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Abstract. In the field of stochastic optimisation, the so-called struc-
tural bias constitutes an undesired behaviour of an algorithm that is
unable to explore the search space to a uniform extent. In this paper, we
investigate whether algorithms from a subclass of estimation of distri-
bution algorithms, the compact algorithms, exhibit structural bias. Our
approach, justified in our earlier publications, is based on conducting
experiments on a test function whose values are uniformly distributed in
its domain. For the experiment, 81 combinations of compact algorithms
and strategies of dealing with infeasible solutions have been selected as
test cases. We have applied two approaches for determining the pres-
ence and severity of structural bias, namely a visual and a statistical
(Anderson-Darling) tests. Our results suggest that compact algorithms
are more immune to structural bias than their counterparts maintaining
explicit populations. Both tests indicate that strong structural bias is
found only in one of the algorithms (cBFO) regardless of the choice of
strategy of dealing with infeasible solutions and cPSO mirror. For other
test cases, statistical and visual tests disagree on some cases classified
as having mild or strong structural bias: the former one tends to make
harsher decisions, thus needing further investigation.

Keywords: structural bias · compact algorithm · continuous optimisa-
tion · estimation of distribution algorithm · infeasible solution.

1 Introduction

Evolutionary algorithms (EAs) [8, 1] are based on a biological metaphor which
creates an ontological link between a set of solutions of the optimisation prob-
lem, which iteratively approximate its optimum, and a population of biological
individuals, which adapt to their environment through evolution. An essential
part of this metaphor is an individual, an atomic part of the population, that
has been created by some combination of one or more of its parent individuals
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in an attempt to build upon previously successful approximations of the opti-
mum. Both biological and (most) computational populations typically do not
explicitly ‘record’ their history, thus, potentially loosing the already exploited
information regarding the ‘successes’ in the past generations. Following the bi-
ological metaphor, a ‘success’ in some generation is directly translated into the
individual’s reproductive advantage and, therefore, an opportunity to pass on
its ‘achievements’.

Striving to exploit the historical information contained in the sequential pop-
ulations of an evolutionary algorithm, a special class of algorithms has been been
proposed in the 1990s [17, 16] which attempts to build explicit probabilistic mod-
els of promising solutions as the optimisation process progresses and steer the
subsequent simulated evolutionary progress towards such solutions. These new
algorithms, just like other heuristics [14, 18, 6], are probabilistic, iterative, and
thus can suffer from undesirable algorithmic behaviours such as premature con-
vergence, stagnation and presence of structural bias (SB) [14, 6]. The latter is
the focus of this paper.

The aforementioned class of algorithms, referred to as estimation of distri-
bution algorithms (EDAs) [9], do not maintain explicit populations but rather
have virtual sampling populations. They work through updating their models in-
crementally, starting from some uninformed prior and, ideally, leading up to the
model producing only the optimum solution. Clearly, the problem of construct-
ing such a model in itself is by far not trivial and can only be solved with some
simplifications. It is the scope and extent of such simplifications that define the
sub-classes of EDAs.

This paper addresses the question of whether a subclass of algorithms with
virtual populations exhibit such algorithmic deficiency as structural bias – the
tendency of an algorithm to ‘prefer’ some parts of the domain irrespective of the
objective function. The paper is organised as follows: Section 2 discusses compact
algorithms in general and the particular instances investigated in this study,
Section 3 describes the experimental methodology and methods for assessing SB,
Section 4 discusses results concerning SB in compact algorithms, and Section 5
provides the conclusions.

2 Compact algorithms

The term ‘compact algorithm’ refers to those EDAs mimicking the behaviour of
established population-based algorithms [10] through a ‘memory-saving’ prob-
abilistic model where design variables are assumed to be uncorrelated. This
minimalist model is fully described with a 2 × n matrix (n is problem di-
mensionality) that defines the generating distribution4 Dθ, where θ = [µ,σ],
µ ∈ Rn,σ ∈ (R+)

n
are the vectors containing the chosen mean and the stan-

4 It is called ‘probability vector’ in the original publications [10]; a terminology which
we find somewhat misleading in case of a continuous search space and a Gaussian
generating distribution.
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dard deviation values for a truncated Gaussian distribution (the optimisation
process takes places in the re-normalised domain [−1, 1]n).

All ‘elitist’ real-valued compact algorithms share the structure outlined in
Algorithm 1 and only differ by the logic used to generate a new solution x.

Algorithm 1 Skeleton of a generic elitist compact algorithm

given: objective function f , generating distribution Dθ with parameters θ = [µ,σ]
initialise µ,σ with µi = 0 and σi � 1 . e.g. σi = 10 as in [10]
draw initial solution xelite from Dθ and evaluate its fitness felite = f(xelite)
while budget condition is not met do

draw i.i.d. samples P = {x1,x2, . . .} from Dθ . |P| depends on the specific
generate a new candidate solution x from P operator (Section 2.1)
evaluate f(x);
if f(x) ./ felite then . ./ ∈ {≤,≥} for minimisation/maximisation

l← xelite; w← x; xelite ← x; . w is the winner, l loser
else

l← x; w← xelite;
end if
µold ← µ
µ← µ+ 1

Vps
(w − l) . user defined virtual population size Vps [10]

σ ←
√
σ ◦ σ + µold ◦ µold − µ ◦ µ+ 1

Vps
(w ◦w − l ◦ l)

end while . ◦ is the Hadamard product
Output: xelite

2.1 Compact algorithms employed in this study

Details on the employed algorithms, including their suggested and adopted pa-
rameters setting, are available in [10]. A brief description of each algorithm is
given below. These algorithms are equipped with various strategies of dealing
with infeasible solutions (SDIS) generated, see Section 3.4.
Configurable compact differential evolution (cDE/x/y/z): similar to non-
compact variants of differential evolution [19], a variety of compact configu-
rations can be obtained with the combinations x/y/z, where z is either the
binary bin or the exponential exp crossover [5, 19], while the x/y component
is taken from these options5: (i) rand/1 (ii) rand/2 (iii) best/1 (iv) best/2

(v) current-to-best/1 (vi) rand-to-best/2 (vii) current-to-rand/1 (does
not require a crossover). It must be highlighted that in a DE algorithm, the x/y/z
operators require a number of randomly selected individuals from the population
to produce x. Due to the absence of a stored population, these individuals are
drawn from the generating distribution Dθ in the compact representation. This
implies that logically current-to-best/1 ≡ rand-to-best/1.
Compact differential evolution light: cDE-Light is a DE-inspired compact
algorithm that requires a smaller number of computationally expensive opera-
tions with respect to its predecessor algorithm cDE, thus being faster and lighter

5 This list clearly does not exhaust all possibilities.
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in terms of memory consumption. This algorithm employs a specific mutation
referred to as mutation-light, which mimics the behaviour of the rand/1 mu-
tation, and specific crossover operator referred to as crossover-light, which
emulates the exp crossover without the need of looping through the solutions to
exchange their variables.
Compact particle swarm optimisation (cPSO): generates novel candidate
solutions x through the simple PSO perturbation logic based on a weighted sum
of the currently available solution and the so-called ‘velocity’ vector v, i.e. x←
γ1x + γ2v. Before perturbing the position of x in the search space with the
previous formula, the v is updated through the following minor alteration of
the standard method v ← φ1v + φ2u1 ◦ (xlb − x) + φ3u2 ◦ (xgb − x), in which
u1 and u2 are two n-dimensional vectors containing uniformly drawn random
numbers; xlb is the ‘local best’ solution, which is not present in the compact
representation and therefore has to be drawn from Dθ and evaluated; xgb is
the ‘global best’ solution, i.e., xgb ← xelite. It must be pointed out that Dθ is
updated with w and l obtained by comparing the objective function values xlb

and x while the xelite solution is subsequently updated.
Compact bacterial foraging optimisation (cBFO) reproduces the same search
logic of the original BFO algorithm [7] with the difference that, at each iteration,
a candidate solution x is drawn from Dθ rather than being taken from a popula-
tion. Such solution undergoes a series of perturbations to perform the so called
‘chemotaxis’, ‘tumble’ and ‘swim’ moves in the search space by means of the
operator x← x+ c◦∆√

∆T∆
, where c is an n-dimensional vector whose components

are the so-called ‘run-length’ unit parameters [7], which control the step-size,
and ∆ is an n-dimensional vector whose components are uniformly sampled in
the interval [−1, 1] as indicated in [7] for each one of the three moves.
Compact genetic algorithm: the real-valued compact genetic algorithm rcGA

[10], or cGA here, is the simplest example of compact algorithm as it only draws
a new solution from Dθ (i.e. P = {x}) to produce a new candidate solution.

3 Methodology

3.1 Structural bias

The field of EAs is saturated with a multitude of nature inspired algorithms [2, 3].
For practical reasons, these algorithms need to be compared and characterised.
Amongst dimensions over which the quality of an optimisation algorithm can
be measured are: (i) values of the best or average improvement of the objective
function attained over a series of independent runs on some function or class of
functions; (ii) best or average ranking of the algorithm among other algorithms
on some function or class of functions; (iii) the distance from the found solution
to the known optima; (iv) whether the algorithm has stagnated or converged
prematurely; (v) typical or peak memory consumption required by the algorithm
to solve the problem; (vi) scalability of the algorithm; (vii) proportion of the
previously-non-visited solutions; etc.
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In the EA/EC community, variations of the first two of the aforementioned
dimensions are traditionally used. However, most performance measures come
with a difficulty: dependence on the objective function [21]. Moreover, in practice,
classes of objective functions are typically hard to be defined exhaustively and
extensively and benchmarking over a set of diverse functions strongly depends
on the choice of such functions.

In an attempt to characterise the performance of optimisation algorithms
from a different angle, an additional fitness-free comparison ‘dimension’ has
been suggested in [14]: the so-called structural bias (SB) has been defined as
an intrinsic deficiency of a probabilistic iterative algorithm dictated solely by
its structure. An algorithm is said to possess SB when it is unable to explore
all areas of the search space to a uniform extent, irrespective of the objective
function.

In other words, characterising the algorithm in terms of SB allows one to
judge how much general-purpose the algorithm is, since a fully general-purpose
optimisation algorithm is expected to be able to locate the optima regardless
of where they are located in the search space. It has been established [14] that
for a general objective function, the movement of solutions in the populations
evolving over time is dictated by the superposition of two forces: the gradient
formed by the values of objective function in the current population and the force
originating from the structure of algorithm. These two forces are not necessarily
in agreement in terms of direction and strength. The problem with the existence
of the second force is that it can potentially pull the search away from some areas
of the domain, thus limiting the algorithm’s ability to find the optima herein.

It must be remarked that due to the stochastic nature of the utilised test
function f0 (see Section 3.2), there is no sense in tracking objective function
improvements over time. The goal of tests on f0 is only to establish deficiencies
in movements of the populations during the optimisation process and not to rank
the methods according to their ‘objective-function-improvement’ on f0.

3.2 Structural bias via visual tests

The procedure for testing for presence of SB is based on a theoretical result [14]
that true minima/maxima of f0 : [0, 1]n → [0, 1] where ∀x f0(x) ∼ U(0, 1) are
distributed uniformly in its domain. Thus, through examination of the distribu-
tion of locations of the optima identified by the algorithm and its subsequent
comparison to the true uniform distribution across the domain, one can establish
whether the algorithm exhibits any SB [14].

To date, such comparison is done visually due to the lack of a good ‘all-
encompassing’ measure, see Section 3.3 for more discussion. Plotting locations
of final best solutions in a series of independent runs in parallel coordinates [11]
is an established technique that facilitates the analysis.
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3.3 Structural bias via statistical tests

To identify SB, we build on the previous studies [14, 13] where Kolmogorov-
Smirnov test has been used for hypothesis testing. Here, we propose a different
statistical approach which tests the uniformity of final points per dimension via a
non-parametric goodness-of-fit test – the Anderson-Darling (AD) test is chosen
given its high statistical power [20]. The motivation behind this approach is
two-fold: first, testing the multivariate uniformity is known to be a challenging
task [12]; second, it is methodologically erroneous to merge samples from all
dimensions to perform one univariate good-of-fit test as the design variables
could be correlated and not identically distributed, thus resulting in a potential
loss of information on each dimension.

Hence, for each dimension i ∈ [1..n] the AD test is applied to the ith compo-

nent of final points {x(1)i , . . . , x
(Nr)
i } obtained overNr independent runs (Nr = 50

here). When testing the uniformity of the sample distribution along each dimen-

sion, the AD test-statistic is formulated as: A2 =
∫ 1

0
(F̂Nr

(t)−t)2/t(1−t)dt, where

F̂Nr
(t) =

∑Nr

k=1 1(x
(k)
i ≤ t) is the empirical cumulative distribution function

(ECDF) of the ith component. Intuitively, A2 quantifies the proximity between
the ECDF and the theoretical distribution function of the uniform distribution.
We shall denote the resulting test statistics and p-values as {A2

i }ni=1 and {pi}ni=1

respectively. The significance level α = 0.01 is used to reject the null hypotheses
H0. Whenever H0 is rejected we conclude that the ECDF differs from the uni-
form distribution by an amount of A2, with an error rate of α. The SB ‘degree’
is then determined by counting the rejected dimensions.

Moreover, we propose an aggregated measure of SB over results from all
dimensions, defined as the sum of A2

i test statistics that are associated with a
statistical significance over all dimensions: SB = 1

n

∑n
i=1A

2
i1(pi ≤ α), where 1

stands for the indicator function. We shall contrast this new measure of SB with
the visual test shown in Section 4.2.

3.4 Strategy of dealing with infeasible solutions as operator

Practical optimisation problems to be solved via computer simulations are de-
fined in a bounded domain whose most typical shape is hyperrectangular. Re-
search into the algorithmic design of optimisation methods from the field of com-
putational intelligence [6] has shown that the chosen strategy of dealing with the
solutions generated outside such domain – the infeasible solutions (ISs) – is an
essential part of the algorithm that to a large extent decides the success of the
optimisation method. Unfortunately, in the majority of papers in the field, the
choice of such strategy is typically overlooked or omitted from the publications,
thus limiting the reproducibility of the results and lowering the overall impact
of such studies.

To highlight the importance of this algorithmic operator, we employ 5 dif-
ferent strategies of dealing with ISs (SDIS): (i) Complete One-tailed normal
correction strategy COTN [6], (ii) dismiss, (iii) mirror [6], (iv) saturation [4,
6], (v) toroidal [4, 6].
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3.5 Experimental setup

This experimentation involves 13 cDE/x/y/z variants and the 4 other algorithms
described in Section 3.4. All of them but cGA (which generates only feasible
solutions) are considered with 5 SDIS – the total of 16×5+1 = 81 configurations
considered.

Results on the SB presented in this paper are based on experiments: (i) min-
imising the test function f0 (see Section 3.2) for n = 30 (ii) by 81 algorithmic
configurations described in Sections 2.1 and 3.4; (iii) each configuration is run 50
times; (iv) each run has independently seeded Java random.utils pseudorandom
generator – seed is initialised with the current time since January 1, 1970 in
milliseconds via Java’s System.currentTimeMillis; (v) each run is budgeted
in terms of the number of objective function evaluations as 10000n.

All algorithms refer to their persistent elitist variants. All experiments are
executed on a standard desktop using the SOS platform [3] implemented in Java
(algorithms’ source code is available online). It is worth mentioning that the
aforementioned pseudorandom generator used for all experiments is considered
on the better side of the scale for linear congruential generators [15]

4 Discussion of results

Using the approaches described in Sections 3.2 and 3.3, all 81 configurations have
been investigated. Results in these figures are shown in parallel coordinates [11]
and should be read as follows: final positions attained in a series of 50 independent
runs of each configuration are shown with 50 ‘+’ markers on each of the n =
30 parallel vertical ‘axes’. Positions of these ‘axes’ identify dimensions and are
shown on the traditional horizontal axis; meanwhile, the traditional vertical axis
shows the range of the dimension ([0, 1] here). Values of f0 attained by the final
solutions are shown in colour (a recap: this is a minimisation problem). Due to
the page limit in this publication, only a few figures are shown in Fig. 1. All
results can be obtained from [5].

4.1 Visual tests

Following the methodology of visual testing described in Section 3.2, out of 81
configurations considered in this paper, only 6 configurations have been found to
be structurally biased (e.g. Figs. 1(a), 1(b)), meanwhile 40 configurations exhibit
only mild SB. It is worth highlighting that decisions in visual tests on whether
mild SB is present are highly subjective and should be contrasted with results
from statistical testing in Section 4.2.

The summary of results discussed in this Section can be found in Table 1
in the columns marked as ‘visual SB test’ for all basic compact configurations
(rows) and all strategies of dealing with IS (smaller columns)6.

6 To avoid complicating Table 1 further, results for cGA that requires no SDIS are
shown as dismiss – it is the closest to how cGA deals with infeasible solutions.
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Table 1. Comparison of results on the presence and strength of structural bias based
on visual and statistical tests across all 81 configurations (see [5]). For both tests,
cells with background in black mark configurations exhibiting strong SB, in grey -
configurations with mild SB and in white - configuration with no SB identified based
on the corresponding tests (i.e. colour marks the corresponding decision of the test).
Cells containing ‘×’ mark configurations that are not possible by design. Symbols mark
results of comparing the two tests: symbol ‘=’ stands for cells where results of the
visual and statistical tests coincide (colour of the symbol has no meaning) and ‘•’ - for
the differences in results from visual and statistical tests (colour of the symbol has no
meaning). Values shown in columns for statistical test are the corresponding values of
the statistic. Thresholds for decisions based on these values are given in Section 4.2.

Kind of SB test: visual statistical

Configuration: C
O
T
N

d
i
s
m
i
s
s

m
i
r
r
o
r

s
a
t
u
r
a
t
i
o
n
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o
i
d
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O
T
N

d
i
s
m
i
s
s

m
i
r
r
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r

s
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t
u
r
a
t
i
o
n

t
o
r
o
i
d
a
l

cDE/rand/1/bin = = • • = 0.00 0.00 0.02 ∞ 0.13

cDE/rand/1/exp = • = • = 0.00 0.00 0.00 ∞ 0.02

cDE/rand/2/bin • = • • • 0.02 0.00 0.02 ∞ 0.21

cDE/rand/2/exp = = = • = 0.00 0.00 0.00 ∞ 0.06

cDE/current-to-rand/1 = = = • • 0.00 0.02 0.00 ∞ 0.00

cDE/best/1/bin = • • • = 0.01 0.00 0.00 ∞ 0.00

cDE/best/1/exp • = = • • 0.00 0.00 0.00 ∞ 0.00

cDE/best/2/bin = = = • • 0.01 0.00 0.00 ∞ 0.01

cDE/best/2/exp = = = • • 0.00 0.00 0.00 ∞ 0.01

cDE/current-to-best/1/bin • = = • • 0.00 0.00 0.01 ∞ 0.02

cDE/current-to-best/1/exp • = = • • 0.00 0.00 0.00 1.00 0.01

cDE/rand-to-best/2/bin • = = • = 0.00 0.00 0.00 ∞ 0.01

cDE/rand-to-best/2/exp • • • • • 0.02 0.00 0.00 ∞ 0.02

cDE-Light • • • • • 0.00 0.00 0.00 0.01 0.00

cPSO = • = • = 0.03 0.00 0.44 ∞ 0.01

cBFO = = = = = 1.00 0.92 1.00 0.96 0.93

cGA (no SDIS, shown as dismiss) × • × × × × 0.01 × × ×
Found strong SB/total cases: 1/16 1/17 2/16 1/16 1/16 1/16 1/17 2/16 15/16 2/16

Found mild SB/total cases: 8/16 6/17 4/16 13/16 9/16 5/16 2/17 3/16 1/16 10/16

Strong/mild/no SB cases: 6/40/35 21/26/59

Agreement between 56 65 69 6 44 all cases
visual and statistical 100 100 100 100 100 cases with strong SB only∗

tests (in %, calculated 38 17 25 0 55 cases with mild SB only
’post factum’): 71 90 80 0 17 cases with no SB only
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(c) cDE/best/1/exp toroidal
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(d) cDE/current-to-best/1/exp mirror
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(e) cDE/rand/1/bin toroidal
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(f) cPSO dismiss

Fig. 1. Distribution of locations of final best solutions, example configurations that
exhibit strong SB in Figs. 1(a), 1(b), mild SB with: local clustering in Fig. 1(c), clus-
tering across domain in Fig. 1(d), clustering on boundaries domain in Fig. 1(e) and
large gaps in Fig. 1(f). See Section 4 for explanation on how to read this figure.

Based on the visual tests only, overall, compact configurations appear to
be more ‘immune’ to the strong SB than their equivalents maintaining explicit
populations [5, 14, 6]. SB, if at all present, is more subtle across all configurations
of compact algorithms considered. The resulting distributions of locations of final
best solutions differ from the true uniform distribution in clustering of points
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and not in the span of the domain (with exception of all cBFO configurations
as discussed below). It means that, on the whole, compact configurations of
algorithms considered in this study should have more exploratory potential and
be more successful in finding optima wherever they are situated in the domain.
The latter one, however, is not guaranteed without the use of good exploitative
operators (such investigation is out of the scope of this paper).

One of the exceptions to the above statement is all the cBFO configurations
that have turned out to be badly biased towards the middle of the domain
regardless of the choice of correction strategy, e.g. Fig. 1(b). More precisely,
cBFO appears to be unable to find optima on f0 outside the region [0.4, 0.6]30

(with only a handful of exceptions per configuration).
Another exception to the above statement is the cPSO mirror configuration

which exhibits strong SB towards all corners of the domain (see Fig. 1(a)) –
interestingly enough, such situation resembles the case of non-compact PSO with
a small population size [14].

When talking about mild SB, resulting distributions of the locations of final
best solutions appear to marginally deviate from the uniform distribution in the
following non-exclusive aspects:

1. ‘higher-than-expected’ clustering of points within the domain (e.g. Fig. 1(c));
2. ‘higher-than-expected’ clustering of points across the domain (e.g. Fig. 1(d);
3. ‘higher-than-expected’ clustering of points on the boundaries7 (e.g. Fig. 1(e));
4. large empty gaps consistently identified in all 30 dimensions (e.g. Fig. 1(f)).

When analysing results for cDE/x/y/z only, out of 30 bin and 30 exp con-
sidered configurations, 16 and 13, respectively, appear to be mildly biased. Out
5 cDE/current-to-rand/1 configurations that require no crossover, 3 appear
to be mildly biased. To some extent, it is fair to say that simpler cDE/x/y/z

configurations with y> 1 appear to be freer of mild SB.

4.2 Statistical tests

Here, we present the calculated values of the statistical measure of structural
bias (defined in Section 3.3) in the ‘statistical SB test’ column of Table 1 (the
meaning of symbols and colour scales are explained in the table caption). We
use the 20- (0.00) and 90-quantiles (0.158)8 of the statistical values over all
combinations as thresholds to determine the level of SB. More specifically, zero
values of statistic shall be classified as having no SB; ranges for mild and strong
SB are (0, 0.158] and (0.158, 1] ∪ {+∞}, respectively.

From results presented in the table, it is obvious that cBFO is exceptionally
biased regardless of the SDIS. Also, the saturation SDIS seems to yield strong
SB for all the algorithms except cDE-Light. For the remaining combinations,
we observe either no or mild SB.

7 This is easily explained if saturation is used but is not trivial if toroidal is used.
8 The quantiles are chosen ad hoc, based on the distribution of statistical measure over

all combinations of algorithms and SDISs.
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Comparing to the visual test on the same combinations, it seems that cases
classified as strongly biased by the visual tests are always indicated as strongly
biased as well from the statistical side – see the third line from the bottom in
Table 1, marked with ∗. However, since there are at most two discoveries of
the strong bias from both tests, the reliability of this agreement is questionable.
In contrast, cases with mild SB in the visual test are largely mis-classified as
possessing no SB in the statistical approach. Also, most of the algorithms with
the saturation SDIS are indicated as strongly biased by the statistical measure
while those cases are considered mildly biased in the visual test. We conjecture
the observed mismatches between those two approaches as follows: (i) the SB
measure is calculated from a multiple testing procedure, where the p-value is
corrected, thus the SB measure can suffer from a reduction of its statistical
power (i.e., more false-negative decisions are made). This leads to a scenario
that the Anderson-Darling test is rejected on all dimensions for those cases with
mild SB in the visual test and hence the statistical measure classifies them as
not biased; (ii) the SB measure is not scale-invariant and can be less informative
after the performed normalisation. In this light, when no bias is displayed, we
shall conclude that some SB degree is exhibited but negligible if compared to
the bias shown by the most biased algorithm (i.e., cBFO). Such relativity in the
statistical approach might be different from that in the visual test, which leads
to the observed discrepancy.

5 Conclusions

The extensive experimentation presented in this piece of research has unveiled
the presence of mild structural biases for most compact algorithms except cBFO,
which carries a so strong SB that can be categorically detected by visual inspec-
tion of the generated graphs. More precisely, in cBFO, regardless of the employed
SDISs, only the middle section of the search domain is populated by the best
solutions, while its peripheral areas are left completely out. This undesired al-
gorithmic behaviour suggests that cBFO is not suitable for general-purpose op-
timisation, since displaying design flaws limiting its applicability to problems
whose optimum/optima is/are at the centre of the search space. Similarly, also
cPSO mirror displays a visible strong bias. However, it is interesting to observe
that in this case, the solutions obtained over multiple runs accumulate towards
the corners of the search space. This behaviour is in line with the one of the
standard PSO algorithm – when employed with a small population size [14].

In a similar way, also the mild SB individuated in the remaining algorithms
under study mainly reveals itself in the form of ‘higher-than-expected’ clustering
of final solution located either across the domain or on the boundaries. However,
in a few cases, uniformly distributed large empty gaps are also visible on each
dimension of the generated graphs. Such gaps clearly flag the presence of SB, but
do not accumulate in specific areas of the search space and thus do not seem to
cause deleterious effect in terms of coverage of the whole domain. It is interesting
to point out that amongst the cDE/x/y/z variants tested in this study, a mild
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SB is mainly visible only for those cases equipped with mutation operators using
one difference vector – e.g. this is evident for the best/1 mutation, in particular
when used in combination with binomial crossover bin. cDE variants equipped
with mutation operators using two difference vectors, on the other hands, seem
to be freer from SB – e.g. the case of rand/2, in particular when followed by
exponential crossover exp.

To summarise, it can be stated that the compact algorithms under investi-
gations appeared to be more ‘immune’ to the SB than their population-based
equivalents according to the proposed visual test. However, it is important to con-
clude this study by observing that the proposed statistical SB detection method
agrees with the visual test on strong SB cases while disagrees on most of the
visually detected mild SB cases. We speculate that this discrepancy is caused
by the insufficient sample size as well as the conservative nature of this testing
procedure and we commit to investigating this aspect further in our future stud-
ies. We plan to increase the sample-size in future experimentation and, most
importantly, improve upon the sensitivity of the proposed statistical measure
with respect to the number of independent runs.
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