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Abstract

Nonlinear electrodynamics with two dimensional parameters is stud-
ied. The range of electromagnetic fields when principles of causality,
unitarity and the classical stability hold are obtained. A singularity
of the electric field at the center of charges is absent within our model
and there are corrections to the Coulomb law as r → ∞. The uni-
verse inflation takes place in the background of stochastic magnetic
fields. The second stage of the universe evolution is the radiation era
so that the graceful exit exists. We estimated the spectral index, the
tensor-to-scalar ratio, and the running of the spectral index that are
in an approximate agreement with the PLANK and WMAP data.

1 Introduction

The universe inflation can be explained by modifying the general relativity
(GR) [1], [2]. But it is possible to explain the inflation of the universe by
coupling GR with nonlinear electromagnetic fields [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14]. In the early time of the universe evolution
electromagnetic fields were very strong and quantum corrections should be
taken into account [15] and, as a result, Maxwell’s electrodynamics becomes
nonlinear electrodynamics (NED) [16], [17], [18]. First NED, without singu-
larities of point-like charges, was proposed by Born and Infeld [19]. In this
paper we study NED that for weak fields leads to the Maxwell limit. We
assume that the universe filled by the stochastic magnetic background.

Stochastic fluctuations in electron-positron plasma can lead to a stochas-
tic magnetic field [20], [21]. Thus, in the early stage of the radiation-
dominated era the early universe was filled by a strong low-frequency random
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magnetic fields. It is known that there are magnetic fields in the order of
B = 10−6 G in our galaxy and other spiral galaxies [22], and they possess
the primordial origin. Such magnetic fields can be generated by means of
the galactic dynamo mechanism. According to the galactic dynamo theory
angular momentum energy is transferred into magnetic energy. This mech-
anism needs the existence of weak seed fields in the order of B = 10−19 G
at the epoch of the galaxy formation. Such seed magnetic fields may be the
result of thermal fluctuations of the primordial plasma and the long wave-
length fluctuations can be reconnected. Then the magnetic energy may be
redistributed over larger scales. It should be noted that the origin of cosmic
magnetism on the largest scales of galaxies and galaxy clusters is still an
open problem [23]. We consider the magnetic background because the elec-
tric field is screened by the charged primordial plasma [21]. In the standard
cosmological model the asymmetry in the direction is absent, 〈B〉 = 0, and
there is no the directional effects.

The structure of the paper is as follows. In Sect. 2 we consider a NED
model with two dimensional parameters β, γ, and the causality and unitarity
principles are studied. We analyze field equations and their dual invariance
in Sect. 3. It is demonstrated that there is no singularity of the electric
field at the origin of the point-like charges and the electric field possesses the
maximum. There are corrections to Coulomb’s law in the order of O(r−6).
We estimate the model parameters β and γ by the requirement that at the
weak field limit our model is converted into QED with one loop correction.
In Sect. 4 we investigate the cosmology of the universe which is filled by
stochastic magnetic fields. The energy density and pressure as the functions
of the scale factor are obtained. It was demonstrated that the singularity
of the Ricci scalar is absent. The evolution of the universe is studied in
Sect. 5. The dependence of the scale factor on the time is found. The
bound on the speed of sound which guarantees the classical stability and
causality is calculated. We evaluate in Sect. 6 the cosmological parameters
(the spectral index ns, the tensor-to-scalar ratio r, and the running of the
spectral index αs). It is shown that they agreed approximately with the
PLANK and WMAP data. Section 7 is a conclusion.

We use the units with c = h̄ = ε0 = µ0 = 1. The metric signature is
chosen to be η = diag(−,+,+,+).
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2 The NED model

Here, we propose NED with the Lagrangian density given by

L = − F
(1 + 2βF)3/2

+
γ

2
G2, (1)

where F = (1/4)FµνF
µν = (B2 − E2)/2, G = (1/4)FµνF̃

µν = B · E (F̃ µν =
εµναβFαβ/2 is a dual tensor), Fµν = ∂µAν − ∂νAµ, and β (β > 0), γ (γ > 0)
are dimensional parameters. The symmetrical stress-tensor following from
Eq. (1) is

Tµν = LFF α
µ Fνα +

1

2
LG

(
F α
µ F̃να + F α

ν F̃µα
)
− gµνL

=
(βF − 1)F α

µ Fνα

(1 + 2βF)5/2
+

1

2
γG

(
Fα
µ F̃να + F α

ν F̃µα
)
− gµνL, (2)

where LF = ∂L/∂F , LG = ∂L/∂G. Making use of Eq. (2) we find the trace
of the stress-tensor

T ≡ T µ
µ =

12βF2

(1 + 2βF)5/2
+ 2γG2. (3)

In Maxwell’s electrodynamics β → 0, γ → 0 and L → −F so that the energy-
momentum tensor is traceless, T → 0. Because the dimensional parameters
are present in the model the scale invariance is violated and the stress-tensor
is not traceless. From Eq. (1) one obtains the energy density ρ and the
pressure p as follows:

ρ = −L− E2LF + GLG =
(1− βF)E2

(1 + 2βF)5/2
+

F
(1 + 2βF)3/2

+
1

2
γG2, (4)

p = L+
E2 − 2B2

3
LF−GLG = − F

(2βF + 1)3/2
+

(E2 − 2B2)(βF − 1)

3(2βF + 1)5/2
−1

2
γG2.

(5)

2.1 The causality and unitarity principles

In accordance with the causality principle the group velocity of excitations
over the background should be less than the speed of light and there will be
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not tachyons in the theory spectrum. The unitarity principle guarantees the
absence of ghosts. Both principles lead to the inequalities [24]:

LF ≤ 0, LFF ≥ 0, LGG ≥ 0,

LF + 2FLFF ≤ 0, 2FLGG − LF ≥ 0. (6)

By virtue of Eq. (1) one obtains

LF =
βF − 1

(1 + 2βF)5/2
, LGG = γ, 2FLGG − LF = 2Fγ +

1− βF
(1 + 2βF)5/2

,

LF + 2FLFF =
−4(βF)2 + 11βF − 1

(1 + 2βF)7/2
, LFF =

3β(2− βF)

(1 + 2βF)7/2
. (7)

Making use of Eqs. (6) and (7), in the case of γ = 0, B = 0, we obtain

|E| ≤
√

1/β which is satisfied because the maximum of the electric field

is given by |Emax| =
√

1/β (see Eq. (19)). If γ = 0, E = 0, one has

|B| ≤
√

(11−
√

105)/(4β) ≈ 0.434/
√
β.

3 Electromagnetic field equations

With the help of Eq. (1) we find field equations

∂µ
(
LFF µν + LGF̃ µν

)
= 0. (8)

Making use of Eqs. (1) and (8) we obtain

∂µ

(
(βF − 1)F µν

(1 + 2βF)5/2
+ γGF̃ µν

)
= 0. (9)

Using the equation D = ∂L/∂E, we find the electric displacement field

D =
1− βF

(1 + 2βF)5/2
E + γGB. (10)

The magnetic field H = −∂L/∂B is given by

H =
1− βF

(1 + 2βF)5/2
B− γGE. (11)
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We use the decomposition of Eqs. (10) and (11) as follows [25]:

Di = εijE
j + νijB

j, Hi = (µ−1)ijB
j − νjiEj. (12)

Making use of Eqs. (10), (11) and (12) one finds

εij = δijε, (µ−1)ij = δijµ
−1, νji = δijν,

ε =
1− βF

(1 + 2βF)5/2
, µ−1 = ε =

1− βF
(1 + 2βF)5/2

, ν = γG. (13)

Field equation (9), by virtue of Eqs. (10) and (11), can be represented as
the Maxwell equations

∇ ·D = 0,
∂D

∂t
−∇×H = 0. (14)

Because εij, (µ−1)ij, and νji depend on electromagnetic fields, Eq. (14) are
nonlinear Maxwell’s equations. Using the Bianchi identity ∂µF̃

µν = 0, we
obtain the second pair of Maxwell’s equations

∇ ·B = 0,
∂B

∂t
+∇× E = 0. (15)

With the aid Eqs. (10) and (11) we find

D ·H = (ε2 − ν2)E ·B + εν(B2 − E2). (16)

The dual symmetry is broken as D ·H 6= E ·B [26]. In BI electrodynamics
and in Maxwell’s electrodynamics (ε = 1, ν = 0) the dual symmetry holds.
In quantum electrodynamics with quantum corrections and in generalized BI
electrodynamics [27] the dual symmetry is violated.

3.1 The fields of point-like electric charges

When the source is a point-like electric charge qe, the electric displacement
field obeys the equation

∇ ·D = 4πqeδ(r). (17)

Making use of Eq. (10) at B = 0 the solution to Eq. (17) is given by

E (2 + βE2)

2(1− βE2)5/2
=
qe
r2
. (18)
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In accordance with Eq. (18) as r → 0 the solution is

E(0) =

√
1

β
. (19)

Equation (19) shows the maximum of the electric field in the center of charged
particles similar to BI electrodynamics. Thus, at the origin of the point-
like charges there is no singularity of the electric field unlike the Maxwell
electrodynamics. Let us introduce unitless variables

x =
r2

qe
√
β
, y =

√
βE. (20)

Then Eq. (18) can be written as follows:

y(2 + y2)

2(1− y2)5/2
=

1

x
. (21)

The function y(x) is depicted in Fig. 1. The approximate real and positive
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Figure 1: The function y(x).

solutions to Eq. (21) are in Table 1. The function y(x) as x → ∞ has the
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Table 1:

x 1 2 3 4 5 6 7 8 9 10

y 0.475 0.344 0.267 0.217 0.181 0.155 0.135 0.120 0.107 0.097

asymptotic

y =
1

x
− 3

x3
+O(x−5). (22)

Making use of Eqs. (20) and (22) we obtain the electric field as r →∞

E(r) =
qe
r2
− 3βq3e

r6
+O(r−10). (23)

According to Eq. (23) Coulomb’s law possesses corrections in the order of
O(r−6). At β = 0 one finds the Coulomb law E = qe/r

2 similar to Maxwell’s
electrodynamics. Making use of Eq. (21), one finds the asymptotic of y(x)
as x→ 0

y(x) = 1− 0.59x0.4 x→ 0. (24)

With the help of Eq. (20), we obtain the asymptotic

E(r) =
1√
β
− 0.59r0.8

q0.4e β0.7
r → 0. (25)

Equation (25) at r = 0 leads to Eq. (19) and gives the electric field over
short distances.

3.2 Estimation of parameters β and γ

Now, we define the model parameters β and γ by the requirement that at
the weak field limit our model is converted into the Heisenberg−Euler elec-
trodynamics. Expanding Lagrangian (1) at small value βF � 1, we have

L = −F + 3βF2 − 15

2
β2F3 +O

(
(βF)4

)
+
γ

2
G2. (26)

The QED Lagrangian with one loop correction (the Heisenberg−Euler La-
grangian) is given by [28]

LHE = −F + c1F2 + c2G2, c2 =
14α2

45m4
e

, c1 =
8α2

45m4
e

, (27)
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where the coupling constant α = e2/(4π) ≈ 1/137 and the electron mass
me = 0.51 MeV. By identifying Eqs. (26) and (27) we obtain

β =
8α2

135m4
e

= 4.6× 10−5 MeV−4, γ =
28α2

45m4
e

= 4.9× 10−4 MeV−4. (28)

4 Cosmology

The action of GR coupled to electromagnetic fields is given by

S =
∫
d4x
√
−g

[
1

2κ2
R + L

]
, (29)

where MPl = κ−1 is the reduced Planck mass and R is the Ricci scalar.
By varying the action (29) we obtain the Einstein and electromagnetic field
equations

Rµν −
1

2
gµνR = −κ2Tµν , (30)

∂µ

(√
−gF µν(βF − 1)

(2βF + 1)5/2

)
= 0. (31)

The squared of the line element of homogeneous and isotropic spacetime is
given by

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (32)

a(t) is a scale factor. We assume that the cosmic background filled by stochas-
tic magnetic fields. The averaged magnetic fields (that are sources of gravita-
tional fields) which guaranty the isotropy of the Friedman−Robertson−Walker
(FRW) spacetime obey the equations [29]

〈B〉 = 0, 〈EiBj〉 = 0, 〈BiBj〉 =
1

3
B2gij. (33)

Here, the brackets 〈.〉 mean an average over a volume but for a simplicity
in the following we will omit the brackets 〈.〉. The NED energy-momentum
tensor with Eqs. (33) represents a perfect fluid [8]. The Friedman equation
is given as follows:

3
ä

a
= −κ

2

2
(ρ+ 3p) , (34)

where ȧ(t) = ∂a/∂t, so that the dot under the letter means the derivative
with respect to the cosmic time. When ρ + 3p < 0 we have ä > 0 and the
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universe acceleration holds. According to the standard cosmological model,
an isotropic symmetry is guarantied if 〈B〉 = 0. Making use of Eqs. (4) and
(5) we find (in the case of E = 0)

ρ+ 3p = −B
2(2βB2 − 1)

(1 + βB2)5/2
. (35)

The plot of β(ρ + 3p) as a function of βB2 is represented by Fig. 2. If

0 2 4 6 8 10
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

β B
2

β
 (

ρ
+

3
p

)

Figure 2: The function β(ρ+ 3p) versus βB2.

βB2 > 0.5 one has ρ + 3p < 0 and the universe acceleration occurs. As
a result, the strong magnetic fields lead to the inflation of the universe.
Consider the conservation of the stress-tensor, ∇µTµν = 0,

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (36)
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With the aid of Eqs. (4) and (5) if E = 0, one obtains

ρ =
B2

2 (1 + βB2)3/2
, ρ+ p =

B2(2− βB2)

3 (1 + βB2)5/2
. (37)

Taking into account Eq. (37), one finds the solution to Eq. (36)

B(t) =
B0

a2(t)
, (38)

whereB0 is the value of the magnetic field which corresponds to a(t) = 1. The
scale factor a(t) increases due to the universe expansion and the magnetic
field B(t) decreases. With the help of Eqs. (37) and (38) we obtain the
energy density and pressure

ρ(t) =
a2(t)B2

0

2 (a4(t) + βB2
0)

3/2
, p(t) =

a2(t)B2
0(a4(t)− 5βB2

0)

6 (a4(t) + βB2
0)

5/2
. (39)

Making use of Eqs. (39) one finds

lim
a(t)→0

ρ(t) = lim
a(t)→0

p(t) = lim
a(t)→∞

ρ(t) = lim
a(t)→∞

p(t) = 0. (40)

Equation (40) shows that there are not singularities of the density of the
energy and pressure as a(t) → 0 and a(t) → ∞. The plot of the equation
of state (EoS) w = p(t)/ρ(t) versus x = a(t)/(βB2

0)1/4 is depicted in Fig. 3.
Making use of Eqs. (39) we obtain

lim
x→∞

w = lim
x→∞

x4 − 5

3(x4 + 1)
=

1

3
. (41)

In accordance with Eq. (41) the EoS corresponds to the ultra-relativistic
behaviour [30] as a(t) → ∞. The de Sitter spacetime, w = −1, is realized
for x = 1/ 4

√
2 ≈ 0.84. From Eq. (3) and (30) we find the Ricci scalar

R = κ2T =
3κ2βB4

(1 + βB2)5/2
= κ2 [ρ(t)− 3p(t)] . (42)

The βR/κ2 as a function of [1/(βB2
0)]1/4a is depicted in Fig. 4. Making use

of Eqs. (40) and (42) one finds

lim
a(t)→0

R(t) = lim
a(t)→∞

R(t) = 0. (43)
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Figure 3: The function w versus x = a/(βB2
0)1/4.

In accordance with Eq. (43) there is not a singularity of the Ricci scalar.
The Kretschmann scalar RµναβR

µναβ and the Ricci tensor squared RµνR
µν

can be expressed in the form of combinations of κ4ρ2, κ4ρp, and κ4p2 [11].
Then they vanish, in accordance with Eq. (40), as a(t) → 0 and a(t) → ∞.
During the evolution of the universe the scale factor increases as t → ∞
and spacetime becomes flat. Equations (35) and (38) show that the universe
acceleration takes place at a(t) < (2β)1/4

√
B0 ≈ 1.19β1/4

√
B0.

5 Evolution of the universe

For the three dimensional flat universe the second Friedman equation is

(
ȧ

a

)2

=
κ2ρ

3
. (44)
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Figure 4: The function βR/κ2 versus x ≡ a/(βB2
0)1/4.

Making use of Eqs. (37), (38) and (44), one obtains

ȧ =
κB0a

2

√
6(a4 + βB2

0)3/4
. (45)

Introducing the unitless variable x = a/(β1/4
√
B0), Eq. (45) is rewritten as

ẋ =
κx2√

6β(x4 + 1)3/4
. (46)

The plot of the function y ≡
√

6βẋ/κ is depicted in Fig. 5. According to
Fig. 5 at the initial time the universe inflation takes place, (ẏ > 0), then
the graceful exit occurs at the point x = 4

√
2 (ẏ = 0) and after the universe

decelerates. From Eq. (46) we obtain∫ x

ε

(x4 + 1)3/4

x2
dx =

κ√
6β

∫ t

0
dt. (47)
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Figure 5: The function y ≡
√

6βẋ/κ versus x.

Calculating the integrals in Eq. (47) one arrives at

x32F1

(
1

4
,
3

4
;
7

4
;−x4

)
− (x4 + 1)3/4

x

−ε32F1

(
1

4
,
3

4
;
7

4
;−ε4

)
+

(ε4 + 1)3/4

ε
=

κt√
6β
, (48)

2F1(a, b; c; z) is the hypergeometric function, ε corresponds to the beginning
of the universe inflation. We can study the evolution of the universe inflation
from Eq. (48). To obtain the asymptotic of the scale factor as t → ∞ we
explore the relation [32]

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a2F1(a, 1− c+ a; 1− b+ a; 1/z)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b2F1(b, 1− c+ b; 1− a+ b; 1/z). (49)
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Making use of Eq. (49) one obtains

2F1(1/4, 3/4; 7/4;−x4) =
Γ(7/4)Γ(1/2)

Γ(3/4)Γ(3/2)
(x)−12F1(1/4,−1/2; 1/2;−1/x4)

+
Γ(7/4)Γ(−1/2)

Γ(1/4)Γ(1)
(x)−32F1(3/4, 0; 3/2;−1/x4). (50)

Expanding the hypergeometric functions in 1/x4 → 0 in the leading order,
we find from Eq. (48) 1.66x2 ≈ κt/

√
6β and the scale factor is given by

a(t) ≈ 0.5
√
κB0t t→∞. (51)

Equation (51) shows that the behavior of the scale factor as t → ∞ cor-
responds to the radiation era. Let us consider the deceleration parameter,
making use of Eqs. (34), (37), (38) and (44)

q = − äa

(ȧ)2
=
x4 − 2

x4 + 1
. (52)

In Fig. (6) the deceleration parameter q versus x = a/(βB2
0)1/4 is depicted.

The inflation (q < 0) occurs until the graceful exit point x = 4
√

2 ≈ 1.19. The
deceleration parameter becomes zero at x = 4

√
2 and then the deceleration

phase (q > 0) takes place. The similar behavior of the scale factor occurs in
another model proposed in [14].

Now we estimate the amount of the inflation using the definition of e-
folding [33]

N = ln
a(tend)

a(tin)
, (53)

where tin is an initial time and tend is the final time of the inflation. Using the
graceful exit point x ≈ 1.19 one obtains a(tend) ≈ 1.19b (b ≡ β1/4

√
B0). It is

known that the horizon and flatness problems may be solved when e-folding
is N ≈ 70 [33]. From Eq. (53) we obtain the scale factor corresponding to
the initial time of the inflation

a(tin) =
1.19b

exp(70)
≈ 4.7× 10−31b. (54)

Then ε ≈ 4.7 × 10−31. We use the units κ =
√

8πG = 4.1 × 10−28 eV−1,
β = 4.6× 10−29 eV−4 (see subsection 3.2), 1 s = 1.5× 1015 eV−1 to calculate
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Figure 6: The function q versus x = a/(βB2
0)1/4.

the duration of the inflationary period. Then one obtains κ/
√

6β = 2.47 ×
10−14eV = 37 s−1. Using the value x = 4

√
2 ≈ 1.19, which corresponds to the

end of the inflation, the duration of the universe inflation, according to Eq.
(48), will be huge. As a result, the universe inflation will be almost eternal.
Therefore, it is difficult to describe other epochs. If we use the time duration
1 s Eq. (47) results the value ε = 0.0267 for x ≈ 1.19. Then the e-folding
number (53) becomes N ≈ 3.8 that is small for solving the horizon and
flatness problems. One can vary the initial time ε and to analyze different
scenarios of the universe inflation, the e-folding number, and the duration of
the inflation. Thus, there are phases of the universe acceleration, deceleration
and the graceful exit that are the attractive property of the model under
consideration.
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5.1 The speed of sound and causality

The causality holds when the speed of the sound is less than the local light
speed, cs ≤ 1 [31]. If the square sound speed is positive (c2s > 0) a classical
stability is guarantied. From Eqs. (4) and (5) one can obtain the sound
speed squared (for the case of E = 0)

c2s =
dp

dρ
=

5β2B4 − 23βB2 + 2)

3(βB2 + 1)(2− βB2)
. (55)

The classical stability requirement c2s > 0 gives the bound

0 < βB2 <
23−

√
489

10
≈ 0.09 or 2 < βB2 <

23 +
√

489

10
≈ 4.5. (56)

The causality c2s ≤ 1 requires that

0 ≤ βB2 < 2 or βB2 ≥ 13 +
√

201

8
≈ 3.4. (57)

Equations (56) and (57) give the bounds

0 ≤ βB2 <
23−

√
489

10
or

13 +
√

201

8
≤ βB2 <

23 +
√

489

10
. (58)

The principles of causality and unitarity studied in Sec. 2, and Eqs. (58)
take place when the inequality is satisfied at the deceleration phase of the
universe evolution:

0 ≤ βB2 <
23−

√
489

10
≈ 0.09. (59)

The acceleration phase is realized at βB2 > 0.5 and the classical stability,
causality and unitarity are violated in this phase.

6 The cosmological parameters

From Eqs. (4) and (5) at E = 0 we obtain the equations

p = −ρ+
2ρ(2− βB2)

3(βB2 + 1)
, (60)
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4ρ2(βB2 + 1)3 −B4 = 0. (61)

One can find the solution (for βB2 as a function of βρ) to the cubic equation
(61) and to place it to Eq. (60) obtaining the equation of state for perfect
fluid

p = −ρ+ f(ρ). (62)

If the condition |f(ρ)/ρ| � 1 is satisfied the expressions for the spectral
index ns, the tensor-to-scalar ratio r, and the running of the spectral index
αs = dns/d ln k are [34]

ns ≈ 1− 6
f(ρ)

ρ
, r ≈ 24

f(ρ)

ρ
, αs ≈ −9

(
f(ρ)

ρ

)2

. (63)

From Eqs. (63) we find the equation

r = 4(1− ns) = 8
√
−αs. (64)

In accordance with the PLANCK experiment [35] and WMAP data [36], [37]
we have the result

ns = 0.9603± 0.0073 (68%CL), r < 0.11 (95%CL),

αs = −0.0134± 0.0090 (68%CL). (65)

When we take r = 0.13, using Eqs. (65), the values for the spectral index
is ns = 0.9675 and the running of the spectral index is αs = −2.64 × 10−4.
Using Eq. (63) one obtains the value f(ρ)/ρ ≈ 0.005 and from Eq. (60) the
relation is

f(ρ)

ρ
=

2(2− βB2)

3(βB2 + 1)
. (66)

Then from Eq. (66) we find the value (for r = 0.13) of the magnetic field
B ≈ 1.4/

√
β ≈ 206 MeV2 ≈ 1012 T (see subsection 3.2) that corresponds to

the inflation phase with the maximum of the energy density βρ ≈ 0.192.

7 Conclusion

We have considered a NED model where a singularity of the electric field
in the center of charges is absent similar to BI electrodynamics. The prin-
ciples of causality, the classical stability and unitarity were studied. The
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range of electromagnetic fields when causality, the classical stability and uni-
tarity hold, were obtained. The dual symmetry is broken in this model
because of dimensional parameters β and γ. It was shown that corrections
to Coulomb’s law are in the order of O(r−6). The magnetic universe with
a stochastic background 〈B2〉 6= 0 was studied and we demonstrated that
the model with homogeneous and isotropic cosmology describes the universe
inflation. There are no singularities of the energy density, pressure, the Ricci
scalar, the Ricci tensor squared, and the Kretschmann scalar in our model.
A stochastic magnetic field is the source of the universe inflation at the early
epoch. At B < 1/

√
2β the universe decelerates approaching to the radiation

era. The spectral index, the tensor-to-scalar ratio, and the running of the
spectral index calculated are approximately in agreement with the PLANK
and WMAP data. The attractive feature in our model of inflation that there
is the graceful exit.

References

[1] S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A Survey of
Gravitational Theories for Cosmology and Astrophysics (Springer, New
York, 2011).

[2] S. Nojiri and S. D. Odintsov, Phys. Rep. 505, 59 (2011)
[arXiv:1011.0544].
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