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Abstract: The generation of isogenic induced pluripotent stem cell (iPSC) lines using CRISPR-Cas9 

technology is a technically challenging, time-consuming process with variable efficiency. Here we 

use fluorescence-activated cell sorting (FACS) to sort biallelic CRISPR-Cas9 edited single-cell iPS 

clones into high-throughput 96-well microtiter plates. We used high-content screening (HCS) 

technology and generated an in-house developed algorithm to select the correctly edited isogenic 

clones for continued expansion and validation. In our model we have gene-corrected the iPSCs of a 

Parkinson’s disease (PD) patient carrying the autosomal dominantly inherited heterozygous 

c.88G>C mutation in the SNCA gene, which leads to the pathogenic p.A30P form of the alpha-

synuclein protein. Undertaking a PCR restriction-digest mediated clonal selection strategy prior to 

sequencing, we were able to post-sort validate each isogenic clone using a quadruple screening 

strategy. Subsequent transfection with mRNA encoding excision-only transposase allows for the 

generation of footprint-free isogenic iPSC lines. These monoclonal isogenic iPSC lines retain a 

normal molecular genotype, express pluripotency markers and have the ability to differentiate into 

the three germ layers. This combinatory approach of FACS, HCS and post-sorted restriction 

digestion facilitates the generation of isogenic cell lines for disease modelling to be scaled-up on an 

automated platform.  
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1. Introduction 

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. The 

global burden of PD, assessed in 2016 was 6.1 million patients, this is estimated to reach 12 million 

patients worldwide by 2050 [1]. PD is clinically characterised by the two neuropathological features, 

the degeneration of innervating A9 dopaminergic neurons from the substantia nigra pars compacta 

(SNc) to the striatum in the midbrain, and the formation of intra-cytoplasmic neuronal inclusion 

bodies, referred to as Lewy Body’s that are immunopositive for the alpha-synuclein protein in the 

neurons that remain [2]. 

PD has a heritability of between 10-15% with mutations in several genes explaining between 5-

10% of these familial cases. The first PD gene identified was SNCA that encodes alpha-synuclein 

identified as an autosomal dominant form of the disease. Rare and highly penetrant missense 

mutations in the SNCA protein at p.A53T [3], p.A30P [4], p.E46K [5], p.G51D [6], and p.A53E [7] have 

all been identified, together with duplications [8] and triplications [9] of the SNCA gene locus. For the 

latter higher protein levels of alpha-synuclein correlated to increased severity and progression of the 

disease. Moreover, different Genome Wide Association Studies (GWAS) have identified common 

variations in SNCA as susceptibility factors for PD in populations worldwide [10,11]. 

The advancement in gene-editing by utilising the RNA guided Cas9 nuclease from the clustered 

regularly interspaced short palindromic repeats (CRISPR) of the bacterial adaptive immune system 

in human cells has revolutionised disease modelling [12,13]. Genome editing by CRISPR-Cas9 

generates a double-strand break (DSB) in which the error-free homology-directed repair (HDR) as 

opposed to the error-prone non-homologous end-joining (NHEJ) is used to repair the DNA. 

Consequently, this allows the gene editing and correction of pathological missense mutations to take 

place in-vitro, thereby isolate, and determine the exact effect of the specific mutation in relation to its 

isogenic corrected control. 

The generation of gene-corrected patient-derived isogenic iPS cell lines in recent years typically 

involves groups successfully using antibiotic resistance combined with fluorescence activated cell 

sorting (FACS) technology, before embarking on a screening and sequencing campaign to select, if 

successful the isogenic clone [14,15]. Recently, the biallelic genomic editing technique has successfully 

used FACS in addition to antibiotic resistance to both introduce and gene-correct heterozygous 

mutations [16–18]. Although CRISPR-Cas9 gene knockout of single-cell HEK293T cells have been 

generated [19], and multiple clones of a gene corrected isogenic cell has been generated [20], to date 

there is no reported study of single-cell gene-corrected patient-derived isogenic iPSC clones. 

Due to the technical complexity of gene-editing cultured human iPSCs, isogenic cell lines are 

generated as a polyclonal cell population, an advantage here is that higher cell numbers are achieved 

earlier in the derivation process. In contrast, a disadvantage of polyclonal isogenic cell lines is that 

the cells within the colony can have different proliferation rates. This is of particular importance 

where the gene editing concerns a developmental, cell-cycle or cell-death affected mutation, which 

over the course of the culture and repeated passaging, changing cellular composition can take place 

leading to variance to the research findings. Characterized single-cell clones offer the certainty of 

having a healthy genetic background, absent of biases in different proliferation rates. The quality 

control provided by the generation of single-cell isogenics ensures the reliability of phenotyping 

assays necessary for future drug discovery and translational research.  

In this study, we gene-corrected the PD patient-derived iPS cells containing the heterozygous 

c.88G>C mutation in SNCA that generates the pathogenic A30P alpha-synuclein protein. We apply 

the biallelic genomic editing technique of antibiotic resistance selection followed by triple-reporter 

FACS technology to sort the CRISPR-Cas9 gene-edited iPSCs with a single-cell iPS clone per well of 

a 96-well plate. We then developed an algorithm and used OPERA®  (Perkin Elmer) high-content 

screening (HCS) technology to post-sort screen the correctly edited clones prior to cell culture 

expansion. For clonal selection, we exploited that the c.88G>C p.A30P SNCA mutation itself leads to 

the creation of an Mva1 restriction digest site within the exon 2 of the SNCA gene [4], thereby negating 

the need to generate additional silent mutations that would be required for the PCR-mediated clonal 

selection process. Thereby using PCR amplification and restriction-digestion, we use the undigested 
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PCR product as a way to validate the gene-corrected clones. Using this validation process of HCS and 

restriction digestion, we are able to quickly and cost-effectively generate and screen our single-cell 

iPSC clones (12 of the picked and amplified 34 clones were correctly edited, efficiency rate = 35.30%). 

We then performed Sanger sequencing as a validation step to confirm the gene editing, before 

excising the transcript and genotyping the footprint-free isogenic iPSC lines. Furthermore, we 

characterised these cells to ensure that the cells pluripotency ability is retained. We show that the 

generation of single-cell isogenic human iPSC lines assisted by the quadruple selection strategy (QSS) 

validation of: antibiotic resistance, single-cell FACS, PCR amplification and restriction-digestion 

mediated clonal selection, and finally Sanger sequencing is a process that facilitates the real-time 

tracking of the edited clones. This process not only increases the traceability of the de-novo single-cell 

isogenic cell line but increases the efficiency compared to previous methods [14,21]. Furthermore 

allowing the operator to track the successfully edited clone(s) through each stage of the QSS process 

aids accuracy, speed and efficiency of the isogenic iPSC generation, a current limitation within the 

genome-editing field. Importantly this strategy can be applied across multiple research areas within 

disease modelling.  

2. Materials and Methods 

Cell line and ethical approval 

Skin biopsies were obtained after informed consent from a patient with Parkinson’s disease. The 

patient carries a heterozygous mutation c.88G>C in the SNCA gene generating the pathogenic p.A30P 

form of the alpha-synuclein protein. This patient is an affected sibling of the index patient from the 

1998 study [4,22]. The generation and characterisation of induced pluripotent stem cells (iPSCs) from 

the dermal fibroblasts has been described [23] and has a unique identifier HIHDNDi001-B 

(https://hpscreg.eu/cell-line/HIHDNDi001-B). Ethical approval for the development of and research 

pertaining to patient-derived cell lines have been given by the National Committee for Ethics in 

Research, Luxembourg (Comité National d’Ethique dans la Recherche; CNER #201411/05). 

Cell culture 

iPSCs were routinely cultured in 6-well plates (Nunc, 140675). These were coated with high 

concentration growth factor reduced Matrigel®  (1:100; Corning, 354263) according to the 

manufacturer instructions. The iPSCs were maintained in homemade E8: (DMEM/F12 + HEPES)(Life 

Technologies; 31330038), Insulin-Transferrin-Selenium (ITS) (1%; Life Technologies, 41400045), 

Penicillin-Streptomycin (1%; Life Technologies, 15140), L-Ascorbic acid 2-phosphate 

sesquimagnesium salt hydrate ((AA2PM); 64µg/mL; Sigma, A8960), bFGF (10ng/mL; Peprotech, 100-

18B), TGF-β1 (2ng/mL; Peprotech, 100-21), Heparin (100ng/mL; Sigma, H3149). The iPSCs were 

maintained as colonies and passaged in Dispase®  (5U/mL; CellSystems, LS02104). 

Generation of isogenic cell lines – insertion of fluorescent constructs 

To generate isogenic stem cells, two biallelic constructs: the dTOMATO-T2A-Puromycin cassette 

(Addgene, 100604), and the EGFP-TA-Puromycin cassette (Addgene, 100603) containing the wild-

type sequence is shown in Figure 1 in addition to the sgRNA 630 previously published [16]. Briefly, 

the iPSCs were dissociated to single cells using Accutase and plated in iPS media plus Rho-Kinase 

Inhibitor Y-27632 (10μM; Abcam, Ab120129). Then, 1x106 iPSCs were electroporated once using the 

2D-Amaxa nucleofector unit (Lonza) and the program B16. 1.5μg of each donor cassette and 2.5μg of 

sgRNA was used together for the electroporation. The Human Stem Cell Nucleofector Kit 1 was used 

for the transfection according to the manufacturer’s instructions. After electroporation, 1mL of 

homemade E8 was added to the cuvette before being placed in the incubator for 10 minutes. The cells 

were then plated into three wells of a 6-well plate with approximately 1.5mL of media per well. Cell 

selection using antibiotic resistance to puromycin (Sigma, P9620) was used as soon as small to 
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medium-sized colonies began to appear. Puromycin concentrations of 0μg/mL, 0.5μg/mL and 

1μg/mL were used respectively in the three plated wells for 24 hours with the viable colonies 

following 1μg/mL antibiotic treatment passaged and then expanded into 2x 10cm2 tissue culture 

treated Matrigel™-coated dishes (Nunc, Z755923) prior to sorting. 

 

 

 

Generation of isogenic cell lines – Sorting single-cell iPSCs 

iPSC colonies were dissociated to single cells using Accutase before being centrifuged (300g; 

3mins) and re-suspended in sterile-filtered sorting buffer (PBS containing EDTA (1mM; Sigma, 

E9884), HEPES (20mM, Life Technologies, 15630), Bovine Serum Albumin (0.2%, Sigma, A2058), 1% 

Penicillin/Streptomycin) and 10uM Rho-Kinase Inhibitor. Cells were sorted at 4°C using an 85μM 

nozzle and a neutral density filter of 1.5 on the BD FACS Aria™ III (BD Biosciences). Cytometer Setup 

and Tracking (CST) beads were used daily to calibrate and define the baseline performance of the 

machine using the FACSDiva™ software. Prior to sorting, the drop delay experiment was setup to 

calibrate the sorting efficiency using the Accudrop™ beads, this was manually adjusted until the 

efficiency was ≥99.5%. In preparation of the single-cell sorting in a 96-well plate (Nunc, delta surface 

treated #167008) a dummy plate was placed onto the cooled stage to setup the sorting parameters. 

Briefly, the single-cell mode was selected in the FACSDiva™ software and 100 beads were sorted per 

well in order to visually check if the cells were sorted to the centre of the well, or if further calibration 

was required. Once the visual inspection was passed, a 96-well plate pre-coated with Matrigel, 

containing 100μL of Homemade E8 iPSC media and Rho-Kinase Inhibitor was placed onto the stage 

with 1 cell/well selected in the experimental setup parameters. The cells once sorted were left in the 

incubator (37°C, 5% CO2) for 48 hours before the media being half-changed daily; Rho-Kinase 

Inhibitor was not included in the media at this stage. The cells were maintained for 10-21 days before 

they appeared visible and were able to be screened on the OPERA®  High-Content Screening (HCS) 

System (Perkin Elmer). 

Generation of isogenic cell lines – Expansion of the single-cell clones 

Visual inspection was used to select the clones for subsequent passaging and expansion. These 

selected clones had an undifferentiated morphology, which was later confirmed by 

immunofluorescence, and had taken up both the dTOMATO and EGFP constructs; any clone that 

expressed the tagBFP construct was not expanded as a monoclonal iPS cell line. The selected clones 

were dissociated using Accutase and were expanded into a well of a 24-well plate before being 

Figure 1. Donor Vector for Homology Directed Repair. The c.88G>C mutation is located in the target genomic 

region of Exon 2 of the SNCA gene located on chromosome 4. The vector backbone of the two constructs contain 

the tagBFP outside the homology arms, within the homology arms is the wildtype genomic DNA with the 

dTOMATO or EGFP fluorescent constructs.  
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passaged into two wells of a 12-well plate. At this stage one of the cell clones was cryopreserved (70% 

Knockout Serum Replacement (KOSR), Life Technologies, 1867715; 20% Homemade E8, 10% DMSO, 

Sigma, D2438) with 10μM Rho-Kinase Inhibitor. The remaining clone was pelleted for PCR-mediated 

clonal selection using Mva1 restriction digestion.  

PCR Restriction digest mediated clonal selection 

Total RNA was extracted from the iPSCs using NucleoSpin®  RNA (Macherey-Nagel). RNA was 

treated with DNase I (Sigma, 047167280001) cDNA was reverse transcribed using Transcriptor High 

Fidelity cDNA Syntheisis Kit (Roche). Amplification of Exon 2 SNCA cDNA by PCR was performed 

using forward primer: CCCCGAAAGTTCTCATTCAA and reverse primer: 

TCCACCTTTTTGACAAGCAA giving a 314 bp product. Kit Go Taq®  G2 Flexi DNA Polymerase 

(Promega M7805) was used for this reaction with the following program: Pre-denaturation (95°C; 

2mins), 35 cycles of denaturation (95°C; 30s), annealing (60°C; 30s) and extension (72°C; 60s), followed 

by a final extension (72°C; 5mins). Mva1 (BstNI) (30min, 37°C; (ThermoFisher FastDigest #FD0554)) 

digestion was used to check clonal efficiency. The c.88G>C, p.A30P SNCA mutation leads to the 

creation of a Mva1 restriction site [4], correction of this mutation results in the undigested product. 

Following the restriction digest mediated clonal selection, Sanger sequencing was performed on 

selected cell lines by Eurofins Genomics Germany GmBH. 

Transposase-mediated generation of footprint-free isogenic cell lines 

Both the dTOMATO-T2A-Puromycin cassette and the EGFP-TA-Puromycin cassette contain a 

TTAA sequence necessary for removal of the constructs [16]. The single cell clones containing the 

tagBFP-/EGFP+/dTOMATO+ combination were transfected with an mRNA encoding excision-only 

transposase as previously described [16]. The Stemfect™ RNA Transfection Kit (Stemgent) was used 

according to the manufacturing instructions, this lead to the generation of footprint-free isogenic cell 

lines. Three sorting steps were undertaken to purify and confirm removal of the biallelic constructs 

(Supplementary Figure 3). 

Immunocytochemistry 

iPSCs were fixed, stained and imaged as previously described [24]. Primary antibodies used 

were: OCT4 (1;200; Santa Cruz, sc-5279), NANOG (1:100; Abcam, ab21624), SOX2(Y-17) (1:200; Santa 

Cruz, sc-17320), TRA-1-60 (1:300; Abcam, ab16288). Secondary antibodies used were: Alexa Fluor 488 

Goat anti-Mouse IgG (H+L) (1:200; Invitrogen, A11029), Alexa Fluor 568 Goat anti-Rabbit IgG (H+L) 

(1:200; Invitrogen, A11036) and Alexa Fluo 647 Donkey anti-Goat IgG (H+L)(1:200; Invitrogen, 

A21447) .  

In-vitro differentiation 

iPSCs were plated onto Geltrex™-coated glass coverslips. Directed in-vitro differentiation to the 

three germ layers was performed using the Human Pluripotent Stem Cell Functional Identification 

Kit (R&D Systems, SC027B) according to manufacturer instructions. Primary antibodies used 

provided with the kit were: SOX17 (1:1000; R&D Systems, #963121), OTX2 (1:1000; R&D Systems, 

#963273), BRACHYURY (1:1000; R&D Systems, #963427). The secondary antibody used was Alexa 

Fluor 647 Donkey anti-Goat IgG (H+L) (1:1000; Invitrogen, A21447). Cells were fixed, stained and 

imaged previously described [24]. 

Chromosomal analysis 

Molecular karyotyping and identity analysis was performed on the iPS clones at Life&Brain 

GmBH (Bonn, Germany) using the Illumina BeadArray HumanOmni2.5Exome-8 BeadChip v1.3 on 

the Illumina iScan (Serial Number: N263) scanner (Illumina Inc. San Diego, USA). Genotype analysis 
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was performed using GenomeStudio V2.0.2 with Copy Number Analysis undertaken using the CNV-

Partition V3.2 (Illumina Inc. San Diego, USA). Copy number events were reported if larger than 

350,000 base pairs. The method overviewing the high-resolution whole sequence genomic profiling 

technology that was used in this study has been previously described [25]. The molecular 

karyotyping report for each iPS clone analysed are available with the authors and can be made 

available upon reasonable request. 

Computer Code, software and licensing 

  Fluorescence microscopy images were acquired on an Opera QEHS spinning disc microscope 

(Perkin Elmer) using a 10x air objective with numerical aperture 0.4. Blue, green, and red fluorescent 

channels were acquired simultaneously. The sample was excited with 405 nm, 488 nm, and 561 nm 

lasers. Blue emission was detected behind a 450/50 bandpass filter, green emission behind a 520/35 

filter, and red emission behind a 600/40 filter. The camera binning for all channels was 2. 

Image analysis was performed in Matlab 2017b (Mathworks). For the classification of clones, 

whole well mosaic images were segmented and classified with a custom algorithm: Briefly, the red 

channel was low pass filtered with a gaussian kernel of size 21 and standard deviation 7, and 

thresholded (RedPositiveMask = RedLP > 125). The green and red channels were low pass filtered 

with gaussian kernels of size 60 and standard deviation 20 and thresholded (GreenPositiveMask = 

GreenLP > 200, BluePositiveMask = BlueLP > 200). After segmentation, wells containing a clone with 

an area bigger than 20000 pixels were classified as Blue, Red, RedGreen, or Negative according to the 

area-proportion (AP) per channel. Area-proportion is defined as the count of pixels in a channel-

specific mask divided by the count of pixels in the clonal region of interest, which is defined by the 

boolean OR operation between GreenPositiveMask and RedPositiveMask. Briefly, the class Red is 

defined as APred > 0.9 and APgreen < 0.1. The class Green is defined as APred < 0.1 and APgreen > 

0.9, the class RedGreen is defined as APred > 0.1 and APgreen > 0.1, and all remaining clones are 

classified Negative. 

The figure created for the graphical abstract was generated using images from Servier Medical 

Art Commons Attribution 3.0 Unported License. (http://smart.servier.com). Servier Medical Art by 

Servier is licensed under a Creative Commons Attribution 3.0 Unported License. 

3. Results 

3.1. Single-cell sorting of gene-edited iPSC clones 

The pluripotent iPSC line A30P-4, (unique identifier HIHDNDi001-B) derived from the p.A30P 

SNCA patient underwent biallelic transfection containing the wild-type homology sequence attached 

with two different fluorescent reporters, a red fluorescent protein (dTOMATO) and a green 

fluorescent protein (EGFP). Biallelic editing using two fluorescent constructs provides the certainty 

of generating the homozygous wild-type isogenic cell line. Using FACS, double-discrimination for 

dead cells, cell clumps and doublets were used with strict gating (Figure 2A-C). The negative control 

used was the iPSC line without transfection (Figure 2D), a representative plot of the sorted 

dTOMATO+/EGFP+ cells is shown in Figure 2E. Outside of the homology arm there is a blue 

fluorescent protein (tagBFP) that allows for the identification of random integration events, which 

was removed by prior cell sorting (Supplementary Figure 1). The box and arrow in Figure 2E 

represents the gating used to sort the single-cells into the 96-well plate. Once the cells became visible, 

they were screened using the OPERA HCS with Matlab (version 2017b, Mathworks). The in-house 

developed image analysis algorithm (Supplementary Method 1) automates the segmentation of the 

cellular structure across three fluorescent channels and shows a merged image, with the clones 

numbered (Figure 2F). The use of HCS technology allows the operator to discriminate based on the 
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presence of a single fluorescent construct only, a BFP+ cell, iPS morphology and cell doublets from 

improper FACS gating. 
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Figure 2: Sorting of single-cell isogenic iPSCs. (A) Selection of a live cell population and (B-C) doublet-

discrimination (D) Generation of negative sorting gates using untransfected iPSCs. (E) Single-cell FACS sorting 

of dTOMATO
+
/EGFP

+
 cells with restrictive gating (black arrow) into a 96 well plate. (F) High content screening of 

single-cell sorted plate showing the green, red, blue and merged channels. 
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3.2. Restriction-digest mediated selection of single-cell clones 

Following the positive selection and expansion of the monoclonal iPS cell lines using FACS and 

HCS, PCR amplification and restriction digestion was next set of selection criteria used to select the 

single-cell iPS cell lines (Figure 3). Of the 37 different monoclonal iPSC cell lines amplified (Figure 

2F), 34 of those cell lines were successfully passaged and cryopreserved. Specific primers were used 

to amplify Exon 2 of the SNCA gene leading to a 314 bp product, a further 3 clones (Cl. 6, Cl. 14 and 

Cl.17) failed in the initial PCR amplification (Figure 3A), with Cl. 14 having introduced an insertion 

of the sequence (Supplementary Figure 2). The c.88G>C p.A30P SNCA heterozygous mutation leads 

to the generation of an Mva1 restriction site. Conversely, if the heterozygous mutation has been 

repaired by HDR and gene-corrected, there should be neither the Mva1 restriction site nor the 

digested product. Of the clones that are putatively isogenic, there are three distinct PCR products 

(Figure 3B). These are shown in Figure 3B as either a double-band (*), a lower band of approximately 

100bp, or an undigested PCR product (#). Using Sanger sequencing (Figure 3C) we confirmed that 

the clones which had the double-band retained the heterozygous c.88G>C mutation and were not 

correctly edited. The iPS single-cell clones with the undigested PCR product at 314bp showed the 

successful generation of gene-corrected SNCA cell lines.  

 

 

 

 

 

A list detailing the CRISPR-Cas9 mediated monoclonal isogenic patient-derived iPSC lines 

generated in this study, including cell-line validation criteria is shown in Table 1.   

Figure 3: Restriction-digest mediated clonal selection. (A) PCR amplification of single-cell clones. (B) Mva1 

restriction digest post PCR amplification. *Double-band, #Unedited restriction digestion. (C) Sanger sequencing of 

amplified sequence. Black arrow signifies location of the c.88G>C SNCA mutation. 
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Table 1: List of CRISPR-Cas9 mediated single-cell isogenic patient-derived iPSC clones generated in this study with cell line validation criteria 

Expanded single cell clones1 PCR Test Mva1 test digest Sanger sequencing Construct excision and genotyping  

A30P-4 edited clone 1 314 bp Digested: Double-band Not done  
A30P-4 edited clone 4 314 bp Digested: Lower bp product Not done  
A30P-4 edited clone 5 314 bp Undigested: 314 bp product Isogenic: Gene-corrected p.A30P mutation Chr 4: Deletion 

A30P-4 edited clone 6 No product No product Not done  
A30P-4 edited clone 7 314 bp Undigested: 314 bp product Not done  
A30P-4 edited clone 8 314 bp Digested: Double-band Not done  
A30P-4 edited clone 9 314 bp Digested: Double-band Not done  
A30P-4 edited clone 10 314 bp Digested: Double-band Not done  
A30P-4 edited clone 11 314 bp Undigested: 314 bp product Not done  
A30P-4 edited clone 12 314 bp Undigested: 314 bp product Not done  
A30P-4 edited clone 13 314 bp Undigested: 314 bp product Isogenic: Gene-corrected p.A30P mutation Normal genotype 

A30P-4 edited clone 14 416 bp Digested  102 bp insertion error  
A30P-4 edited clone 15 314 bp Undigested: 314 bp product Not done  
A30P-4 edited clone 16 314 bp Digested: Double-band Not done  
A30P-4 edited clone 17 No product No product 102 bp insertion error  
A30P-4 edited clone 18 314 bp Digested: Double-band Not done  
A30P-4 edited clone 19 314 bp Undigested: 314 bp product Isogenic: Gene-corrected p.A30P mutation  
A30P-4 edited clone 20 314 bp Digested: Double-band Not edited: Heterozygous p.A30P SNCA mutation  
A30P-4 edited clone 21 314 bp Digested: Lower bp product Not done  

A30P-4 edited clone 22 314 bp Undigested: 314 bp product Not done  
A30P-4 edited clone 23 314 bp Digested: Lower bp product Not done  
A30P-4 edited clone 24 314 bp Digested: Double-band Not done  
A30P-4 edited clone 25 314 bp Undigested: 314 bp product Not done  
A30P-4 edited clone 26 314 bp Digested: Double-band Not done  
A30P-4 edited clone 27 314 bp Undigested: 314 bp product Not done  
A30P-4 edited clone 28 314 bp Digested: Double-band Not done  
A30P-4 edited clone 29 314 bp Undigested: 314 bp product Isogenic: Gene-corrected p.A30P mutation  
A30P-4 edited clone 30 314 bp Digested: Double-band Not done  
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A30P-4 edited clone 31 314 bp Digested: Lower bp product Not done  
A30P-4 edited clone 32 314 bp Digested: Lower bp product Not done  
A30P-4 edited clone 33 314 bp Undigested: 314 bp product Isogenic: Gene-corrected p.A30P mutation Normal genotype 

A30P-4 edited clone 34 314 bp Digested: Double-band Not done  
A30P-4 edited clone 36 314 bp Digested: Double-band Not done  
A30P-4 edited clone 37 314 bp Digested: Double-band Not done  

1 A30P-4 edited clones 2, 3 and 35 did not survive iPS passaging 
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3.3. Characterisation of single cell clones  

Three cell lines of the gene-corrected isogenic cell lines (Cl. 5, Cl. 13, Cl. 33) were selected at 

random and transfected with an mRNA encoding the excision-only variant of the piggyBac 

transposase to remove the fluorescent constructs [16,26]. The subsequent dTOMATO-/EGFP- cell 

population were purified by three cell sorting steps (Supplementary Figure 3). The gene-corrected 

footprint-free isogenic cell lines were then karyotyped as part of the validation procedure. The gene-

corrected cell lines Cl. 13 and Cl. 33 were karyotypically normal, had a stable genotype and passed 

this validation step, Cl. 5 had a deletion in Chromosome 4 and did not pass the validation step. All 

molecular karyotypes using single nucleotide polymorphism (SNP) analysis are shown in the 

supplementary materials (Supplementary figures 4-6). 

  The de-novo monoclonal gene-edited iPS cell lines were then characterised and validated by 

their pluripotency ability. The iPS colonies displayed a stem cell morphology and had positive marker 

staining for: OCT4, SOX2, NANOG and TRA-1-60 at the protein level (Figure 4A). The iPS cell lines 

also retained the in-vitro ability to directly differentiate into the three embryonic germ layers defined 

by specific marker expression specific to that lineage: Ectoderm (OTX2), Endoderm (SOX17) and 

Mesoderm (BRACHYURY) (Figure 4B). 

 

 

 

4. Discussion 

Figure 4: iPS cell line characterisation. (A) Pluripotency characterisation of the three single-cell isogenic lines 

generated in this project. Phase contrast images of pluripotent colonies, image taken using a 5x objective. Scale 

bar represents 100μM. Antibody specific pluripotency marker expression of OCT4/SOX2 and NANOG/TRA-1-

60. Images taken using a 25x objective, scale bar is 50μM. (B) Directed differentiation to the three embryonic germ 

layers using antibodies specific to Ectoderm (OTX2), Endoderm (SOX17) and Mesoderm (BRACHYURY). Images 

taken using a 25x objective, scale bar is 50μM. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 May 2020                   doi:10.20944/preprints202005.0001.v1

Peer-reviewed version available at Cells 2020, 9, 2065; doi:10.3390/cells9092065

https://doi.org/10.20944/preprints202005.0001.v1
https://doi.org/10.3390/cells9092065


 2 of 16 

 

This research article is the first to show gene-corrected isogenic cell lines from a PD patient 

carrying the mutation encoding p.A30P in the SNCA gene. Gene-correction of the patient iPSCs 

carrying the pathogenic p.A53T SNCA mutation and triplication of the SNCA gene locus have been 

previously published [27–29].  

This study is the first to generate patient-derived gene-corrected single-cell isogenic iPS cell lines 

and is a novel approach within the literature. Furthermore, this study uses a quadruple selection 

strategy (QSS) to select, screen and validate these single-cell clones using genotyping and 

pluripotency characterisation. The use of the QSS: Antibiotic resistance; single-cell sorting and HCS; 

PCR amplification and restriction digest-mediated selection; and Sanger sequencing, to select clones 

is additionally a novel approach that has scope to be scaled up for high-throughput mediated 

generation of isogenic cell lines iPSCs. The use of the QSS will substantially reduce the time required 

to generate an isogenic cell line, in part by eliminating every other non-edited or incorrectly edited 

cell from the edited population. Sorting and screening multiple 96-well plates using HCS further 

reduces the time that the operator needs to spend manually checking and validating each colony/well 

through the microscope. PCR-mediated restriction digestion has long been used successfully in gene 

editing to validate generated patient-derived isogenic iPS clones [28] and introducing silent 

mutations or utilising the existing mutation within the sequence of the pre-edited cell line is one of 

the most effective strategies in validating the generated patient-derived isogenic iPS clone.  

Using the QSS strategy to generate the single-cell isogenic clones gives an efficiency of 35.30% - 

12 out of the 34 Mva1 undigested clones were correctly edited (Table 2), which compares favourably 

to the standard isogenic generation rate of 1-5% [14,21]. However, it must be noted that without the 

sorting of the edited cells into single-cell clones, this efficiency would be markedly lower. The 

remaining 64.70% of sorted cells that had expressed both wild-type sequences shown by the presence 

of the respective dTOMATO and EGFP constructs were either incorrectly edited or unedited in the 

sequenced region. Without the single-cell isogenic method of selection, a heterozygous polyclonal 

mix of correctly and differentially edited cells would have been generated and not a bona-fide gene-

corrected patient-derived isogenic iPS cell line. Moreover, the polyclonal cell line would not have 

passed the Mva1 undigested restriction-digest validation step and the line would have not been 

generated, underlying the stringency of the validation. 

Table 2: Summary of each stage of the gene-corrected p.A30P SNCA single-cell isogenic cell lines 

generated 

 

Sorted 

single-cell 

clones1 

Expanded 

single-cell 

clones 

PCR 

Amplification 

Mva1 

undigested 
Sequenced2 

Normal 

Genotype3 

Absolute 

numbers 
37/192 34/37 31/34 12/34 5/5 2/3 

Efficiency 19.27% 91.89% 91.18% 35.30% 100% 66.67% 

1 Only the yellow clones expressing both the dTOMATO+/EGFP+ constructs were amplified.  
2 Of the cell lines that passed the Mva1 restriction digest criteria, five were chosen at random for Sanger 

sequencing. 
3 Of the five cell lines that were successfully sequenced, three were chosen at random for genotyping. 

The plated recovery rate of the single-cell iPS clones is 19.27%, this already contains the correct 

fluorescent combination of dTOMATO+/EGFP+/tagBFP- (Table 2). A concern in the literature 

regarding the dissociation to single-cells and single-cell iPS culture is that there is a strong selective 

pressure for iPSCs to adapt that could lead to potential genomic abnormalities [30,31]. Changes in 

copy number variation (CNV) was used to sequence the genome and validate the isogenic cell lines 

after transposase-mediated excision of the construct. Two of the three single-cell isogenic cell lines 

selected at random had no genotypic abnormalities although the third did. However as this was due 

to a deletion on chromosome 4 (Table 1) it is likely this was mediated by gene editing as opposed to 

a cell culture acquired abnormality [32].  
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5. Conclusion 

 The generation of gene corrected isogenic cell lines is critically important in understanding the 

mechanism how a pathogenic disease variant leads to the disease. Establishing a single-cell gene 

corrected isogenic as opposed to a heterozygous polyclonal isogenic is the next step in this research 

landscape. What we have shown is that the use of the QSS that includes the single-cell sorting and 

HCS easily allows the researcher to generate, validate and isolate the gene-corrected single-cell 

isogenic clones from the CRISPR-Cas9 correctly edited, incorrectly edited and non-edited 

heterozygous cellular population, improving on a technically challenging, variably efficient and time-

consuming process.  

Supplementary Materials: The following are available online. Figure S1: Removal of tagBFP+ cells using FACS 

prior to sorting the dTOMATO+/EGFP+ transfected cells. Figure S2: 102 bp sequence insertion in Cl. 14. Figure 

S3: Transposase removal of biallelic constructs using FACS and validation of footprint-free isogenic cell lines. 

Figure S4: Molecular karyotype of the single-cell gene-corrected cell line clone 5. Figure S5: Molecular karyotype 

of the single-cell gene-corrected cell line clone 13. Figure S6: Molecular karyotype of the single-cell gene-

corrected cell line clone 33. A frozen page containing the source code required for the implementation of the 

cloneclassifer script with the output shown in Figure 2F is available: https://doi.org/10.17881/lcsb.kcqg-tr55   
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