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Abstract
Upper confidence bound multi-armed bandit algorithms (UCB) typically rely on concentration in-
equalities (such as Hoeffding’s inequality) for the creation of the upper confidence bound. Intu-
itively, the tighter the bound is, the more likely the respective arm is or isn’t judged appropriately
for selection. Hence we derive and utilise an optimal inequality.

Usually the sample mean (and sometimes the sample variance) of previous rewards are the
information which are used in the bounds which drive the algorithm, but intuitively the more infor-
mation that taken from the previous rewards, the tighter the bound could be. Hence our inequality
explicitly considers the values of each and every past reward into the upper bound expression which
drives the method.

We show how this UCB method fits into the broader scope of other information theoretic UCB
algorithms, but unlike them is free from assumptions about the distribution of the data, We conclude
by reporting some already established regret information, and give some numerical simulations to
demonstrate the method’s effectiveness.
Keywords: Bandit Algorithm; Upper Confidence Bounds; Kullback-Leibler divergence

1. Introduction

The multi-armed bandit problem (MAB) is a classic example of a scenario that encodes the general
dynamic trade-off between exploration and exploitation in artificial intelligence systems.

The scenario consists of a repeated single decision, who’s various choices lead the learner to
stochastic rewards. Over time more information is gathered about the rewards of the decisions
that are made, until eventually the learner is in a position of choosing the machine that yields the
highest average reward to achieve the greatest long-term expected payoff. The visceral picture of
the situation is of a gambler choosing which poker-machine is best to play over some time frame.

There are several methods of learning in this situation such as the classic ε-greedy algorithm
(and other ε type methods), Softmax technique (aka. Boltzmann exploration), Pursuit Algorithms,
Thomson sampling and Reinforcement Comparison (aka Gradient) methods; but we focus specifi-
cally on the UCB family of bandit algorithms.

Upper confidence bound (UCB) bandit algorithms are a popular class of methods where the
bandit arm (ie. decision) with the highest upper confidence bound (for some confidence level) on
its mean is selected each turn, Lai and Robbins (1985). Typical methods of generating confidence
bounds rely on various concentration inequalities; and these function as methods of generating
conservative confidence intervals that inform the selection process.

One of the interesting developments among UCB methods is the improvements which are pos-
sible by incorporating tighter concentration inequalities. Classic concentration inequalities such as
Hoeffding’s inequality, give confidence interval widths on the mean, based simply on the number
of reward samples taken and the size of the support of the data. Whereas some newer concentration
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inequalities include reward variance information to create a tighter bound. For instances see Maurer
and Pontil (2009); Audibert et al. (2009); Carpentier et al. (2011).

It is understood that the more information about the rewards are used in the creation of an upper
confidence bound, the more tightly that bound could be created and the more powerful the resulting
UCB method might be. Indeed, there has been experimentation and positive results incorporating
more information (such as variance information) into the UCB method; Mukherjee et al. (2018).

This leads naturally to the question of how to develop more powerful concentration inequalities.
Unfortunately there are an array of powerful and divergent approaches - including is the histori-
cal class of Chernoff bounds (including Hoeffding’s inequalities, Bernstein’s inequality, Bennett’s
inequality etc.) which arise from an application of Markov’s inequality (otherwise more directly
leading to Chebyshev’s inequality) about the moment generating function, there are developments
surrounding Entropy methods (Boucheron et al. (2003)), and the use of the Efron-Stein inequal-
ity (or broader ‘jackknife’ method - Efron and Stein (1981)). What is notable is that all of these
techniques use some loosening approximations to develop their respective concentration inequality
expressions.

However, some developments (particularly around Optimal Uncertainty Quantification (OUQ))
has motivated research into developing optimal concentration inequalities - and these don’t use
any approximations whatsoever - and are optimally tight as a result from finding the worst-case
probability density functions directly; Owhadi et al. (2013); Han et al. (2013). We take inspiration
from these approaches, and in this paper we develop an optimal concentration inequality and show
its performance in the context of the UCB method.

The resulting probability bound not only incorporates information about the sample mean and
sample variance but all sample central moments implicitly, as it accounts for all the specific values
(and their multiplicities) of all historic rewards from the arms. Our bound directly incorporates all
the reward values (without loosening simplifications) into the creation of a probability bound that is
perfectly tight and which utilises all available information available to the learner.

The probability bound that we develop is tight over all possible probability distributions of re-
wards on bounded support, and we show how it fits into a framework of UCB algorithms developed
by Cappé et al. (2013) called KL-UCB .

We finish by giving a quick numerical case study where we compare the effectiveness of our
method against some others.

The paper is divided into the following sections: In section 2 we introduce the kind of probability
bound we intend to derive, in Sections 3 and 4 we give summary statements of the optimal bound
and a UCB algorithm that uses it, in Section 4.1 we show how the UCB algorithm is identical to
KL-UCB in context of Bernoulli data, where-after in Section 4.2 we talk about the relationship with
KL-UCB more generally, and Section 5 concludes with some numerical simulations.

The contributions of this paper are:

• We derive an optimal probability inequality for the mean of a distribution from the sample
values, via the empirical likelihood method, and build it into a UCB algorithm.

• We show how that resulting algorithm is a computable, performant and lossless instance of
the KL-UCB framework that is free from the assumption that the rewards belong to any para-
metric family of distributions.
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2. Making an optimal concentration inequality

Historical UCB algorithms have relied on the usage of concentration inequalities such as Hoeffd-
ing’s inequality. And these concentration inequalities can be interpreted as analytic unconditioned
probability statements about the relationship between sample statistics and population statistics or
alternatively about sample statistics as conditioned by population statistics, but not conversely (as
is sometimes misunderstood) as about population statistics conditioned by sample statistics. (see
appendix C)

We can see in Appendix B (or derivations elsewhere), that the derivation of Hoeffding’s inequal-
ity begins with the assumption of the mean, and then proceeds to develop a probabilistic bounds the
sample mean; and this is a legitimate process of develop bounds on the sample mean conditioned
on the assumption of the population mean.

To develop an optimal concentration inequality to replace Hoeffding’s inequality in UCB algo-
rithms it is therefore legitimate that we ask the same question that Hoeffding’s inequality answers:
for a specific possible mean of the data distribution, what is the maximum probability of receiving
the relevant sample statistics? And the way in which we answer this question is by solving for the
maximising probability density function directly.

3. An optimal concentration inequality for finite values

For a specific possible mean of the data distribution, what is the maximum probability of receiving
the relevant sample statistics?

We begin with the assumption that the distribution of the data only features a finite number of
values. And since we are interested in using more than just the sample mean (and sample variance)
we ask the question about receiving all sample information.

Our question therefore becomes: what probabilities can the values in our distribution have (con-
sistent with a specified distribution mean) to maximise the probability of receiving all the samples
that we did (with their values and multiplicities)? This question is fundamentally a task of maximis-
ing an Empirical Likelihood subject to a constraint, and hence an optimisation problem.

For this problem, the qualities of its solution can be intuited, particularly that non-zero proba-
bility must be allocated to all the values of the samples (or otherwise the likelihood would straight-
forwardly be zero), and then perhaps one other extreme point may have some probability to balance
the distribution with the specified mean most effectively. A graph illustrating this intuition is shown
in Figure 1.

In Theorem 4 of the appendix A we solve the optimisation problem analytically to show exactly
what probabilities the values have, and when and where the other extreme point occurs. This process
of maximising an empirical likelihood is a well known statistical technique - called the Empirical
Likelihood method, and our derivation is reminiscent of this classic technique; see Owen (1988).

4. The optimal concentration inequality for finite support

By maximising the empirical likelihood of receiving the samples, we saw that there was an upper
limit on the number of values in the distribution that will be allocated non-zero probability, specif-
ically the number of sample values plus one. And this fact remains true irrespective of how many
values we limit our distribution to support, and irrespective of how those values are arranged or
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Figure 1: For distributions bounded between -2 and 2, with a specified mean µ, the distribution that
maximises the likelihood of drawing sample values a0, . . . , a5 (each with single multi-
plicity) including the unsampled value 2. We also see the hyperbolic weighting of proba-
bilities centered at 2.

0.0154

a0 a1a2 a3a4a5−2 2µ̂

Figure 2: For distributions bounded between -2 and 2 and with the same sample values a0, . . . , a5
as in figure 1, the maximum probability that the mean µ = x consistant with thoes sample
values per Theorem 1. We see that the maximum height is at the sample mean µ̂ and is
very small, and we can see that there is a slightly heavier right side tail as the data samples
are left heavy.

densely packed. Therefore we propose that the same behaviour occurs in the limit of continuous
distributions.

Hence the continuous distribution that maximises the likelihood of drawing specific samples
(for a specific distribution mean) is given by a finite summation of delta functions.

If we assume that the distribution only contains values in a specific range (ie. has finite sup-
port) then the maximising likelihood is given by the following theorem (see Appendix A for full
derivation):

Theorem 1 Over all distributions (bounded between d+ and d−) that have mean µ = x, the
likelihood of drawing samples with values s1, s2, s3, . . . , sn with multiplicities n1, n2, n3, . . . , nn is
least upper bounded by a positive pmax(s1..n, n1..n|µ = x).
if the sample mean equals the mean (ie. µ̂ =

∑
i nisi/(

∑
i ni) = µ) then:

pmax(s1..n, n1..n|µ = x) =
N !∏
j(nj !)

n∏
i=1

(ni
N

)ni

(1)

4

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 April 2020                   doi:10.20944/preprints202004.0426.v1

https://doi.org/10.20944/preprints202004.0426.v1


otherwise:

pmax(s1..n, n1..n|µ = x) =
N !∏
j(nj !)

∏
i

(
ni
N

G

G− (si − x)

)ni

(2)

Where G is constrained such that, G < mini(si − µ) or G > maxi(si − µ)
and is given by: 

d+ − x if
∑

i
ni(si−x)
si−d+ ≥ 0

d− − x if
∑

i
ni(si−x)
si−d− ≥ 0

solution of
∑

i
(si−x)ni

(si−x)−G = 0 otherwise

As this function pmax is parameterised by the mean value µ = x it is possible to solve and plot
it against x. An example plot against x is shown in figure 2 where we can see that the probability
profile of the mean indicates that it is most likely about the sample mean, which is what we would
expect.

One inconvenience of using this inequality in UCB methods is that the maximum height of
the probability profile for µ does not reach a maximum of 1. In the traditional case of Hoeffding’s
inequality it does reach a maximum of 1 since it is always perfectly possible that the data distribution
has a variance of zero, in which case the mean and sample mean must coincide. Whereas our
inequality considers the spread of sample points more directly, and it is true, that the probability
that there is any spread in sample points and (or given that) the mean has any particular value (or is
in any range of values) must be less than one.

However for practical purposes (and this is quite optional) it is convenient to do some scaling
to make the probability profile have a height of 1, and we incorporate this scaling in subsequent
Theorem 4. Additionally, we are primarily interested in the region which the mean exceeds the
sample mean (µ ≥ µ̂) by some factor, and one of the easy things to notice is that the maximum point
of the profile corresponds to the case µ = µ̂, and that for µ > µ̂ that the function is decreasing. And
so we convert our function to be an inequality over a range of mean values greater than a parameter
x, with µ ≥ x ≥ µ̂:1

pmax(s1..n, n1..n, µ ≥ x) =

∫
y≥x

pmax(s1..n, n1..n|µ = y)p(µ = y)dy

≤ max
y≥x

pmax(s1..n, n1..n|µ = y) = pmax(s1..n, n1..n|µ = x)

Thus we have converted our inequality which is conditioned by a specific value of the mean, into an
unconditioned inequality that is over the range of mean values that we are interested in. Thus we can
restate our Theorem for unit-scaled probability over range of mean values - which coincidentally
doesn’t need a lower bound anymore:

Theorem 2 Over all distributions bounded above by d+, that have mean µ ≥ x, the unit-scaled
likelihood of drawing samples with values s1, s2, s3, . . . , sn with multiplicities n1, n2, n3, . . . , nn,
given that x > µ̂, is least upper bounded by:

pscaledmax (s1..n, n1..n, µ ≥ x) =
∏
i

(
G

G− (si − x)

)ni

(3)

1. In the same line of reasoning as in Appendix C
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Where G is constrained such that G > maxi(si − µ), and is given by:{
d+ − x if

∑
i
ni(si−x)
si−d+ ≥ 0

solution of
∑

i
(si−x)ni

(si−x)−G = 0 otherwise

Working with this measure pscaledmax in the context of UCB suggests an like Algorithm 1:

Algorithm 1 UCB operating with pscaledmax - UCBOI
Require: A decreasing function g : N→ R < 1

1: Pull each of arms {1, . . . ,K} once
2: thus setting number of pulls for for each arm a, Na(t) = 1
3: for t = K to T − 1 do
4: for each arm a compute its average historic reward µ̂a,
5: and compute the xa > µ̂a such that:

pscaledmax (sa1..n, n
a
1..n, µa ≥ xa) = g(t)

6: pull an arm At+1 ∈ arg maxa∈{1,...,K} xa
7: end for

Let us give an example application:

4.1. The case of Bernoulli data

If we are dealing with Bernoulli data then things become a bit simpler and Theorem 4 reduces to:

Theorem 3 for Bernoulli distributions that have mean µ ≥ x, the scaled likelihood of drawing n0
samples of value 0 and n1 samples of 1, if x > µ̂ (with N = n0 + n1), is least upper bounded by:

pscaledmax,bernoulli(n0, n1, µ ≥ x) =

(
1− x
1− µ̂

)n0
(
x

µ̂

)n1

(4)

Proof for s0, s1 = 0, 1 solving
∑

i
(si−x)ni

(si−x)−G = 0 gives G = µ(1−x)
x−µ̂ which is put into equation 3.

As Algorithm 1 runs with a process of finding x such that pscaledmax (. . . , µ ≥ x) = g(t), this is
much the same thing as finding x such that −1N log pscaledmax (. . . , µ ≥ x) = −1

N log g(t) and

−1

N
log pscaledmax,bernoulli = µ̂ log

(
µ̂

x

)
+ (1− µ̂) log

(
1− µ̂
1− x

)
And this expression might look slightly familiar . . .
as it is the Kullback-Leibler divergence between the Bernoulli distributions suggested by µ̂ and that
is consistent with µ = x. And if we ran Algorithm 1 with Bernoulli data and g(t) = (t(log(t))3)−1

for t ≥ 3 with g(1) = g(2) = g(3) we would be running a process equivalent to an instance of
Cappé et al. (2013)’s KL-UCB algorithm which has been demonstrated to be quite performant. If
we denote the divergence between Bernoulli distributions with means µ and µ′ as:

dBER(µ, µ′) = µ log

(
µ

µ′

)
+ (1− µ) log

(
1− µ
1− µ′

)
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and if µ? is the maximum mean of the arms (ie. the optimal one) then the regret of the algorithm
instance can be characterised by Cappé et.al’s proof that the expected number of pulls of any sub-
optimal arm a is bounded by:
E[Na(t)] ≤

(
4e+ 3

dBER(µa,µ?)

)
log(log(T )) + log(T )

dBER(µa,µ?)
+ 2(log(µ?(1−µa)/(µa(1−µ?))))2

(dBER(µa,µ?))2
+ 6

+
√
2π log(µ?(1−µa)/(µa(1−µ?)))

(dBER(µa,µ?))
3
2

√
log(T ) + 3 log(log(T ))

4.2. A Kullback-Leibler reformulation

The occurrence of the Kullback-Leibler divergence is not coincidence, and if we rearrange equation
3 we get:

− 1

N
log pscaledmax (s1..n, n1..n, µ ≥ x) =

∑
i

ni
N

log

(
ni
N

ni
N

G
G−(si−x)

)
(5)

Which is the Kullback-Leibler divergence between our derived distribution that maximises likeli-
hood of the samples given a specific mean x, and the distribution that is most consistent with those
samples, and maximises likelihood irrespective of a specific mean (and occurs when µ̂ = µ).

This then raises the question of exactly where our algorithm and KL-UCB coincide - and the
answer is that we believe our algorithm is an unexplored special instance of their more abstract
and general framework. In their more abstract framework they consider a mapping (or a projection
operator) ΠD which maps the empirical distribution of the historic rewards of a given arm v̂a(t) =

1
Na(t)

∑t
s=1 δYsIAs=a (which is a sum of Dirac deltas corresponding to rewards) to an element

of class D, which is the specific class of distributions that they are considering and comparing
via Kullback-Leibler divergences (and potentially needs appropriate selection). In the application
cases that they consider, this mapping mostly occurs via the sample mean - with loss of potential
information. Whereas we have created a rather unique case where the this mapping can effectively
be the identity - and is therefore lossless as it utilises all available information.

Not only is our algorithm a lossless instance of the KL-UCB framework, but is is also free from
any assumptions about the distribution of the data (excepting that is bounded above) whereas all
other promoted cases of KL-UCB that are developed into a computable algorithms, assume that the
data distribution must be one of a parameterised family of distributions (eg. Bernoulli, Exponential,
Poisson, etc) within which the Kullback-Leibler divergences can be computed and expressed. This
is a restriction which we seem to have bypassed.

However since our UCB algorithm is an instance of KL-UCB it also inherits some favourable
regret bounds, particularly that regret bounds can be derived from the fact that the number of pull
of sub-optimal arm a is bounded by:

E[Na(t)] ≤
log(T )

Kinf (ν, µ?)
(1 + o(1))

where Kinf (ν, µ) = inf{KL(ν, ν ′) : ν ′ ∈ D and E(ν ′) > µ} and reads as the infimum of
Kullback-Leibler divergences between the arm distribution ν and distributions in the model D that
have expectations larger than µ. Which in our case is given by equation 5.

This expression has been identified as a formula for lower and upper bounds on optimal asymp-
totic regret of UCB algorithms, see Maillard et al. (2011). Additionally there are some other regret
expressions that our algorithm tacitly inherits, such as given by Garivier et al. (2018), as the analysis
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and performance of information theoretic UCB algorithms is an area of research. However in order
witness how effective our algorithm is in practice, it is simple enough to run some experiments.

5. Concluding experiments

Let us conclude with some numerical experiments.2 In Figure 3, we plot the average cumulative
regret over bandit simulations with 5 arms. We considered:

• a UCB1 algorithm (developed in Auer et al. (2002)) which chooses the arm with the highest
sample mean of n historic rewards plus

√
2 log(t)/n

• an untuned UCB-V algorithm (given in Audibert et al. (2009)) which chooses the arm with
highest sample mean plus

√
2σ̂2 log(t)/n+

√
log(t)/n (where σ̂2 is the biased sample vari-

ance of past rewards)

• our own algorithm 1 with g(t) = (t(log(t))3)−1 and

• also a method of random arm pulling.

In Figure 3 we considered different distributions of rewards for the arms. particularly, we consid-
ered:

1. Beta distributed rewards parameterised by α and β parameters were uniformly randomly
generated between 0.1 and 3.1

2. We also considered uniform distributed rewards where the two poles of the reward were uni-
formly generated to be within the interval [0, 1]

3. We also considered Triangularly distributed rewards, where mode of the triangle was ran-
domly generated to be within the interval [0, 1] and where its bounds were 0, 1

4. We also considered Trapezoidally distributed data, where the data spans the range [0, 1] and
the density is flat between two poles uniformly generated within the range [0, 1]

From these graphs we can see our method performs well across a range of possible data.
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Appendix A. Derivation of the Optimum bound on the mean

In this section we will show with one (rather large) proof that among distributions constrained to
finite values, that the maximising probability of a specific mean µ together with drawing a set of
samples has a concise statement.

The proof encodes the intuition that probability will be assigned to each of the samples in
proportion to their multiplicity, and weighted such as to make it consistent with the specific µ, in
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addition to possibly allocating probability to at-most one other extreme unsampled value - the image
of this dynamic is easily seen in the image of Figure 1, but the proof is required and is here. Since
the dynamic that probability only to value points which are sampled (plus potentially one other
point) holds true irrespective of how many other points exist in the distribution or how densely they
are packed, we also assert that this same dynamic occurs in the limit of continuous distributions.

We conduct the optimisation explicitly here, to yield a calculation methodology for the maxi-
mum likelihood as a function of the specified mean and sample values with their multiplicities:

Theorem 4 Supposing that the distribution of our data has a mean µ = 0 and takes unique finite
values a1, a2, a3, . . . , an. if we sample those values with multiplicities n1, n2, n3, . . . , nn (some of
which are non-zero,N =

∑n
i=1 ni), then the probabilities of each of those valuesα1, α2, α3, . . . , αn

which maximise the likelihood of our having sampled per those multiplicities is given by:

for all ni > 0 : αi =
ni
N

G

G− ai

and hence the likelihood of our sampling is:

pmax(α1...n) =
N !∏n

i=1(ni!)

n∏
i=1

(
ni
N

G

G− ai

)ni

Where there is a point G which is constrained to be in the region:(
−∞,min(0, min

i,ni>0
ai)
)
∪
(

max(0, max
i,ni>0

ai),∞
]

Where G is either equal to a data value aj where nj = 0 and where αj =
∑n

i=1
ni
N

ai
ai−aj > 0, or G

solves α∗ =
∑n

i=1
ni
N

ai
ai−G = 0.

(If there is no qualifying G value, the maximum likelihood is zero.)
All other values αk with nk = 0 (and for k 6= j if it applies) are zero.
In this way there are no more non-zero values of αi=1,...,n then there are non-zero multiplicities of
ni=1,...,n plus (potentially) one.

Proof The probability of drawing sample values a1...n with multiplicities n1...n is given by:

p(α1...n) =
N !∏n

i=1(ni!)

n∏
i=1

αni
i

Which is the optimisation objective function we seek to maximise (is the probability of drawing
the samples in any specific sequence multiplied by the combinatorial number of ways that sequence
of draws could occur) Subject to the constraints that the population has a mean of zero, that the
probabilities add to one, and the probabilities are between zero and one:

n∑
i=1

aiαi = 0,
n∑
i=1

αi = 1, ∀i 0 ≤ αi ≤ 1

Now the constraint that each of the probabilities are less than one is straightforwardly redundant
(as the probabilities are non-negative and add to one). To make the constraint that the probabilities
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are non-negative redundant, we set β2i = αi and use βi in the algebra instead. And since the n
and ni are constant, to make the optimisation more tractable we consider maximising the substitute
function:

q(α1...n) = log

(∏n
i=1(ni!)

N !
p(α1...n)

)
= 2

n∑
i=1

ni log(βi)

Subject to re-written constraints that:

n∑
i=1

aiβ
2
i = 0, and

n∑
i=1

β2i = 1 (6)

If λ1 and λ2 are the respective Lagrange multipliers associated with these two constraints respec-
tively then the KKT conditions associated with this optimisation problem are:

for i ∈ 1, . . . , n
ni
βi
− λ1aiβi − λ2βi = 0

By assuming that for all samples points with non-zero multiplicity (ie ni > 0) that the corresponding
βi 6= 0 (since if such a βi = 0 for multiplicity points then the objective would trivially be zero), we
get:

for all ni > 0 β2i (λ1ai + λ2) = ni

for all ni = 0 βi(λ1ai + λ2) = 0

Therefore, eliminating the possibility of imaginary βi (and arbitrarily assuming βi are positive)
gives:

for all ni > 0 βi =

√
ni

λ1ai + λ2
and λ1ai + λ2 > 0

for all ni = 0 βi = 0 or λ1ai + λ2 = 0

And since each of the ai are distinct then at most one of these βi for which ni = 0 can be nonzero.
And this demonstrates the third clause of our proof (that there are at most as many non-zero α’s as
there are non-zero multiplicities plus one).
Now there is a split in the path, particularly if λ1 is zero or not zero.

Case 1: (If λ1 = 0) - then we have an easy time, then λ2 > 0 (as we assume there are some
points with non-zero multiplicity) and hence βi = 0 for any points with zero multiplicity, and for
those with positive multiplicity have βi =

√
ni/λ2; substituting into our constraints (6) gives:

λ2 = N and hence µ̂ =
∑n

i=1 aini/N = 0 Which identifies the convenient case where the average
of our samples and population mean coincide, and hence the constraint that the mean is zero bears
no pressure on the solution and would be the result if that constraint did not exist (in this way this
solution is maximal), and where:

pmax(α1...n) =
N !∏n

i=1(ni!)

n∏
i=1

(ni
N

)ni

(7)

End Case 1
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However, if λ1 6= 0 then we can sensibly substitute a ratio G between our Lagrange multipliers
as λ2 = −λ1G and hence:

for all ni > 0 βi =

√
ni

λ1(ai −G)
and λ1(ai −G) > 0

for all ni = 0 βi = 0 or ai = G

from this it is easy to see that if λ1 > 0 then G < mini:ni>0 ai and if λi < 0 then G >
maxi:ni>0 ai. Now there is a second split in the path, if there exists a non-zero βj where nj = 0, or
not:

Case 2: (If λ1 6= 0 and there exists an aj where nj = 0 and βj > 0) - then G = aj , then we
can re-write our constraints (6) as:

0 =

n∑
i=1

aini
λ1(ai − aj)

+ ajβ
2
j , and aj =

n∑
i=1

ajni
λ1(ai − aj)

+ ajβ
2
j (8)

We subtract one from the other and to get λ1aj = −N .
From this fact it must be true that aj 6= 0 and also that λ1 and aj must have opposite sign, hence

we can also propagate the earlier constraint, that if aj < 0 then aj < mini:ni>0 ai and if aj > 0 then
aj > maxi:ni>0 ai. Now we can substitute our relation between λ1 and aj back in to our constraints
(8) to get

βj =

√√√√ n∑
i=1

ni
N

ai
ai − aj

(9)

The requirement that βj is not complex leads to real constraints on what could count as plausible
candidate for aj .

But supposing all these requirements are met for a candidate aj (per our hypothesis in case 2),
then our solution is then given by:

pmax(α1...n) =
N !∏n

i=1(ni!)

n∏
i=1

(
ni
N

aj
aj − ai

)ni

(10)

End Case 2

And by exclusion between cases 1 and 2, there is only the remaining case:

Case 3: (If λ1 6= 0 and there does not exists an aj where nj = 0 and βj > 0) - In this context
the only non-zero βi are those which have some multiplicity ni > 0, and we can re-write our second
constraint from (6) as:

1 =

n∑
i=1

ni
λ1(ai −G)

and therefore λ1 =

n∑
i=1

ni
ai −G

From this it is clear that if G < mini:ni>0 ai then λ1 > 0 and also if G > maxi:ni>0 ai then λi < 0,
and so our earlier constraint is redundant. Thus we can re-write our first constraint from (6) as:

0 =

n∑
i=1

aini
ai −G

(11)
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In this context, a suitable G may or may not exist, and solving for it is a bit more difficult, but
insofar as it does exist we can progress.

Consequently:

pmax(α1...n) =
N !∏n

i=1(ni!)

n∏
i=1

(
ni

ai−G∑n
k=1

nk
ak−G

)ni

(12)

End Case 3

From these cases we notice that the results of the three cases overlap at their limits. Particularly
if µ̂ =

∑n
i=1 aini/N = 0 = µ (ie. if the sample mean is equal to the mean) then the conditions of

case1 are satisfied, then the condition of case3 (equation 11) cannot be satisfied by any real G, but
is satisfied by G in the limit that G goes to infinity (positive or negative), at which point λ1 in case3
equals λ1 in case1, and consequently the solutions of case1 and case3 (equations 7 and 12) are the
same. Equally if G → ∞ then βj of case2 is zero (per equation 9 with aj = G), and solutions of
case2 (equation 10) match those of cases 3 and 1. Thus if the mean of the samples is zero, then all
three cases overlap (or atleast at their limits), and the solution is comfortably given by equation (7),
or equivalently by equations 10 or 12 with aj , G→∞.

We also see that cases 2 and 3 overlap in a particularly interesting way, that case3 is case2 in
the context where a hypothetical point a∗ = G is selected such as to allocate it with probability of
zero. So for instance if hypothetical β∗ in equation (9) is zero, then the associated a∗ = G satisfies
the requirement for case3’s equation 11 and then the expressions of maximum probability for cases
2 and 3 coincide (equations 10 and 12).

All of this simply identifies that cases 1 and 3 are actually just interesting limit instances of
case2 - and that case2’s equation 10 constitutes the more general expression of the solution; all of
these considerations come to yield in the theorem statement.

This completes the proof.

In this Theorem statement, we have a G that is left uncharacterised, we will now show that a G that
maximises the likelihood is unqiue.

A.1. Characterising the G

In Theorem 4 that we have a total expression of the solution conditioned on a selection of an ap-
propriate G value, hence our analysis turns around the function that determines the existence of an
appropriate G, specifically the function:

f(x) =
∑
i

niai
ai − x

(13)

And we are interested in characterising the points in the region x > max(0,max(ai)) and x <
min(0,min(ai)). For simplicity we will only characterise the positive region x > max(0,max(ai)),
in the knowledge that it also implicitly characterises the negative region by symmetry (ie. the logic
for negative region simply follows by reversing the signs of the ai and x in every step).

Theorem 5 For function (13) for arbitrary finite numbers ai and corresponding positive integers
ni (some of which we assume are non-zero pairs), in the region x > max(0,max(ai)). If there
exists a positive ai, then there exists exactly one finite zero-crossing point of f iff

∑
i aini < 0, and
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only points x greater than this zero-crossing point will have positive f(x), if
∑

i aini = 0 then f(x)
will cross in the limit of x → +∞ and in all other cases f(x) will be negative. Otherwise if there
does not exist a positive ai all points x in the region will be positive.

Proof Supposing that there exists a positive ai then there exists a maximally positive ak and thence
we are constrained x > ak. In this case we consider the function g(x) = xf(x) and identify that g
will have the same zero crossing points as f and will be the same sign as f in our region of interest
(x > ak). We hence aim to show that if

∑
i aini < 0 then g has one zero crossing point and is

positive for all points greater than this, and if
∑

i aini ≥ 0 then there is no zero crossing point and
there are no positive points in the region.

We begin by proving that g is monotonically increasing:

g′(x) =
d

dx

(∑
i

niaix

ai − x

)
=
∑
i

nia
2
i

(ai − x)2
> 0

and that in our region of interest g begins at −∞ and goes to
∑

i aini.

ie. lim
x→a+k

g(x)→ −∞ and lim
x→∞

g(x) = −
∑
i

aini

This is sufficient to prove that if
∑

i aini < 0 then there exists exactly one zero-crossing point of
f and all the points more positive than this have f positive, otherwise there exists no zero-crossing
points of f and f is entirely negative in the region x > ak.

Conversly supposing there is not positive ai, then in region x > 0, f(x) =
∑

i
niai
ai−x > 0 and all

points are positive.

The result of this Theorem 5 (applied both positively and negatively) inform us that in the
context of our big Theorem 4 that there are 5 cases.

1. that the sample mean µ̂ ∝
∑
aini = 0, therefore the only G that satisfies is∞

2. that the sample mean µ̂ ∝
∑
aini < 0 and there does exist a positive ak, hence there is a

minimum satisfying G which is positive and all points more positive than it will also satisfy.

3. that the sample mean µ̂ ∝
∑
aini < 0 and there does not exist a positive ak, hence all

positive G values satisfy.

4. that the sample mean µ̂ ∝
∑
aini > 0 and there does exist a negative ak, hence there is a

maximum satisfying G which is negative and all points more negative than it will also satisfy.

5. that the sample mean µ̂ ∝
∑
aini > 0 and there does not exist a negative ak, hence all

negative G values satisfy.

The last piece of the puzzle is to prove that where there exists a selection of satisfying values
of G, that it always results in a greater likelihood (ie. is more optimum) to choose the one most
extreme (that is positive or negative wrt zero). The case where µ̂ ∝

∑
aini = 0 is trivial that

G→∞ is the most extreme possible point, however it remains to be proven for the other cases. We
will explicitly treat the case where

∑
aini < 0 and hence there is a continuous range of positive

G where G > max(0,maxi,ni>0 ai) that satisfies requirements for Theorem 4; we do this in the
knowledge that it also implicitly characterises the negative region by symmetry.
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Theorem 6 in the context of Theorem 4 where there is a selection of appropriate positiveG values,
that the maximum likelihood always occurs with the selection of one that is most positive.

Proof In the statement of Theorem 4 the maximum likelihood is given by:

pmax(α1...n) =
N !∏n

i=1(ni!)

n∏
i=1

(
ni
N

G

G− ai

)ni

It suffices to show that the derivative of this with respect to G is non-negative. We show this by a
substitute function:

M(G) = log

(∏n
i=1(ni!)

N !
pmax(α1...n)

)
=

n∑
i=1

ni

(
log(

ni
N

) + log(G)− log(G− ai)
)

thus:
dM(G)

dG
=
N

G
−

n∑
i=1

ni
G− ai

Since we are in the region of satisfying values of G per Theorem 4 then
∑n

i=1
ni
N

ai
ai−G ≥ 0 Manip-

ulating this expression we get:
∑n

i=1
ni

G−ai ≤
N
G and thus dM(G)

dG ≥ 0

Taking Theorem 4 and combining with the 5 cases that result from Theorem 5, and the consid-
eration of Theorem 6, taking the limit of continuous functions, offsetting for non-zero mean µ gives
the result of Theorem 1.

Appendix B. Summary Derivation of Hoeffding’s inequality

We begin with a Lemma that categorises the root of all Chernoff bounds, which is then directly used
in the derivation of Hoeffding’s inequality:

Lemma 7 (Chernoff Bound) If µ̂ is sample mean of n independent and identically distributed
samples of random variable X then for any s > 0 and t:

P(µ̂ ≥ t) ≤ E [exp(sX)]n exp(−snt)

Proof P(µ̂ ≥ t) = P (exp (s
∑n

i=1 xi) ≥ exp(snt))
≤ E [exp (s

∑n
i=1 xi)] exp(−snt) ≤ E [exp (sX)]n exp(−snt)

using Markov’s inequality and i.i.d of the samples respectively.

Theorem 8 (Hoeffding’s inequality for mean zero) LetX be a real-valued random variable that
is bounded a ≤ X ≤ b, with a mean µ of zero. Then for D = b− a and any t > 0, the mean µ̂ of n
independent samples of X is probability bounded by:

P(µ̂ ≥ t) ≤ exp

(
−2nt2

D2

)
(14)
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Proof To prove Hoeffding’s inequality we develop an upper bound for E[exp(sX)], if we assume
variable X has a probability density function f(x), then we can linearize exp(sx) as:
E[exp(sX)] =

∫ b
a f(x) exp(sx)dx ≤

∫ b
a f(x)

(
x−a
b−a e

sb + b−x
b−ae

sa
)
dx

Using the fact that the mean µ =
∫ b
a f(x)xdx = 0 thus: E[exp(sX)] ≤ 1

sb−sa (sb exp(sa)− sa exp(sb))

Given the fact that for any κ > 0, γ < 0 that κ exp(γ)−γ exp(κ) ≤ (κ−γ) exp
(
1
8(κ− γ)2

)
(15)

thus: E[exp(sX)] ≤ exp
(
1
8s

2(b− a)2
)

Applying our Chernoff bound lemma 7 we get: P(µ̂ ≥ t) ≤ exp
(
1
8s

2(b− a)2n− snt
)

And minimising with respect to s yields the required result.

At a first glance the most limiting feature of the derivation given is the requirement that the
mean is zero, however this is ultimately immaterial and intentionally used to simplify the derivation.
Because any data distribution can be shifted such that its expectation value becomes zero, leaving
D unchanged. hence:

Theorem 9 (Hoeffding’s inequality) Let X be a real-valued random variable that is bounded
a ≤ X ≤ b. Then for D = b − a and any t > 0, the mean µ̂ of n independent samples of X is
probability bounded by:

P(µ̂− µ ≥ t) ≤ exp

(
−2nt2

D2

)
or rearranged P

(
µ̂− µ ≥

√
D2 log(1/t)

2n

)
≤ t (16)

However we can do without simplifications to develop more powerfull inequality:

Theorem 10 Let X be a real-valued random variable that is bounded a ≤ X ≤ b, with a mean µ
of zero. Then for t > 0, the mean µ̂ of n independent samples of X is probability bounded by:

P(µ̂− µ ≥ t) ≤

(
b

b− a

(
b(a− t)
a(b− t)

) a−t
b−a

− a

b− a

(
b(a− t)
a(b− t)

) b−t
b−a

)n
(17)

Proof Similar to the proof in Theorem 8 we follow the same steps except do not apply Equation
15, leading to: P(µ̂ ≥ t) ≤ (b exp(sa)− a exp(sb))n exp(−snt)(b− a)−n

And minimising with respect to s occurs at s = 1
b−a log

(
b(a−t)
a(b−t)

)
which is the required result.

This concentration inequality is more powerful but more difficult to manipulate, it is also more
commonly stated for variable X with non-zero mean and bounded 0 < X < 1. See Chvátal (1979);
Hoeffding (1963):

Theorem 11 (Also called Hoeffding’s inequality) Let X be a real-valued random variable that
is bounded 0 ≤ X ≤ 1, with mean µ. Then for t > 0, the mean µ̂ of n independent samples of X is
probability bounded by:

P(µ̂− µ ≥ t) ≤

[(
1− µ

1− t− µ

)1−t−µ( µ

t+ µ

)t+µ]n
(18)

Proof Follows from substitution a = −µ and b = 1− µ.
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Appendix C. A note on what concentration inequalities are not

The derivation of Hoeffdings inequality begins with the assumption of the mean, and then pro-
ceeds to develop a probabilistic bounds the sample mean; and this is a legitimate process of develop
bounds on the sample mean conditioned on the assumption of knowing the population mean. How-
ever this process is fundamentally different from a process that begins with information on the
sample mean and then infers probabilities on the population mean.

For instance, Hoeffding’s inequality can be expressed as (see Theorem 9):

P(µ̂− µ ≥ t|µ = x, n, t,D) ≤ exp

(
−2nt2

D2

)
Which identifies that the the probability that the sample mean underestimates the true population
mean by more than or equal to t, given the assumption of the population mean µ has a value (say
x), given the parameter t, the number of samples n and the width of the data support D. And this
can be converted into a more unconditioned probability statement via integration of Bayes’ theorem
with a maximisation:

P(µ̂− µ ≥ t|n, t,D) =

∫
P(µ̂− µ ≥ t|µ = x, n, t,D)P(µ = x|n, t,D)dx

≤ max
x

(P(µ̂− µ ≥ t|µ = x, n, t,D))

≤ max
x

(
exp

(
−2nt2

D2

))
= exp

(
−2nt2

D2

)
(19)

The first line here identifies that the probability that the sample mean underestimates the true pop-
ulation mean by more than t is equal to the same probability conditioned on µ = x times the
probability that µ = x, then integrated over all possible values of x. The second line identifies that
since P(µ = x|n, t,D) are positive and sum to one, the upper bound is created by the µ = x which
maximises P(µ̂−µ ≥ t|µ = x, n, t,D). And the third line identifies that as the expression is bound
above by the exponential expression which does not depend on x anyway.

By this process we have arrived at the unconditioned probability statement of Hoeffding’s in-
equality which many people are familiar with - as a bound that the sample mean underestimates (or
reversely overestimates) the mean by more than t, given t,n and D.

Although it is a bit mundane to point all this out, this process is not specifically trivial - for in-
stance, Theorem 11 is an unambiguously more powerful form of Hoeffding’s inequality, that seems
far less well known and used, even though they are built on identical assumptions. To use Theorem
11 as an statement of probability that is unconditioned by the mean, one would have to conduct a
similar maximisation procedure as in equations (19).

However what these concentration inequalities are not (and this is a subtle misconception) are
statements of probability conditioned on the knowledge of sample statistics. And this is true even
if the UCB method seems to operate by using concentration inequalities to create upper bounds on
the mean of the reward distributions in light of past rewards.

It is easy to construct a counterexample: If Hoeffding’s inequality works, then it must work
across a range of distributions with different means. we might imagine that the output from a ma-
chine is either going to be Rademacher (values of -1 and 1 with equal probability) or Bernoulli
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distributed (values of 0 and 1 with equal probability) on a hidden coin-toss, supposing we take three
samples and receive sample mean of a -1/3, we hence should be absolutely certain that the distri-
bution is Rademacher and that the mean is zero, even though a naive application of Hoeffding’s
inequality would suggest that P(µ− µ̂ ≥ 1/3) ≤ exp

(−1
6

)
≈ 0.85

Concentration inequalities gain validity in UCB primarily by being unconditioned probability
statements between population statistics and sample statistics, that can be used to give expected
regret bounds prior to the occurrence of sample rewards. The intention of this paper is to take the
concept of what Hoeffding’s inequality is, in the context of UCB, and then make it a tad stronger by
using more than the just the sample mean.
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