).
Assume that the matrix equation in (2.5) is consistent, and partition it as
AX = A1 Xy + Ao Xo + -+ Ay Xy = B, (4.13)

where A; € C™ ™| with A = [A4,..., Ag], X; € C"*P are unknown matrices with X = [X7,...,X}] and
p=p1+ -+ pk, and pre-multiplying (4.13)) with Py, yields the following reduced linear matrix equations

Py AX =Py, A;X; =Py B, i=1,...,k, (4.14)

where Y; = [A1,...,A;—1,0,A;11,...,Ax], i = 1,..., k. Then the family of equations in (4.14]) are consistent,
respectively. In such cases, We denote by

'Dl:{XZ|A1X1+A2X2++Aka:B} and Hi:{Xi|EyiAiXi:EyiB}, 7;21,...7]6, (415)

the matrix sets composed by the partial solutions X; of (4.13) and (4.14) respectively; and denote by

D={X|AX =B} and H={[X{,X7,..., X" | By,AiX; = Ey,B, i=1,...,k}. (4.16)
In this section, we first discuss the relationships between D; and H; in (4.15), i = 1,...,k, as well as the two
sets in (4.16)).
Theorem 4.5. Assume that the matriz equation in (4.13) is consistent, and let D; and H; be as given in (4.15),
i=1,...,k. Then the following matriz set equalities

D; = H, (4.17)
always hold, 1 =1,... k.
Proof. Set S=1[0...,1,,,...,0)and M = Ey, in (4.11)), s = 1,..., k. Then we obtain by (2.5) and simplifications

that
Ey, A; A A Y A
r[ }fé, ] —7“|:S:| —r(By,Ai) +r(A) :r[s 0} —’I“|:S:| —r[Z;, Aj]+r(A)
0 Y Yi
:r[s O}—r[s]—r(A)—i—r(A):O.
Thus holds by Corollary c). O

Theorem 4.6. Assume that the matriz equation in (4.13) is consistent, and let D and H be as given in (5.4).
Then the following results hold.
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(a) D CH always holds.
(b) The following statements are equivalent:
(i) D=H.
(i) (k—=1Dr(A) =rY1)+r(Y2)+ - +r(Yi).
(iii) 7(A) = (A1) +r(A2) + -+ r(Ax).
() 2(Y1) N R(Y2) -1 R(Yi) = {0},

Proof. By Lemma 2.3, the general solutions of (4.14) are given by

X; = (Py,A)'Py,B + [I,, — (Py, A;)T (Py, A)]Us, (4.18)
where U; € C™*P are arbitrary, ¢ = 1,..., k. Substituting (2.6 and (4.18]) into (4.16) gives
D={A'B+QaU}, (4.19)
(Py, A))'Py, B I,, — Py, A1 (Py, A))t ... 0 Uy
H = : + : : : (4.20)
(PYkAk)TPYkB 0 - Ink — PYkAk(PYkAk)T Uy
Applying Lemma 3.1(b) to (4.19) and (4.20), we see that D C H if and only if
(Py, A))tPy, B I,, — (Py, AT (Py, A1) ... 0
r|ATB — : , Qa, : :
(Py, A) Py, B 0 oo Iy — (Py, Ad)(Py Ap)
I, — (Py, A (P, Ay) . 0
=r , (4.21)
0 oo I, — (Py, Ap) ' (Py, Ar)
where by
(Py, A1) Py, B L, — (Py, A1) (Py, A1) ... 0
(PykAk)TPka 0 Ink — (PYkAk)T(PykAk)
I (Py, Ay) Py, B I, ... 07
AlB - : I P
(Py, Ar)' Py, B 0 ... I,
=T 0 A 0 7T(A)*T(PY1A1)7'~'77”(PykAk)
Py, A, 0
0 0
i 0 Py, Ay
0 I, 0
—B 0 —A
=r||™B Py, Ay 0 —1r(A) = r(Py, A1) — - — 7(Py, Ap)
: 0 : ) :
| Py, B 0 ... Py A
:n_T(PY1A1) _..._T(PYkAk)’ (422)
and
I,, — (Py, AT (Py, Ay) ... 0
r =n—r(PyA)— - —r(Py Ag). (4.23)
0 oo Tn, — (Py, Ap)T(Py, Ax)
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Both (4.22)) and (4.23]) mean that (4.21)) is an identity, thus establishing (a).
Substituting (4.18) into (4.13) gives

[A1 — A1(Py, A1) T (Py, AD)|UL + -+ + [Ag — Ai(Py, Ap) ' (Py, Aw) Uk
=B — Al(PylAl)TPle 4+ 4 Ak(PYkAk)TPYkB. (424)

It is obvious that D O H holds if and only if the matrix equation in (4.24) holds for all Uy, ..., Uy, which by
Lemma 2.3 is equivalent to

[B — Ay (Py, A1) Py, B+ + Ap(Py, Ay) Py, B, Ay — A1(Py, A1) T (Py, Ay),

vy Ak — Ap(Py Ay (Py, Ay)) = 0, (4.25)
where by (2.5),
T‘[B — Al(PylAl)TPle — = Ak(PykAk)TPka7 Al — Al(Py1A1>T(Py1A1),
s A — Ar(Py, Ap) T (Py, Ar)]
(B — Ay (Py, A1) Py, B — -+ — Ap(Py, Ay) Py, B Ay e Ag
0 PyAr ... 0
=r ) . _ .
I 0 0 ... PyA
- ’I“(_Py1 Al) ce T(PykAk)
B Ay Ay
Py,B PyA, ... 0
=T . . . . 7T(PY1A1)7'~'7T(PYkAk)
PwB 0 ... PyA
(B A Ar O 0 B A 0 0
B A ... 0 Y, ... 0 B A Y, ... 0
=r|. . . o | kA= | = kr(A)
B 0 ... A, 0 ... Y B A 0 .. Y
0 A 0 0
0 0 i ... O
=rl. . . . | k@) =rM)+-+rY) - (k- 1r(A).
00 0 ... Y
Thus (4.25) is equivalent to (k — 1)r(4) = r(Y1) + -+ + r(Yx). Combining this facts with (a) leads to the
equivalence of (i) and (i) in (b). The equivalence of (ii), (iii), and (iv) in (b) follows from Lemma [2.2] O

5 Relationships among solutions of A; X B+ A, XsB, = C and its four
reduced equations

Eq. (2.14) is well known in matrix theory and applications, which solvability condition and general solution
were precisely established using the ranks, ranges, and generalized inverses of the given matrices in the equation;
see e.g., [2, 14722, and the relevant literature quoted there.

It is easy to see that we can construct from (2.14) some small or transformed linear matrix equations. For
instance, pre- and post-multiplying (2.14) with P4, and @ p, respectively yield the following four reduced matrix

equations
P4, (A1X1B1 + A2 X9Bs) = Pa,A1X1B1 = Pa,C, (5.1)
Py, (A1 X1B1 + Ay XoBy) = Pa, Ay XoBy = Py, C, (5.2)
(A1 X1B1 4+ A2 X2B2)Qp, = A1.X1B1QB, = CQB,, (5.3)
(A1 X1B1 4+ A2 XoB2)Qp, = A2 X2 BoQp, = CQp,, (5.4)

respectively. Each of (5.1)—(5.4) is consistent as well, if the matrix equation in (2.14) is consistent. Concerning
the relationships among the solutions of (2.14) and (5.1)—(5.4), we have the following results.
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Theorem 5.1. Assume that the matriz equation in (2.14) is consistent, and denote by

D={(X1, Xo) | A1 X1B1 + A2 X3By =C'}, (5.5)
Hi={ (X1, X32) | Pa,A1X1B1 = P4,C and Pa, A3 XoBy = P4, C}, (5.6)
Hy = { (X1, X2) | Pa,A1X1By = Pa,C and A2 X2B2Qp, = CQp, }, (5.7)
Hy = { (X1, X2) | A1 X1B1QB, = CQp, and P4, A2 X3By = Py, C}, (5.8)
Ha={ (X1, X2) | A1X1B1QB, = CQp, and A2 X2B>Qp, = CQp,}, (5.9)

the collections of all pairs of solutions of (2.14) and (5.1)—(5.4), respectively. Then the following results hold.

(a) D C H; always hold, i =1,2,3,4.
(b) D =Mty if and only if Z(A1) NZ#(As2) = {0} or [Bf, B3] =0.
(¢c) D="™Hs if and only if A2 =0, or By =0, or Z(A1) NZ(As) = {0} and Z(B7) NZ(B35) = {0}.
(d) D=%Hs if and only if A; =0, or By =0, or Z(A1) NZ(As) = {0} and Z(B7) NZ(B3) = {0}.
(e) D ="Hy if and only if [A1, A3l =0 or Z(B}) N % (B3) = {0}.
Proof. Result (a) follows directly from (5.1)~(5.4). By Lemma[2.4] the general solutions of (5.1)—(5.4) are given
by
X1 = (Pa, A1) Pa,CB] + (I, — (Pa,A1)'(Pa, A1)]Uy + Vi(Iy, — B1BY), (5.10)
Xo = (Pa, A2) P, CBl + [I,, — (Pa, A2) ' (Pa, A2)|Uz + Va(Iy, — BQBT), (5.11)
= AlCQp,(B1Q5,)" + (I, — Al A1)Us + V5[I,, — (B1Q5,)(B1Q5,)'], (5.12)
Xp = A{CQp, (B>Qp,)" + (Ip, — AJA2)Us + Vally, = (B2Q,) (B2@,)'], (5.13)

respectively, where U; and V; are arbitrary matrices, i = 1,2, 3,4. Substituting (5.10)—(5.11)) into (2.14) gives
the following matrix equation

ALy, = (Pa, A1) (Pa, A1) UL By + As[ly, — (Pa, A2)(Pa, A2)|Us By

= C — A1(Pa, A1) Pa,C — A3(Pa, A5)"Pa, C,
Ay[Iy, — (Pa, A1) (Pa, A1)|UL By + A5Vi[l,
= C — A1(Pay A1) Pa,C — CQp, (B2Qp, ) Bo,
A1Vs[ly, — (B1Qp,)(B1Q3,) 1B + Asl,,
= C —CQp,(B1Q3,) B1 — A3(Pa, A2) P4, C,

AVs[ly, — (B1QB,)(B1Q3,) 1Br + AVily, — (B2Qp,)(B2Qp,)'|B
=C —CQp,(B1QB,) B> — CQp, (B2Qp,) Bo,

respectively. By Lemma 2.5(
[Ar[Ip, = (Pa, A1) (Pay Av)], Aolly, — (Pa, A2)T(Pa, As)],

C — A1(Pa, A1) Py,C — Ay(Py, A) Py, C) =0,

[c — Ay(Pa, A1) P4, C — Ay(Pa, A3)TPa,C Ay[L,
B 0

¢ - Al(PAzAl)TPAzc - AQ(PA1A2>TPA10 AQ[Ipz - (PA1A2)T(PA1A2)]
By 0

C — A1 (P1, A1) Py, C — Ay(Pa, Ag)1 Py, C
B, =0.
By

13

- (PAQAl)T(PA2A1)]

— (B2Q3,)(B2Qp,)"] B

- (PA1A2)T(PA1 AQ)]Usz

| -0
|-

(5.14)

(5.15)

(5.16)

(5.17)

b), (5.14) holds for all U; and Us if and only if one of the following four equalities

(5.18)

(5.19)

(5.20)

(5.21)
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It is easy to verify that the ranks of the left-hand sides of (5.18)—(5.21]) are given by

T[Al [Ipl - (PAzAl)T(PAzAl)L AQ[IP2 - (PAlAQ)T(PAlAQ)]’ C - Al(PAzAl)TPAQC - AQ(PA1A2)TPA10]

= (A1) +7(A2) —r[As, Az, (5.22)
[C = Ar(Pa, A1)TPa,C — Ay(Pa, A2)'Pa,C Au[ly, — (Pa, A1) (Pa, Ar)]
i By 0
=r(A1) +r(A2) — [A1, Ao] +1(B2), (5.23)
r C — Al(PA2A1)TPA20 - A2(PA1A2)TPA10 A2[IP2 - (PA1A2)T(PA1A2)]
i By 0
=r(A1) +r(A2) — [A1, Ao] +7(B1), (5.24)
[C — A (Pa, A1) Pa,C — Ao(Pa, As) Pa,C
By
r Bl =T |:B :| . <5.25)
- 32 2

Combining (5.18)—(5.21) with (5.22)—(5.25|) leads to the equivalence in (b).
By Lemma 2.5(b), (5.15) holds for all U; and Vj if and only if one of the following four equalities

[C - Al(PAzAl)TPAzc - AQ(PAl AQ)TPAlcv Al [Ipl - (PA2A1)T(PA2A1)]7 AQ] = O’ (526)
[C = A1(Pa, A1) Pa,CB|B1 — A5 A{CQ, (B2Qp,) By Al — (Pa, AT (P, AV)]] _ (5.27)
i [, — (B2QB,)(B2QB,) | B2 0 ’

C — A1 (Pa,A)) ' Pa,CBIBy — Ay ALCQp, (B2Qp,) Bs Ai]
=0, (5.28)
By 0
[C — Ay (Pa, A1) Pa,CBI By — A, ALCQp, (B2Qp,) By
B =0. (5.29)
L [, — (B2QB, ) (B2Qs,)"]Bs

It is easy to verify that the ranks of the left-hand sides of ((5.26))—(5.29)) are given by

T’[C - Al(PA2A1)TPA2C - AQ(PAlAQ)TPA1Oa Al[Ipl - (PAzAl)T(PI‘bAl)]v AQ} = T(AZ)a (530)
r -C - Al(PAzAl)TPA2CBIBl - AzAECQBl (BQQBl)TBQ Al[Ipl - (PAQAl)T(PArAl)]
I Iy, — (B2Qg, )(B2Qp, )] Bs 0
B
= (A1) 4 () 4 () 4 (Be) =l ] = | ] (5.31)
r -C - Al(PAQAl)TPA2CBI‘BL; - A2A£CQB1 (B2QB1)TBQ /(1)1:| — ,,,(AI) + ’I“(BQ), (532)
L 2
[C — Ay(Pa, A1) Pa,CB] By — Ay ALCQp, (B2Qp, ) By
r B =r(By). (5.33)
L [qu - (BQQBl)(BQQBJT]BQ

Combining (5.26)—(5.29) with ([5.30)—(5.33)) leads to the equivalence in (c). Results (d) and (e) can be established
by a similar approach. O

Theorem 5.2. Assume that the matriz equation in (2.14) is consistent, and let

Dy ={X1 | AiX1B1 + A2 XoBy = C'}, (5.34)
Dy ={ X | A1X1B1 + A2 X2By = C'}, (5.35)
Hi={X, | AiX1B) — Ay AL A X\ BiBIBy = C — A, AYCBIB, Y, (5.36)
Hy = { Xy | AsXoBy — A1 AT Ay X5 By BBy = C — A, AICBIB, Y, (5.37)
D ={(X1, Xo) | A1X1B1 + A2 X2By = C' }, (5.38)
H={(X1, X2) | X1 € Hy and X2 € H2}. (5.39)

Then the following results hold.
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(a) The matriz set equalities D; = H; always hold, i = 1, 2.
(b) D CH always holds.
(c) D =H if and only if #(B] ®@ A1) N#(By @ Az) = {0}.
Proof. By the vec operation of matrix, (2.14) can equivalently be expressed as
(Bf @ ANX1 + (B ® A)) X2 = C, (5.40)

which is a special case of (4.13). Pre-multiplying (5.40)) with Pz 4, yields the following reduced linear matrix
equation equations

Puyoa (Bl ® A)X1 = Ppros,Cr Puroa, (Bl @ A)Xs = Pyyoa, C- (5.41)
Now denote
Dy ={X:| (B] @ A)X1+ (B © A) Xy = C}, i=1,2, (5.42)
= (X1 | Pogoa, (BT © A)X 1 = Pyro,, C), (5.43)
Ha = {X2 | Pyroa, (Bl ©As3) Xz = Pyroa, CF. (5.44)

Then by Corollary
Di=H;, i=12 (5.45)
always hold. On the other hand, it is easy to verify that
Pproa, = Imn — (Bf @ A)(B] ® A)' = Lnn — (B] @ A)[(B))' ® Af] = I, — (BIB)T @ 4,A], i=1.2,
and
Pprea, (Bl @ A1) = B] ® A1 — [(BiBy)" @ A, Al(B] ® A1) = B] @ A1 — (B1BIB,)" @ 4,AL Ay,
Pyroa, (Bs ® Ay) = By @ Ay — (BIB1)" @ A1A{(B] @ Ay) = B ® Ay — (B:B{B1)" ® A1 Al A,.
Thus the two equations in by the vectorization operation of matrix are equivalent to
A1 X\ By — Ay AN A X B BIBy = C — Ay ALCBIB,,
AyX3By — A1 Al A X, By Bi By = C — A ATCBI By,

respectively. Thus the two set equalities in ([5.45) are equivalent to the set equalities in (a). Results (b) and (c)
follow from applying Theorem to (5.40). O

In addition to the LMVF in (1.3), there are many types of multilinear and nonlinear matrix-valued functions
that occur in matrix theory and applications, such as,

f(Xl, . ,Xk) = (A1 + B1X101)(A2 + BQXQCQ) cee (Ak + BkaCk),
9(X1, Y1,..., X, Vi) = (A1 + B1 X1Cy + DIV1Ey) - - (A + B X Cr, + DY, Ey),

etc. In these cases, it would be of interest but are also challenging to investigate the connections between a pair
of such matrix-valued functions under various specified assumptions.
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