# Prognosis of COVID-19 in Patients with Liver and Kidney diseases: An

# **Early Systematic Review and Meta-analysis**

# Tope Oyelade1\*, Jaber Alqahtani2, Gabriele Canciani1,3

- 1. UCL Institute for Liver and Digestive Health, Division of Medicine, UCL, London, UK
- 2. UCL Respiratory Medicine, London, UK
- 3. School of Medicine, La Sapienza University, Rome, Italy

## **Tope Oyelade**

Email: t.oyelade@ucl.ac.uk

Keywords: COVID-19, SARS-CoV-19, Hepatitis B and C, Cirrhosis, Chronic Kidney Disease,

Alcohol-related Liver Disease, Non-alcoholic Steatohepatitis, Necrosis.

<sup>\*</sup>Corresponding Authors

Peer-reviewed version available at *Tropical Medicine and Infectious Disease* **2020**, *5*; doi:10.3390/tropicalmed5020080

**Abstract** 

**Background:** The mortality and severity in COVID-19 is increased in patients with comorbidities. The aim of this study was to evaluate the unknown risk of severity and mortality in COVID-19 patients with

underlying kidney and liver diseases.

**Method:** We retrieved data on the clinical features and primary composite end point of COVID-19 patients released from inception till 16<sup>th</sup> of April 2020 from Medline and Embase. The data on two comorbidities, liver diseases and chronic kidney disease, present in COVID-19 were pooled and

statistically analysed to explain the associated severity and mortality rate.

Results: 142 abstracts were screened, and 41 full articles were then read. In total, 22 studies including 5595 COVID-19 patients were included in this study with case fatality rate of 16%. The prevalence of liver diseases and CKD were 3% (95%CI; 2%-3%) and 1% (95%CI; 1%-2%) respectively. In patients with COVID-19 and underlying liver diseases, 57.33% (43/75) cases were severe with 17.65% mortality. While in CKD patients with COVID-19, 83.93% (47/56) severity and 53.33% (8/15) mortality were

reported.

**Conclusion:** This study found an increased risk of severity and mortality in COVID-19 patients with liver diseases and CKD. This will allow for better clinical management and inform more stringent preventative measures for this group of patients.

#### Introduction

The 2010 Global Burden of Disease reported that liver diseases were responsible for about 2 million deaths annually and 50% of this associated with complications due to liver cirrhosis and the other half linked to hepatocellular carcinoma and viral hepatitis [1]. Cirrhosis is an end-stage decompensation of chronic liver disease often preceded by hepatocellular necrosis and progressive fibrosis triggered by various agents including viral infections and chronic alcohol use [2]. Alcohol-related liver disease, non-alcoholic steatohepatitis and hepatitis B and C have been reported to be the main aetiologies of liver cirrhosis with up to 80% mortality rate recorded 1-year after decompensation [3, 4]. Aside mortality, the economic impact of liver-associated morbidity is also high with associated disease-adjusted life years loss over 41 million globally. According to the World Health Organization (WHO) global health estimate of 2015, chronic liver disease ranks as the 16<sup>th</sup> highest cause of morbidity globally [5, 6]. Despite the availability of vaccines for hepatitis C and B and the advances in clinical understanding and management of chronic liver diseases, the number of new cases is projected to go up due majorly to ageing and increasing global population [4].

According to Kidney Disease Improving Global Outcome (KDIGO), chronic kidney disease (CKD) is a dysfunction of the kidney characterised by established histological damage or suboptimal (< 60 mL/min/1.73 m²) glomerular filtration rate (GFR) persisting for at least 3 months [7]. Although, majority of CKD cases were linked to diabetes and hypertension [8], other risk factors including genetics [9], recreational drugs and alcohol consumption [10], obesity [11], gender [12, 13], age [12], lower birth weight [14], smoking status [15, 16], ethnicity [17], family history of CKD [18], acute kidney injury have been studied [19, 20]. In 2017, the number of deaths associated with CKD or CDK-related complications was estimated as 1.2 million,

accounting for 4.6% of global death [21]. Between 1990 and 2017, CKD rose as a cause of global mortality from 17<sup>th</sup> to 12<sup>th</sup> leading cause of death with a 46% increase in total number of death caused directly or indirectly via cardiovascular disease linked to kidney dysfunction [22]. While the relationship between COVID-19-induced acute kidney injury has been investigated previously [23], to the best of our knowledge, no studies have looked at the risk of COVID-19 in patients with all-form renal disease.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral pathogen responsible for the corona virus disease 2019 (COVID-19) [24]. Symptoms of COVID-19 include fever, fatigue, dry cough, dyspnoea and sore throat with patients presenting with abnormal chest CT scans in the form of pulmonary ground glass opacity changes [25, 26]. The COVID-19 was first reported in December 2019 with possible origin linked to Wuhan seafood market in China [27]. Since first reported, SARS-CoV-19 have infected as of 2<sup>nd</sup> of April 2020, 896,450 people and caused 45,525 deaths worldwide, with this number rising daily [28]. So far, risk factors associated with poor clinical outcomes (Death and admission to ICU) have been reported to be old age and several comorbidities associated with compromised immune system to help patient fight the infection. The most common of these comorbidities are hypertension, diabetes, cardiovascular diseases and malignancy. These comorbidities individually or in combination with age were reported to be linked with poor prognosis [29]. Several studies have looked at the risk posed to patients with various chronic diseases by COVID-19. For instance, Algahtani et al. 2020 looked at the risk of smoking status and chronic obstructive pulmonary disease (COPD) in COVID-19 patients, establishing an increased risk of death or admission to ICU for patients with COPD or smoking history infected with SARS-CoV-19 [30].

While COVID-19-induced liver and kidney injuries have been documented, to the best of our knowledge there have been no report of the risk posed by COVID-19 infection in patients with history of liver or renal disease. Understanding the risk to this subpopulation of patients will allow for effective prevention decision and clinical management. We aim here to understand this risk by looking at reported cases since the outbreak of the COVID-19.

#### Methods

Preferred Reporting in Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed during the drafting of this review. The completed review was submitted to Prospero. We searched Medline and Embase from November 2019 to April 10, 2020 and later the 14<sup>th</sup> of April 2020, an updated search was performed. The search strategy was designed to include all papers on COVID 19 published from November 21, 2019 when the first case of the disease was reported to right before this review was submitted (see supplementary Table S1). Search results was uploaded to Endnotes and duplicates removed. The duplicate-free studies were uploaded to Rayyan review software for screening based on title, abstract and then full text by two independent reviewers.

#### Inclusion and Exclusion Criteria

Studies considered were those reporting clinical characteristics of diagnosed COVID-19 patients with underlying kidney and/or liver diseases. To be eligible studies must also report clinical outcome in the form of disease severity (defined as need for ICU care or need for respirators or intubation) as well as death. Excluded studies were those including COVID-19 patients clinical features but not liver or kidney diseases comorbidity, SARS, MERS and other

coronavirus infections, non-English manuscripts, reviews, qualitative studies, editorials and letters of correspondence.

#### > Data Collection

Potential studies were initially screened by two of the authors (TO and AJ) scrutinizing the title and abstract and coming to a final decision on which studies should be included. Included studies were then fully read by the authors to identify which of the included studies satisfy the inclusion criteria stated above. The finally selected studies were then screened for eligible studies listed in the reference. A third author was consulted all through the selection period to resolve conflicts between the two authors.

#### Quality Assessment

The quality of the included studies was independently assessed by two authors using a modified version of the Newcastle-Ottawa Scale (NOS) [31]. Accordingly, the modified NOS included three domains and six questions scored with a star if satisfied and no star if otherwise. The domains cover the assessments of the quality of "Selection", "Ascertainment" and "Outcome" (Table S1).

#### Data Extraction and Analysis

All analysis was performed using the Stata/SE15 software. The pooled prevalence of patients with CKD and liver diseases was analysed using the Metaprop procedure in Stata, utilising the random effect model due to the observed heterogeneity between the included studies. Forest plots was generated presenting the effect sizes (95% CI), percentage weights and the between-studies heterogeneity (I<sup>2</sup> Statistic, P-value, Figures 2 and 3). The prevalence and clinical outcomes of COVID-19 patients with CKD and liver diseases were synthesised from all

studies included. Primary composite end points were disease severity and mortality. Disease severity was defined as extended hospital stay, admission to Intensive Care Unit (ICU) or need for mechanical ventilation.

#### Results

The initial databases search generated 142 paper from which 26 duplicates were removed. After the title and abstract were screened, 75 papers were excluded and 41 included based on the inclusion criteria. We performed a full-text review, another 22 studies were excluded resulting in 19 studies with the desired criteria. All the references of the 19 included studies were then screened for studies relevant to the review and three more studies were included from the references making a total of 22 studies (Figure ). The modified NOS assessment performed showed a low risk of bias in the included studies (Table S1).

### Description of included Studies

The total number of confirmed COVID-19 cases included in this study is 5595 of which 2310 (41.29%) were females. In total, 147 (3%) and 78 (2%) have comorbidities of liver diseases and CKD respectively. The mean  $\pm$  SD (range) of the sample sizes of all included studies is 253.53  $\pm$  411.99 (29-1591). One each of the studies were conducted in Italy and the rest conducted in China. 15 of the 22 included studies including 5595 patients reported mortality. Where reported, the mortality was 656 (11.72%) in this review. The mean ( $\pm$ SD) follow-up time was 30.55  $\pm$  13.24 days. The clinical characteristics of the liver diseases and CKD, including the stages and aetiology were not provided in all the studies (Table 1).

#### Prevalence of Renal Diseases in confirmed COVID-19 cases

The prevalence of CKDs in patients diagnosed with COVID-19 was 2% (95%CI; 1%-2%). The level of heterogeneity is also moderate ( $I^2 = 40.36\%$ , p=0.07).

#### Disease outcome for renal diseases patients with COVID-19

In all, 5 studies including 3123 COVID-19 patients 56 of which have CKD, reported severity. Where reported, the severity of COVID-19 was 83.93% (47/56) in patients with underlying CKD. Only 3 studies, including 15 COVID-19 patients with CKD, reported mortality. The mortality in patients with CKD diagnosed with COVID-19 was 53.33% (8/15) (Table 1).

#### Prevalence of Liver Diseases in confirmed COVID-19 cases

The prevalence of liver diseases in patients diagnosed with COVID-19 is 3% (95%CI; 2%-3%). The forest plot shows moderate level of heterogeneity ( $I^2 = 46.62\%$ , p=0.01).

#### Disease outcome for Liver Diseases patients with COVID-19

Six of the 22 included studies reported severity in COVID-19 patients with different forms of liver disease. The 6 studies including 3182 COVID-19 patients, 75 of which have underlying liver diseases reported in 57.33% (43/75) severe cases. Two of the 22 studies reported mortality in COVID-19 patients with liver diseases. These studies included 1373 COVID-19 cases which 34 of which had liver diseases on diagnosis. In all 6 deaths (17.65%) was recorded.

#### Discussion

We report here for the first time the prevalence, severity and mortality of patients diagnosed with COVID-19 with underlying chronic kidney disease and liver diseases. Our outcome shows that the overall prevalence of CKD and Liver Diseases in COVID-19 are 1% and 3% respectively. We also report COVID-19 severity of 83.93% (47/56) in patients with CKD and 57.33% (43/75)

in patients with liver diseases. The rate of mortality in COVID-19 patients with CKD and Liver diseases was found to be 53.33% (8/15) and 17.65% (6/34) respectively.

The presence of comorbidities is associated with poor prognosis in patients with COVID-19, with higher mortality rate and severity. The most common comorbidities reported so far in severe cases have been hypertension, diabetes, cardiovascular diseases, cerebrovascular diseases and COPD [32]. However, how these diseases contribute to the COVID-19 outcome remains unclear.

Biomarkers of liver injuries have been reported to increase in patients with COVID-19 [25, 33, 34], although, no virus was found in the liver tissue of patients who died from the disease [35]. This is expected as angiotensin II-converting enzyme (ACE2) receptor, a key player in the "docking" and replication of the SARS-CoV-19 virus is not expressed in hepatocytes. However, ACE2 expression have been reported in cholangiocytes [36] leading to suggestion that the binding of SARS-CoV-19 to the epithelial cells of the biliary tree may cause biliary dysfunction [36]. Zhang et al. 2020, also suggested that the transient liver injuries observed in COVID-19 patients may be associated with drug toxicity, cytokine storm or hypoxia [37]. While many studies have reported liver dysfunction in COVID-19 [25, 33, 34], the mechanistic link between the two remains to be established.

Furthermore, CKD have been associated with inflammation and dysregulation of the immune system [38]. This dysregulation of immune function which may exist in patients with underlying CKD may explain the increased severity and mortality due to COVID-19. The level of ACE2 receptor in the kidney have been previously reported to be altered in human kidney diseases [39]. In a recent study by Fan et al., it was reported that ACE2 receptor is overexpressed in the tubular cells of patients with CKD. Alteration in kidney functions

characterised by increased serum creatinine and urea nitrogen was also reported in patients with COVID-19 [40]. Taken together, the alterations in ACE2 receptor expression may explain the observed kidney dysfunction in COVID-19 and provide the answer to why patients with CKD are vulnerable to SARS-CoV-19 virus.

The power of this study is limited by several factors. Firstly, some included studies did not report comorbidities. Where comorbidities were specified, the criteria for defining severity is not uniform. Some studies included only patients with primary composite outcome while some did not report mortality. Lastly, the aetiology and pathophysiological characteristics of the comorbidities were not documented.

Indeed, this review involved an in-depth literature search followed by systematic analysis of data involving a total of 5595 patients with confirmed COVID-19. For the first time we have established the risk of COVID-19 in liver diseases and CKD patients which indicates an increased vulnerability of this sub-population.

The most important clinical implication of this study is that Liver diseases and CKD patients are highly vulnerable to COVID-19 and should be considered for remote consultation and most stringent social isolation to prevent infection. Future studies should investigate how liver diseases and CKD contribute to poor prognosis in COVID-19.

#### Conclusion

We report an increased risk of severity and mortality in COVID-19 patients with liver diseases and CKD. This study will allow for better clinical management and inform more stringent preventative measures for this group of patients.

#### Reference

- 1. Mokdad, A.A., et al., Liver cirrhosis mortality in 187 countries between 1980 and 2010: a systematic analysis. BMC Med, 2014. 12: p. 145.
- 2. Anthony, P.P., et al., *The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization.* J Clin Pathol, 1978. **31**(5): p. 395-414.
- 3. Fleming, K.M., et al., *All-cause mortality in people with cirrhosis compared with the general population: a population-based cohort study.* Liver Int, 2012. **32**(1): p. 79-84.
- 4. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol, 2020. **5**(3): p. 245-266.
- 5. WHO, Global health estimates 2015: deaths by cause, age, sex, by country and by region, 2000–2015. 2016, World Health Organization: Geneva.
- 6. Asrani, S.K., et al., Burden of liver diseases in the world. J Hepatol, 2019. **70**(1): p. 151-171.
- 7. Chapter 1: Definition and classification of CKD. Kidney Int Suppl (2011), 2013. **3**(1): p. 19-62.
- 8. McClellan, W.M. and W.D. Flanders, *Risk factors for progressive chronic kidney disease*. J Am Soc Nephrol, 2003. **14**(7 Suppl 2): p. S65-70.
- 9. Kottgen, A., et al., *Multiple loci associated with indices of renal function and chronic kidney disease.* Nat Genet, 2009. **41**(6): p. 712-7.
- 10. Perneger, T.V., P.K. Whelton, and M.J. Klag, *Risk of kidney failure associated with the use of acetaminophen, aspirin, and nonsteroidal antiinflammatory drugs.* N Engl J Med, 1994. **331**(25): p. 1675-9.
- 11. Chang, A. and H. Kramer, *CKD progression: a risky business.* Nephrol Dial Transplant, 2012. **27**(7): p. 2607-9.
- 12. Iseki, K., *Factors influencing the development of end-stage renal disease.* Clin Exp Nephrol, 2005. **9**(1): p. 5-14.
- 13. Suleymanlar, G., et al., *A population-based survey of Chronic REnal Disease In Turkey--the CREDIT study.* Nephrol Dial Transplant, 2011. **26**(6): p. 1862-71.
- 14. Lackland, D.T., et al., Low birth weight contributes to the excess prevalence of end-stage renal disease in African Americans. J Clin Hypertens (Greenwich), 2001. **3**(1): p. 29-31.
- 15. Bleyer, A.J., et al., *Tobacco, hypertension, and vascular disease: risk factors for renal functional decline in an older population.* Kidney Int, 2000. **57**(5): p. 2072-9.
- 16. Orth, S.R., et al., *Effects of smoking on renal function in patients with type 1 and type 2 diabetes mellitus*. Nephrol Dial Transplant, 2005. **20**(11): p. 2414-9.
- 17. Nzerue, C.M., H. Demissochew, and J.K. Tucker, *Race and kidney disease: role of social and environmental factors.* J Natl Med Assoc, 2002. **94**(8 Suppl): p. 28s-38s.
- 18. Song, E.Y., et al., *Effect of community characteristics on familial clustering of end-stage renal disease.* Am J Nephrol, 2009. **30**(6): p. 499-504.
- 19. Gonzalez-Quiroz, M., et al., What do epidemiological studies tell us about chronic kidney disease of undetermined cause in Meso-America? A systematic review and meta-analysis. Clin Kidney J, 2018. **11**(4): p. 496-506.
- 20. Goldstein, S.L. and P. Devarajan, *Acute kidney injury in childhood: should we be worried about progression to CKD?* Pediatr Nephrol, 2011. **26**(4): p. 509-22.
- 21. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2020. **395**(10225): p. 709-733.
- 22. Cockwell, P. and L.-A. Fisher, *The global burden of chronic kidney disease.* The Lancet, 2020. **395**.
- 23. Wang, L., et al., Coronavirus Disease 19 Infection Does Not Result in Acute Kidney Injury: An Analysis of 116 Hospitalized Patients from Wuhan, China. Am J Nephrol, 2020: p. 1-6.
- 24. WHO, Coronavirus disease (COVID-2019) situation reports. 2020, World Health Organization.

- 25. Huang, C., et al., *Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.* Lancet, 2020. **395**(10223): p. 497-506.
- 26. Chan, J.F., et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020. **395**(10223): p. 514-523.
- 27. Wu, F., et al., *A new coronavirus associated with human respiratory disease in China*. Nature, 2020. **579**(7798): p. 265-269.
- 28. WHO, Coronavirus disease 2019 (COVID-19). 2020, World Health Organization.
- 29. Guan, W.J., et al., Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. Eur Respir J, 2020.
- 30. Alqahtani, J.S., et al., *Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis.* medRxiv, 2020: p. 2020.03.25.20043745.
- 31. Murad, M.H., et al., *Methodological quality and synthesis of case series and case reports.* BMJ Evid Based Med, 2018. **23**(2): p. 60-63.
- 32. Guan, W.-J., et al., *Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis.* The European respiratory journal, 2020: p. 2000547.
- 33. Chen, N., et al., *Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.* Lancet, 2020. **395**(10223): p. 507-513.
- 34. Wang, D., et al., Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Jama, 2020.
- 35. Xu, Z., et al., *Pathological findings of COVID-19 associated with acute respiratory distress syndrome.* Lancet Respir Med, 2020. **8**(4): p. 420-422.
- 36. Chai, X., et al., *Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection.* bioRxiv, 2020: p. 2020.02.03.931766.
- 37. Zhang, C., L. Shi, and F.S. Wang, *Liver injury in COVID-19: management and challenges*. Lancet Gastroenterol Hepatol, 2020. **5**(5): p. 428-430.
- 38. Imig, J.D. and M.J. Ryan, *Immune and inflammatory role in renal disease*. Comprehensive Physiology, 2013. **3**(2): p. 957-976.
- 39. Lely, A.T., et al., *Renal ACE2 expression in human kidney disease.* J Pathol, 2004. **204**(5): p. 587-93.
- 40. Fan, C., et al., *ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection.* medRxiv, 2020: p. 2020.02.12.20022418.
- 41. Chen, J., et al., Clinical progression of patients with COVID-19 in Shanghai, China. J Infect, 2020.
- 42. Chen, L., et al., [Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia]. Zhonghua Jie He He Hu Xi Za Zhi, 2020. **43**(0): p. E005.
- 43. Chen, T., et al., *Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study.* Bmj, 2020. **368**: p. m1091.
- 44. Grasselli, G., et al., Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. Jama, 2020.
- 45. Guan, W.J., et al., *Clinical Characteristics of Coronavirus Disease 2019 in China.* N Engl J Med, 2020
- 46. Huang, Y., et al., Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis, 2020: p. 101606.
- 47. Lian, J., et al., Analysis of Epidemiological and Clinical features in older patients with Corona Virus Disease 2019 (COVID-19) out of Wuhan. Clin Infect Dis, 2020.
- 48. Liu, K., et al., Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect, 2020.

- 49. Mo, P., et al., *Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China*. Clin Infect Dis, 2020.
- 50. Shi, H., et al., Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis, 2020. **20**(4): p. 425-434.
- 51. Wan, S., et al., *Clinical features and treatment of COVID-19 patients in northeast Chongqing.* J Med Virol, 2020.
- 52. Wang, Z., et al., *Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China.* Clin Infect Dis, 2020.
- 53. Wu, C., et al., Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med, 2020.
- 54. Wu, J., et al., Clinical Characteristics of Imported Cases of COVID-19 in Jiangsu Province: A Multicenter Descriptive Study. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 2020: p. ciaa199.
- 55. Xu, T., et al., Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. Int J Infect Dis, 2020.
- 56. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. Bmj, 2020. **368**: p. m792.
- 57. Zhang, J.J., et al., *Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China*. Allergy, 2020.
- 58. Zhou, F., et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020. **395**(10229): p. 1054-1062.
- 59. Zhu, W., et al., *Initial clinical features of suspected coronavirus disease 2019 in two emergency departments outside of Hubei, China.* J Med Virol, 2020.

Peer-reviewed version available at *Tropical Medicine and Infectious Disease* **2020**, *5*; doi:10.3390/tropicalmed5020080

## <u>Tables and Figures : Table 1 – Characteristics of the studies included.</u>

| Authors              | Country            | Study Type             | Sample Size | Female | Mortality | Follow-up Time (Days) | Liver Patients | Renal Patients | Liver Deaths | Liver Severity | Renal Death | Renal Severity |
|----------------------|--------------------|------------------------|-------------|--------|-----------|-----------------------|----------------|----------------|--------------|----------------|-------------|----------------|
| Chen J et al [41]    | China-Shanghai     | Retrospective Analysis | 249         | 123    | 2         | 16                    | 2              |                |              |                |             |                |
| Chen L et al [42]    | China-Wuhan        | Retrospective Analysis | 29          | 8      | 26        | 15                    | 2              |                |              |                |             |                |
| Chen N et al [33]    | China-Wuhan        | Descriptive Analysis   | 99          | 32     | 11        | 20                    |                | 3              |              |                |             |                |
| Chen T et al [43]    | China-Wuhan        | Retrospective Analysis | 274         | 103    | 113       | 30                    | 11             | 5              | 5            |                | 4           |                |
| Grasselli et al [44] | Italy-Mullticentre | Retrospective Analysis | 1591        | 287    | 405       | 34                    | 28             | 36             |              | 28             |             | 36             |
| Guan W et al [45]    | China-Multicentre  | Retrospective Analysis | 1099        | 459    | 15        | 49                    | 23             | 8              | 1            | 1              | 2           | 3              |
| Huang C et al [25]   | China-Wuhan        | Prospective Analysis   | 41          | 11     |           | 32                    | 1              |                |              |                |             |                |
| Huang Y et al [46]   | China-Wuhan        | Retrospective Analysis | 34          | 20     |           | 39                    | 1              |                |              |                |             |                |
| Lian J et al [47]    | China-Zhejiang     | Retrospective Analysis | 788         | 381    |           | 26                    | 31             | 7              |              |                |             |                |
| Liu K et al [48]     | China-Hainan       | Retrospective Analysis | 56          | 25     | 3         | 46                    | 1              | 1              |              |                |             |                |
| Mo P et al [49]      | China-Wuhan        | Retrospective Analysis | 155         | 69     | 22        | 36                    | 7              | 6              |              | 5              |             | 4              |
| Shi H et al [50]     | China-Wuhan        | Descriptive Analysis   | 81          | 39     | 3         | 47                    | 7              | 3              |              |                |             |                |
| Wan S et al [51]     | China-Chongqing    | Retrospective Analysis | 135         | 63     | 1         | 16                    | 2              |                |              | 1              |             |                |
| Wang D et al [34]    | China-Wuhan        | Retrospective Analysis | 138         | 63     | 6         | 34                    | 4              | 4              |              | 0              |             | 2              |
| Wang Z et al [52]    | China-Wuhan        | Retrospective Analysis | 69          | 37     | 5         | 19                    | 1              |                |              |                |             |                |
| Wu C et al [53]      | China-Wuhan        | Retrospective Analysis | 201         | 73     | 44        | 63                    | 7              | 2              |              |                |             |                |
| Wu J et al [54]      | China-Jiangsu      | Retrospective Analysis | 80          | 41     |           | 23                    | 1              | 1              |              |                |             |                |
| Xu T et al [55]      | China-Changzhou    | Retrospective Analysis | 51          | 26     |           | 35                    | 1              | 1              |              |                |             |                |
| Xu X et al [56]      | China-Zhejiang     | Retrospective Analysis | 62          | 27     |           | 16                    | 7              | 1              |              | 4              | 1.          |                |
| Zhang J et al [57]   | China-Wuhan        | Retrospective Analysis | 140         | 69     |           | 34                    | 8              | 2              |              | 4              | 1.          | 2              |
| Zhou et al [58]      | China-Wuhan        | Retrospective Analysis | 191         | 72     | 54        | 15                    |                | 2              |              |                | 2           |                |
| Zhu W et al [59]     | China-Anhui        | Retrospective Analysis | 32          | 17     |           | 27                    | 2              | 1              |              |                |             |                |

Figure 1 - Risk of COVID-19 in patients with chronic liver and kidney diseases, systematic review according to the Preferred Reporting Items for Systematic Reviews and Metanalyses diagram.

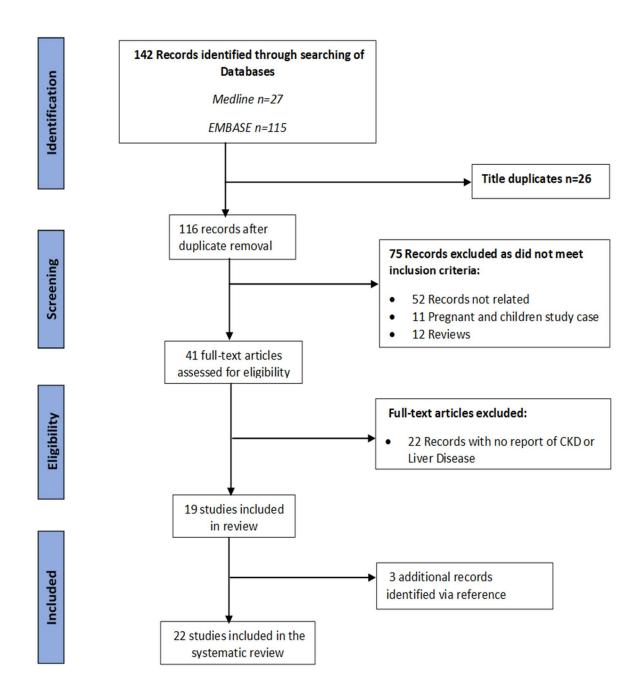



Figure 2 – Pooled prevalence of patient with chronic renal diseases diagnosed with COVID-19.

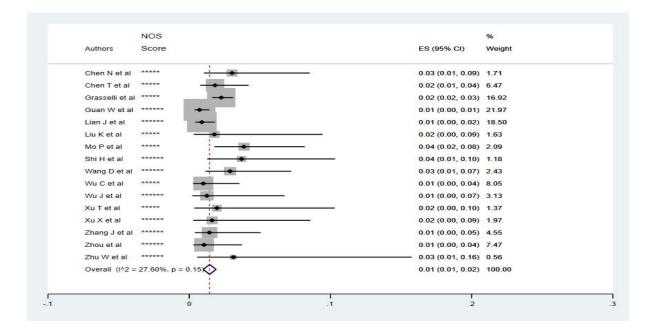
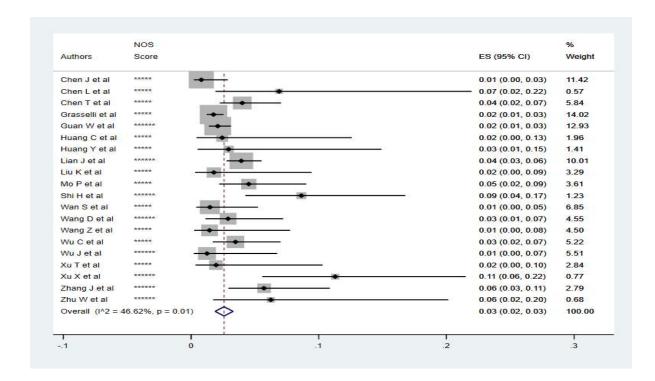




Figure 3 - Pooled prevalence of patient with liver diseases (Chronic Liver Diseases, Hepatitis B/C infections) diagnosed with COVID-19.



## Appendix:

## <u>Table S1 – Quality Assessment:</u>

|                 | SELECTION   |                | ASCE     | RTAINMENT      | OUTCON               | OVERALL     |                     |
|-----------------|-------------|----------------|----------|----------------|----------------------|-------------|---------------------|
| First author    | Sample Size | Population     | Test     | Comorbidity    | Outcome Reported     | Follow-up   | OVERALL             |
|                 | Adequate    | Representative | Adequate | Confirmation   | Adequately (Clinical | Long Enough | (≥ 4 Stars =        |
|                 |             | (Multicentre)  |          | Adequate (EMR) | Staff)               | (≥2 weeks)  | lower risk of bias) |
| Chen J et al    | *           |                | *        | *              | *                    | *           | ****                |
| Chen L et al    | *           |                | *        | *              | *                    | *           | ****                |
| Chen N et al    | *           |                | *        | *              | *                    | *           | ****                |
| Chen T et al    | *           |                | *        | *              | *                    | *           | ****                |
| Grasselli et al | *           | *              | *        |                | *                    | *           | ****                |
| Guan W et al    | *           | *              | *        | *              | *                    | *           | *****               |
| Huang C et al   | *           |                | *        | *              | *                    | *           | ****                |
| Huang Y et al   | *           |                | *        | *              | *                    | *           | ****                |
| Lian J et al    | *           | *              | *        | *              | *                    | *           | *****               |
| Liu K et al     | *           |                | *        | *              | *                    | *           | ****                |
| Mo P et al      | *           |                | *        | *              | *                    | *           | ****                |
| Shi H et al     | *           | *              | *        | *              | *                    | *           | *****               |
| Wan S et al     | *           |                | *        | *              | *                    | *           | ****                |
| Wang D et al    | *           | *              | *        | *              | *                    | *           | *****               |
| Wang Z et al    | *           |                | *        | *              | *                    | *           | ****                |
| Wu C et al      | *           |                | *        | *              | *                    | *           | ****                |
| Wu J et al      | *           | *              | *        | *              | *                    | *           | *****               |
| Xu T et al      | *           |                | *        | *              | *                    | *           | ****                |
| Xu X et al      | *           | *              | *        | *              | *                    | *           | *****               |
| Zhang J et al   | *           |                | *        | *              | *                    | *           | ****                |
| Zhou et al      | *           | *              | *        | *              | *                    | *           | *****               |
| Zhu W et al     | *           | *              | *        | *              | *                    | *           | *****               |

#### **Table S2 - Medline Search Strategy**

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) <1946 to April 10, 2020> Search Strategy:

- 4 00 40 40 40400
- 1 COVID-19.mp. (3190)
- 2 2019 novel coronavirus.mp. (363)
- 3 2019 coronavirus.mp. (46)
- 4 2019-nCoV.mp. (460)
- 5 SARS-CoV-2.mp. (1009)
- 6 Wuhan Coronavirus.mp. (14)
- 7 1 or 2 or 3 or 4 or 5 or 6 (3655)
- 8 clinical characteristic\*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (67298)
- 9 clinical Characteristics.mp. (66591)
- 10 clinical features.mp. (100583)
- 11 clinical feature\*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] (104280)
- 12 8 or 9 or 10 or 11 (166495)
- 13 7 and 12 (181)
- 14 limit 13 to english language (159)
- 15 limit 14 to humans (27)

\*\*\*\*\*\*

#### **Table S3 - Embase Search Strategy**

Database: Embase <1980 to 2020 Week 15> Search Strategy:

\_\_\_\_\_

- 1 COVID-19.mp. (1687)
- 2 2019 novel coronavirus mp. (450)
- 3 2019 coronavirus.mp. (34)
- 4 2019-nCoV.mp. (374)
- 5 SARS-CoV-2.mp. (561)
- 6 Wuhan Coronavirus.mp. (12)
- 7 1 or 2 or 3 or 4 or 5 or 6 (2218)
- 8 clinical characteristic\*.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (111691)
- 9 clinical Characteristics.mp. or exp clinical feature/ (742652)
- 10 clinical feature\*.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (721829)
- 11 8 or 9 or 10 (798804)
- 12 7 and 11 (139)
- 13 limit 12 to english language (127)
- 14 limit 13 to human (115)

\*\*\*\*\*\*\*\*