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Highlights

e Cross-lingual RadLex® mapping-based machine learning can improve radiological
report quality by context-sensitively suggesting key imaging biomarkers.

e Human expert-based key information extraction and fully automated RadLex®-based
machine learning are comparable.

e By increasing key information content in reports, embedded assistive algorithms can
substantially improve cohort selection for downstream analytics.

e The presented approach is robust and requires only a limited amount of expert labeled
training data even for imbalanced classification tasks.

e We open-source our framework to facilitate research on developing task specific

classifiers for computer-assisted reporting tools.
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Abstract

Objectives: Studies evaluating machine learning (ML) algorithms on cross-lingual RadLex®
mappings for developing context-sensitive radiological reporting tools are lacking. Therefore, we
investigated whether ML-based approaches can be utilized to assist radiologists in providing key
imaging biomarkers — such as The Alberta stroke programme early CT score (APECTYS).

Material and methods: A stratified random sample (age, gender, year) of CT reports (n=206) with
suspected ischemic stroke was generated out of 3997 reports signed off between 2015-2019. Three
independent, blinded readers assessed these reports and manually annotated clinico-radiologically
relevant key features. The primary outcome was whether ASPECTS should have been provided
(yes/no: 154/52). For all reports, both the findings and impressions underwent cross-lingual
(German to English) RadLex®-mappings using natural language processing. Well-established ML-
algorithms including classification trees, random forests, elastic net, support vector machines
(SVMs) and boosted trees were evaluated in a 5 x 5-fold nested cross-validation framework.
Further, a linear classifier (fastText) was directly fitted on the German reports. Ensemble learning
was used to provide robust importance rankings of these ML-algorithms. Performance was
evaluated using derivates of the confusion matrix and metrics of calibration including AUC, brier
score and log loss as well as visually by calibration plots.

Results: On this imbalanced classification task SVMs showed the highest accuracies both on
human-extracted- (87%) and fully automated RadLex® features (findings: 82.5%; impressions:
85.4%). FastText without pre-trained language model showed the highest accuracy (89.3%) and
AUC (92%) on the impressions. Ensemble learner revealed that boosted trees, fastText and SVMs
are the most important ML-classifiers. Boosted trees fitted on the findings showed the best overall
calibration curve.

Conclusions: Contextual ML-based assistance suggesting ASPECTS while reporting
neuroradiological emergencies is feasible, even if ML-models are restricted to be developed on

limited and highly imbalanced data sets.
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1. Introduction

There are no studies available that evaluate machine learning (ML) algorithms on cross-lingual
RadLex® mappings to provide guidance when developing context-sensitive radiological reporting tools.
Therefore, the purpose of our study was to compare the performance of ML algorithms developed on
features extracted by human experts against those developed on fully automated cross-lingual RadLex®
mappings of German radiological reports to English[1], in order to assist radiologists in providing key
imaging biomarkers such as The Alberta Stroke Programme Early CT Score (APECTS)[2]. We show
that this fully automated RadLex®-based approach is highly accurate even if the ML models were
trained on limited and imbalanced expert labelled data sets[3-6]. Hence, this work provides a valuable
blueprint for developing ML-based embedded applications for context-sensitive computer-assisted
reporting (CAR) tools[7-10].

RadLex® is a comprehensive hierarchical lexicon of radiology terms that can be utilized in reporting,
decision support and data mining[3]. RadLex® is freely available (v.4.0, http://radlex.org/) from the
Radiological Society of North America (RSNA). It provides the foundation for further ontologies and
procedural data bases such as the LOINC/RSNA Radiology Playbook[11] or Common Data Elements
(CDE; RadElement; https://www.radelement.org/)[12]. The official translation of RadLex® to German
by the German Society of Radiology (DRG) was made public in January 2018 and contained over 45,000
concepts.

ASPECTS is widely used in neurological emergencies to assess the extent of early ischemic changes on
pretreatment non-contrast CT studies of the brain in patients with acute ischemic stroke of the anterior
circulation[2]. It proved to be a robust and highly significant independent imaging biomarker to predict
the outcome of intravenous thrombolysis, endovascular thrombectomy (EVT) and a surrogate for 90-
day functional outcome [13]. Hence, ASPECTS serves as a key selection criterion for
neurointerventional procedures. Accordingly, radiological textual metadata is of crucial importance
when retrospectively selecting patient cohorts for clinical trials or extracting their imaging to develop
computer vison algorithms[14-17]. Therefore, it is in the best interest of radiologists to report key
radiological biomarkers like ASPECTS or other scoring systems such as the prostate (PI-RADS) or

breast imaging-reporting data system (BI-RADS) to optimize downstream analytics and software
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development using their data[18, 19]. Nonetheless, these key predictors are frequently missing from
radiological reports as their overwhelming majority is still created as conventional narrative “free-
text”[1, 20, 21].

ML methods have been introduced as powerful computer-aided diagnostic (CAD) tools[9, 15, 22] not
only in image recognition and classification, but also in radiological reporting[23, 24]. Recently,
complex deep transformer-based language models (TLM) are becoming the state-of-the-art (SOTA) in
natural language processing (NLP)[25-29]. However, these models need considerable amount of general
and domain specific corpora for training (even if using transfer learning approaches), which are scarce
for languages other than English, particularly in the medical domain where creating expert-labelled high-
quality training data is extremely resource intensive[30-33]. Despite achieving SOTA on certain
classification tasks, TLMs represent black box methods and show susceptibility to subtle
perturbances[31, 32]. Additionally, TLMs are seldom compared to baseline information retrieval
methods such as shallow ML algorithms or linear classifiers (fastText) developed on bag-of-words
(BOW)[34-36]. Therefore, we performed comprehensive analyses using an ensemble learning
framework (Figure 1) that combined well-established ML algorithms as base classifiers including
random forests (RF)[37], regularized logistic regression (ELNET)[38, 39], support vector machines
(SVM)[40] and classification- (CART)[41] and boosted trees (XGBoost)[42] as well as fastText[36] on
German computed tomography (CT) reports with suspected stroke and on their cross-lingual English

RadLex® mappings using NLP[43].

As a proof of concept (“MyReportCheck™), we present a flexible open-source pipeline to swiftly develop
robust ML classifiers for CAR tools in a language-agnostic fashion by using only limited expert labelled
training data and cross-lingual bag-of-RadLex® mappings. We aimed to demonstrate the feasibility of
our approach by automatically developing production-ready ASPECTS classifiers for CT stroke
workups and compare it to methods developed on human expert annotations. Furthermore, we provide
valuable guidance on choosing ML algorithms for similar context-sensitive recommendation tasks and

make our data set available for the community to facilitate algorithm development and benchmarking.
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2. Materials and methods

2.1 Study cohort

The study was approved by the local ethics committee (approval nr.: 2017-825R-MA). Written
informed consents were waived by the ethics committee due to the retrospective nature of the
analyses. In this single-center retrospective cohort study, consecutive (German) radiological
reports of cranial CTs with suspected ischemic stroke or hemorrhage between 01/2015-12/2019
were retrieved from local RIS (Syngo, Siemens, Healthineers, Erlangen, Germany) that
contained the following key words in the clinical <request reason>, <request comment> or
<request technical note> fields: “stroke”, “time window for thrombolysis”, “wake up”,
“ischemia” and their (mis)spelling variations. A total of 4022 reports fulfilled the above criteria.
After data cleaning, which excluded cases with missing requesting department, 3997 reports
remained. Next, we generated a stratified random subsample (n=207, ~5.2%) based on age
(binned into blocks of 10 years), sex (M|F), year (in which the imaging procedure was
performed) and requesting department. During downstream analyses one report was removed
because it contained only a reference to another procedure, leaving n=206 for later analyses
(Figure 1). The extracted reports were all conventional free-texts and were signed off by senior

radiologists with at least 4 years of experience in neuroradiology.

2.2 Information extraction by human experts

Three independent readers (R1, experience 3yrs; R2, 7yrs; R3, 10yrs) assessed the clinical
questions, referring departments, findings and impressions of the reports. For each report, all
readers independently evaluated whether ASPECTS was provided in the report or should have
been provided in the report text (necessary: 154, 74.7%; not meaningful: 52, 25.3%]). Further,
the two senior experts (R2 and R3) manually extracted clinico-radiologically relevant key
features in the context of whether reporting ASPECTS is sensible based on the presence (yes

| no) of ischemia (separately for new infarct demarcation and/or chronic post-ischemic defects);

do0i:10.20944/preprints202004.0354.v1
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bleeding (separately for each of the following entities: intracerebral hemorrhage (ICH), epi-
(EDH), subdural hematoma (SDH), subarachnoid hemorrhage (SAH)); tumor; procedures
including CT-angiography (CTA) or CT-perfusion (CTP); whether cerebral aneurysms or
arteriovenous malformations (AVM) were detected; previous neurosurgical (clipping, tumor
resection) or neurointerventional procedures (coiling); and previous imaging (within the last 1-
3 days)[44, 45]. These human expert-annotated features (HEAF) were extracted concurrently
from both the finding and impression sections and selected in accordance with national and
international guidelines for diagnosing acute cerebrovascular diseases[44, 45]. HEAFs were
used as input for ML algorithm development (Table 1). The feature matrix is available as

supplementary data (heaf.csv) or GitHub download

(https://github.com/mematt/ml4RadlL exCAD/data).

2.3 RadLex® mapping pipeline

Both the findings and impression sections of each German report (n=206) were mapped to
English RadLex® terms using a proprietary NLP tool, the Healthcare Analytics Services®
(HAS) by Empolis Information Management GmbH (Kaiserslautern, Germany;
https://www.empolis.com/en/). HAS implements a common NLP pipeline consisting of
cleansing (e.g., replacement of abbreviations), contextualization (e.g. into segments “clinical
information”, "findings", and "conclusion™), concept recognition using RadLex®, and negation
detection (“affirmed", "negated"”, and "speculated™)[46]. For concept recognition, a full text
index and morpho-syntactic operations such as tokenization, lemmatization, part of speech
tagging, decompounding, noun phrase extraction and sentence detection were used. The full
text index is an own implementation with features such as word/phrase search, spell check and
ranking via similarity measures such as Levenshtein distance and BM25[47, 48]. The index is
populated with synonyms for all RadLex® entities (both from the lexicon and by manual

extensions), the morpho-syntactic operations are based on Rosette Base Linguistics (RBL) from
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Basis  Technology®  (Cambridge, MA, USA; https://www.basistech.com/text-
analytics/rosette/). For accuracy, RBL uses machine learning techniques such as perceptrons,
support vector machines, and word embeddings. For negation detection, the NegEx algorithm
was implemented in UIMA RUTA[46, 49]. No further pre-processing steps of the text were
done.

Our RadLex® annotation and scoring pipeline (RASP), which utilizes the aforementioned API
by Empolis, is available as a Shiny application at mmatt.shinyapps.io/rasp [35]. We used RASP
to generate the document (i.e. report RadLex®) term matrix (DTM) of the complete data set
over all reports (n=206) both for the findings and impression sections, respectively. Inthe DTM,
each report is represented as a vector (i.e. bag-of-)RadLex® terms that occurred in the
corpus[34, 35]. RadLex® terms were encoded in a binary fashion (0|1), whether the term was
present or not. Further, each RadLex® term (i.e. feature) was annotated with three levels of
confirmation or confidence “affirmed”, “speculated”, “negated”, which was included in the
feature name. This DTM provided the basis for fully automated RadLex®-based ML algorithm
development (Table 2). The report-RadLex® term-matrices (i.e. DTMs) both for the findings
and impression sections are available for direct download from our GitHub repository
(https://github.com/mematt/ml4Radl exCAD/data) or as supplementary data (radlex-dtm-
findings.csv and radlex-dtm-impressions.csv).

The performances of ML algorithms developed on these automated NLP-RadLex® mappings
were then compared to those ML algorithms that were developed on the features extracted by
human experts (HEAF). It is of note, however, that in its current iteration (v4.0) RadLex® does
not contain certain key terms or concepts, one of which is ASPECTS. Although there is a CDE
for ASPECTS classification (https://www.radelement.org/element/RDE173)[12]. Hence,
extended IDs had to be created for such terms in the NLP annotation service, which are denoted

as RadLex® ID Extended (RIDE), for example ASPECTS = RIDE172 in the DTMs.
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2.4 Machine learning setup and classifier development

We performed extensive comparative analyses of well-established ML algorithms (base
classifiers) to automatically learn rules required for ASPECTS reporting including single
classification (and regression) trees (CART)[41], random forests (RF)[37], boosted decision
trees (XGBoost)[42], elastic net-penalized binomial regression (ELNET)[38, 39] and support
vector machines (SVM)[40]. Single CART was used to represent the baseline ML algorithm.
A CART has the advantage that human readers can more easily interpret it, however its
estimates are much less robust than ensembles of trees like RF[41, 50-52].

Each ML algorithm was fitted to the i) human expert-annotated features (HEAF; Table 1) and
to the ii) RadLex® mapped DTMs both for the findings and impressions separately (Table 2).
Because the effort of manually annotating the data set is large, especially if multiple experts
annotate the same reports, we built upon our previously open-sourced protocol of a 5-fold
nested cross-validation (CV) resampling scheme to have an objective and robust metric when
comparing the performance of the investigated methods (Figure 1). Nested CV schemes allow
for the proper training of secondary (e.g. calibrator or ensemble) models, without allowing for
information leakage (Figure 1). To counter act the class imbalance (yes:no = 3:1) during CV-
fold assignment (nfolds.RData), we performed stratified sampling. Also, RFs were
downsampled to the minority class during training [53, 54].

In brief, the data set (n=206) was divided into stratified subsamples (outer fold training
[Nouter.train=~164-166] — test set pairs [Nouter.test=40-42]) using 5-fold cross-validation (Figure 1;
dashed blue and red boxes). Then, only the outer fold training sets were, yet again, subsampled
using 5-fold CV, in order to create the nested/inner fold (training [Ninner.train=130-134] — test set
pairs [ninnertest=32-34]; Figure 1, nested CV). This was performed for both the findings and
impressions sections using identical fold structures (Figure 1).

Hyperparameter tuning (i.e. training) of the investigated ML algorithms (base classifier) was

performed within an extra-nested CV loop on the outer- or inner fold training sets. All models
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were fitted to the same data structure. Also, random seeds were fixed across all ML algorithms,
in order to ensure direct comparability of their performance measures. ML algorithm training
was optimized using either accuracy, brier score or log loss, which is indicated along the tuning
parameter settings in Tables 2 & 3. For all ML algorithms probability outputs were also
recorded and used to measure AUC and to create calibration plots. The average 5-fold CV
model performances on the outer fold test sets are provided in Tables 1, 2 & 3.

Furthermore, we investigated whether a second layer ensemble model (based on all evaluated
ML-base classifiers) could improve the overall performance. This second layer algorithm
(either RF or XGBoost) was trained on the combined predictions (i.e. “ensemble”) of the base
ML models (i.e. CART, RF, XGBoost, ELNET, SVM and fastText) on the respective
nested/innerfold test sets (Figure 1). Then, this tuned model was evaluated on the corresponding
outer fold test set preventing any information leakage[6]. Additionally, the second layer
“meta/ensemble” learner was used to derive importance rankings of the investigated ML base
classifiers. For this, we have used mean decrease in accuracy without scaling when RF was
used as the second layer “meta/ensemble” model, which has been suggested as the most robust
setting when testing correlated features[6, 53, 55, 56]. Variable importance plots describing the
RF meta-learner (Figure 3) were created using the randomForestExplainer package
(v0.10.0.)[57]. Similarly, for importance ranking of boosted decision trees the gain metric was
used[42]. Heretofore, we refer to second layer RF and XGBoost algorithms as meta/ensemble

learners or models.

2.5 Text classification directly on German report texts using fastText

We used the open-source, lightweight fastText library (v0.9.1; https://fasttext.cc/) to learn linear
text classifiers for ASPECTS recommendations on our data set[36] . The German report texts
(both findings and impression sections) were preprocessed by excluding “([-.1?,'/()])”. It is of

note that fastText was only trained “on-the-fly” in each resampling loop on the corresponding

do0i:10.20944/preprints202004.0354.v1
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subset of ~130-165 reports and we did not utilize any pre-trained word vector model for
German[58]. This approach ensured a more direct comparability with the ML-classifiers
developed on bag-of-RadLex® mappings. However, pre-trained word vector models for 157
languages, which were pre-trained on Common Crawl and Wikipedia by the fastText package

authors are available for direct download (https://fasttext.cc/docs/en/crawl-vectors.html) [58].

We used the Python (v3.7) interface to fastText
(https://github.com/facebookresearch/fastText/tree/master/python) on an Ubuntu 19.10
machine. FastText models were fitted both on the findings and impression sections respectively,
using the same 5 x 5-fold nested-CV scheme as for the other ML algorithms with similar extra-
nested CV loop for training on the outer- or inner fold training sets. Class label predictions and
probability outputs were recorded and evaluated in the same manner as the investigated ML

algorithms developed on HEAF and RadLex® mappings.

2.6 Statistical analyses

All statistical analyses were performed using the R language and environment for statistical
programming (R v3.6.2, R Core Team 2019, Vienna Austria). The Cohen’s kappa statistic was
used to assess inter-rater agreement whether ASPECTS is recommended in a pairwise fashion
for each of the two readers. To assess the overall agreement among the three readers, Fleiss’
and Light’s kappa was used.

Additionally, we created custom functions

plots) to visualize the
probability outputs (i.e. calibration profiles) of the investigated ML-classifiers (Figure 3). Such
calibration plots (or reliability diagrams) are useful graphical tools to visually assess the quality
of calibration[59, 60]. Briefly, for real-life problems the true conditional probabilities are
unknown, therefore the prediction space needs to be discretized into bins [60, 61]. A common

approach is to use ten bins and assign cases to the corresponding bin where their predicted
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probabilities fall. For each bin the fraction of true positive cases (y-axis) is plotted against the
mean of predicted classifier values (x-axis). Hence, an ideally calibrated classifier would lie on

the diagonal line [59, 61]. P-values <0.05 were considered significant.
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3. Results

3.1 Inter-rater reliability of human experts

Providing ASPECTS in the report would have been recommended by R1 in 156 (75.7%), by
R2 in 154 (74.8%) and by R3 in 155/206 (75.2%) of the cases. The overall agreement between
the three readers for “ASPECTS recommended” was kappatight=0.747 (n=206, z=4.6,
p=4.3x10-6). The pairwise Cohen’s kappa between R1 and R2 was 0.635 (p<2x10-16), which
corresponded to 86.4% agreement. Between R1 and R3 it was 0.62 (p<2x10-16) corresponding
to 85.9% agreement. Ratings of two (R2 and R3) experienced readers showed an almost perfect

alignment kappa=0.987 (p<2x10-16) with 99.5% overall agreement.

3.2 Reliability between automated RadLex® mappings and expert-annotated labels

In this random subsample, which represents a robust cross-section of the daily praxis,
ASPECTS was reported extremely rarely in 4/206 (1.9%). Three of which occurred both in the
findings and impressions (3/4, 75%) section and one of which was only reported in the
impression (1/4, 25%). The RASP tool correctly annotated all ASPECTS-negative (203/203)
and ASPECTS-positive (3/3) finding sections. In the impressions, it misclassified one

ASPECTS-positive (1/4, 25%) report as negative (1/206, 0.49%).

3.3 Performance of machine learning algorithms developed on human expert-annotated
features (HEAF)

3.3.1 Single classification tree (CART)

CART demonstrated a 5-fold CV accuracy of 73.3% with the worst 63% AUC, BS (0.37) and

LL (0.87) values among the tested ML-classifiers (Table 1).

3.3.2 Random forests (RF)
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The default (“vanilla”) RF classifier fitted on the 28 HEAF achieved a 5-fold CV accuracy of
81.5% with an AUC of 82% and corresponding BS and LL of 0.27 and 0.44, respectively (Table
1). Drastically reducing the feature space of VRF to only the nine (9/28: 32.1%) or five (5/28;
17.9%) most important predictors, had a comparably limited effect on the predictive
performance of VRF: its accuracies decreased 12.8% and 7.7%, respectively; AUC decreased
by ~16%; while BS (~37%) and LL (~27%) scores increased (Table 1).

Fine tuning the RF classifier using the BS (tRFss) and LL (tRFLL) metrics slightly improved the
overall accuracy without relevantly changing the calibration metrics of the vRF algorithm
(Table 1). On the outer folds, both tRFss and tRFLL limited the feature space similarly — to the
14 or 25-28 most important variables. Interestingly, ME-optimized RF (tRFme) achieved a
slightly worse overall performance profile. Notably, on the outer fold 4.0, it limited the feature

space to only the five RadLex® terms.

3.3.3 Elastic net-penalized binomial regression (ELNET)

ELNET showed a similar performance profile to RFs when fitted on the 28 HEAF but it
achieved a narrower 5-fold CV confidence range of its accuracies (78-86%) while obtaining
similar AUC, BS and LL scores (Table 1). The mixing parameter alpha («) was chosen 3 out
of 5 times to fit ridge (0) or ridge-like (0.1, 0.1) models while twice to fit lasso (1) or lasso-like

(0.8) models on the outer folds.

3.3.4 Support vector machines (SVM)

On HEAF linear kernel SVMs (SVM-LK) achieved the highest 5-fold CV accuracy (87.4%)
and lowest BS (0.22) and LL (0.37) scores while obtaining a similar AUC of ~80% to other ML
classifiers (Table 1). The tuning parameter of C was selected as 1 on two outer folds suggesting
a larger margin for the separating hyperplane while larger values of 10 or 100 were selected on

the remaining three outer folds, suggesting a smaller-margin classifier.
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3.3.5 Boosted decision trees (XGBoost)

Boosted decision trees were similarly accurate (80.6%) like tuned RF and ELNET. Despite the
detailed tuning grid, XGBoost had overall somewhat worse performance profile than the other
investigated ML algorithms, particularly AUC was lower at 70% for which we do not have a

clear explanation.

3.4 Performance of machine learning algorithms developed on fully automated RadLex®
mappings

3.4.1 Single classification tree (CART)

Directly applying a classification tree without optimizing its tree complexity (i.e. no pruning)
showed on the findings similar overall accuracy (77.2%) to VRF with similar AUC and BS
(Table 2) but with worse LL metrics. On the impressions, however, CART was tied for the 3rd

best accuracy (85.0%) but still it showed low AUC (0.75) and high LL (0.58) values.

3.4.2 Random forests (RF)

Applying unsupervised variance filtering to select the top 33% most variable RadLex®
mappings of the findings sections, improved the 5-fold CV accuracy of VRF by ~4.7%. In
contrast, the same variance filtering on the impression sections did not relevantly (0.6%)
improve VRF’s accuracy (Table 2). Tuned RF models were slightly more accurate than the

default vRF, however, tuning did not improve much upon the remaining calibration metrics.

3.4.3 Elastic net-penalized binomial regression (ELNET)
ELNET was the 3rd best-performing ML algorithm on the RadLex® features of the findings
sections behind SVMs and XGBoost with similar BS and LL metrics but lower accuracy

(pAcevsNir = 0.061) and AUC (Table 2). On the impression, it achieved the second highest 5-
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fold CV accuracy (85.0%; 95%CI: 79.3-89.5%; pAccvsNIR = 2.8X10-4) with corresponding
second-best calibration profile (AUC: 86%; BS: 0.22; and LL: 037). On the outer folds of the
impressions lasso or lasso-like settings (0.9-1) dominated the tuned « settings. ELNET had a

better visual calibration profile on the impressions than on the findings (Figure 2A).

3.4.4 Support vector machines (SVM)

Linear kernel SVMs (SVM-LK) were the only classifiers that performed in the top 2 on the
RadLex® feature spaces of both the findings (paccvs.nir = 5.1x10-3) and impressions (pPAcc.vsNIR
= 1.4%10-4) sections (Table 2). SVM-LK had the highest AUC and lowest LL on the findings
while on the impressions, it was overall the best-performing base ML-classifier. SVMs were
comparably well-calibrated for both the findings and impressions, especially in the 0.5-1.0

probability domain (Figure 2B).

3.4.5 Boosted decision trees (XGBoost)

XGBoost performed particularly well on the RadLex® mappings of the findings — where the
other ML algorithms (including fastText) struggled (Table 2). It showed the highest accuracy
(pAccvsNIr = 1.4x10-4) and lowest BS with corresponding slightly worse AUC and LL metrics
(than the runner-up SVM-LK). Nevertheless, it had the best overall visual calibration profile on
the reliability diagrams for the whole probability domain (Figure 2C). Compared to the
findings, on the impressions XGBoost tuning implied a stronger subsampling of the features
when constructing each tree, thereby strongly limiting the available predictor space. On the

impressions, XGBoost performed similar to RF classifiers.

3.5. Linear models (fastText) fitted directly on German report text
When directly fitting the findings sections of the reports, the fastText algorithm showed a 5-

fold CV accuracy of 83.0% (95%CI: 77.2-87.9%; pAccvs.Nir = 0.0030) with sensitivity of 94.8%,
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and specificity of 48.1% (PPV 84.4%, NPV: 75.8%), which corresponded to 84.4% precision
and 89.3% F1 score. It achieved comparable AUC (81.1%) and BS (0.29) to other shallow ML-
models trained on RadLex® mappings but showed markedly worse LL profile (0.98)
suggesting “more certain” misclassifications.

FastText achieved the best results across all investigated ML algorithms fitted on the
impressions sections of the reports. It showed a 5-fold CV accuracy of 89.3 % (95%Cl: 84.3-
93.2%; paccvsNIR = 1.35% 10-7) with a balanced accuracy of 82.0%. Its predictive profile was
in the 87-97% range (sensitivity: 96.8%; specificity: 67.3%; PPV 89.8%, NPV: 87.5%) with
precision of 89.8% and F1 score of 93.1%. Furthermore, it showed the highest AUC (91.7%)
with lowest BS (0.18) but yet again somewhat worse LL (0.55) than the RadLex®-based ML
algorithms. FastText showed poor visual calibration profiles for both the findings and
impressions in the lower probability domains (0-0.5), however it was almost ideally calibrated

in the 0.75-1.0 domain of the impressions (Figure 2D).

3.6 Performance of the second layer meta/ensemble-learners

The second layer meta/ensemble RF learner, which was trained on predictions of the ML-
classifiers of the findings sections, showed similar performance metrics (Table 3) as the top
single ML-classifiers like SVM-LK, fastText and XGBoost (Table 2). Its accuracy was in the
77-88% 95%CI range (pAccvsNIR = 1.8 x10-4) with 89.6% sensitivity; 65.3% specificity; 88.5%
PPV; and 68% NPV which corresponded to a precision of 88.5% and F1 score of 89.6%. SVM-
LK was chosen twice as the most important classifier while vRF, ELNET and XGBoost were
each selected once on the five other folds (Figure 3A & D).

The 5-fold CV accuracy (89.3%) of the ensemble RF (Table 3), when using only the ML-
models of the impressions as input features, was identical to the best predictor (fastText). But
the 95% confidence interval got narrower and the LL score got considerably reduced (by 38%).

This solely impressions-based ensemble achieved the following metrics: sensitivity 92.2%;
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specificity 80.8%; PPV 93.4%, NPV 77.8% with corresponding precision of 93.4% and F1
score of 92.8%. FastText was chosen as the most important predictor for all outer fold test sets
while as top 2nd predictor XGBoost was chosen twice; ELNET, SVM-LK and tRFss were each
selected once, respectively (Table 3; Figure 3B & E).

When the ML-classifier predictions of both the findings and impressions were the combined
input for the second layer RF model, its accuracy, BS and LL slightly got worse (5-6%). The
confusion matrix derivates were as follows: sensitivity 91.6%; specificity 80.8%; PPV 93.4%,
NPV 76.4% with corresponding precision of 93.4% and F1 score of 92.5%. The variable
importance rankings were dominated by ML-classifiers developed on the impression sections
(Table 3; Figure 3C & F). The visual calibration profile of the RF ensemble developed on all
ML-models (both findings and impressions; p =16) are presented in (Figure 2E & F).

On this same combined feature space (p=16), the second layer XGBoost ensemble showed a
slightly reduced accuracy and worse calibration profiles than the RF ensemble (Table 3). Its
predictive profile was in the 82-92% range (paccvs.NIR = 6 X10-6; sensitivity: 93.5%; specificity:
69.2%; PPV 90.0%, NPV: 78.3%) with precision of 90% and F1 score of 91.7%. XGBoost
selected fastText impressions 3x and SVM impressions 2x out of 5 on the outer folds as the

most important variable based on the gain metric.
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4. Discussion

In this work, we present a resource effective approach to develop production-ready embedded
ML models for CAR tools, in order to assist radiologists in providing clinically relevant key
biomarkers[9, 20, 62, 63]. To our knowledge, this is the first study that uses fully automated
cross-lingual (German to English) RadLex® mappings-based machine learning to improve
radiological reports by suggesting the key predictor ASPECTS in CT stroke workups. We
demonstrated the feasibility of our automated RadLex® framework (“MyReportCheck”, Figure
4) by comparing it to ML classifiers developed on human expert annotations. Furthermore, our
ensemble learning setup provides objective rankings and a generalizable blueprint for choosing
ML algorithms when developing classifiers for similar context-sensitive recommendation

tasks[62, 64].

Although reporting templates have been developed to promote and standardize the best practice
of radiological reporting[65-67], the majority of radiology reports are still created in free-text
format[68, 69]. This limits the use of radiology reports in clinical research and algorithm
development[63, 67, 69]. To overcome this, NLP pipelines including ML proved to be effective
to annotate and to extract recommendations from reports[69, 70]. Nonetheless, studies dealing
with ML algorithm development particularly for real-time context-sensitive assistance of
radiologists while writing reports are scarce[64, 71]. Therefore, in this work, we focused on
comprehensive and objective comparison of ML algorithms to provide technical guidance for
developing these algorithms on limited (non-English) training data. For this, we have put an
emphasis on the probabilistic evaluation and ranking of ML classifiers. This is less relevant for
biomarker CAR recommendation systems but crucial for automated inference systems for

scores such as BI-RADS[72] or PI-RADS[18].
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We used a commercially available NLP pipeline that implements a common approach[8, 69]
comprised of cleansing, contextualization and concept recognition as well as negation detection
trained explicitly for German and English RadLex® mappings[1, 43]. This fully automated
approach to generate bag-of-RadLex mappings is advantageous compared to standard
BOW][35] approaches, as it already captures domain-specific knowledge including negation and
affirmation[3]. Mikolov et al. proposed word2vec to create semantic word embeddings, which
gained popularity in the field of radiology[5, 73]. However, word2vec struggles to properly
handle out-of-vocabulary words[74, 75]. Thus, it needs to be combined with radiology domain-
specific mappings. In contrast, our approach directly generates bag-of-RadLex terms for each
report. We then combine all binary RadLex® term occurrences in our corpus (separately for
findings and impressions) to generate the RadLex-DTMs. Therefore, our pipeline is also more
robust for new or missing words e.g. if a new report does not contain certain terms (present in
the training corpus), these can be easily substituted with O or new terms can be added to the
DTM and the ML classifier can be swiftly retrained. This commercial NLP-based RadLex-
mapping pipeline for creating DTMs is free for research purposes and can be easily utilized

through our Shiny application.

Similar to previous studies[65, 69], we also flattened the hierarchical tree structure of RadLex®
concepts and let the ML classifiers select subgroups of terms relevant to the classification task
automatically during training. For a similar domain-specific semantic-dictionary mapping, as
part of their hybrid word embedding model, Banerjee et al. created a custom ontology crawler
that identified key terms for pulmonary embolism[76]. Another approach by Percha et al.
included only partial flattening of RadLex®. They selected the eight most frequent parent
categories that were used to learn word and RadLex® term vector representations for
automatically expanding ontologies[5]. We have also found that certain key terms are missing

from RadLex® and manually extended it. Other approaches to mitigate this problem and to
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increase interoperability, aim to combine multiple (both radiology-specific and general
medical) ontologies or procedural databases such as RadLex®, LOINC/RSNA playbook, CDE
from the RSNA and Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT)
as well as the International Classification of Diseases (v.10) Clinical Modification (ICD-10-

CM)[74, 77-79].

All investigated ML algorithms were “CPU only” thereby imposing minimal hardware
requirements and being quick both at train and test time[36]. These ML models have proven to
be effective on both text classification[34, 36, 80] and other high-dimensional medical problems
including high-throughput genomic microarray data[6, 81]. Additionally, we implemented a
nested CV learning framework in order to objectively assess the importance of each ML base
classifier and report section (i.e. findings and impressions) based on their probability estimates
of recommending ASPECTSI6]. Zinov et al. also used a probabilistic ensemble learning setup
to match lung nodule imaging features to text[71]. It is of note that there is multicollinearity
both on the level of RadLex® mappings when training ML base classifiers and when combining
the probability estimates of these ML classifiers on the second layer meta/ensemble-learner
level. Default settings of RF (both in Python and R) are less robust for these scenarios due to
the dilution of true features[6, 53, 55, 56]. To counter act dilution, we used the most robust
metric of permutation-based importance (type=1) without scaling for all RF models. In contrast,
boosted trees by design are less susceptible to correlation of features [42, 52]. The performance
of the investigated ML algorithms is differently sensitive to the number of features[6, 81].
Based on results by limiting the feature space with unsupervised variance filtering, we suggest
using all annotated RadLex® features as input and treating the number of features (p) as a

tuning parameter during ML-algorithm training to achieve the best possible accuracies.
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ML models developed on HEAF were similarly accurate (87%) to those developed on fully
automated cross-lingual RadLex® mappings (~85%), although the latter models had
substantially better calibration profiles (especially AUC and BS). This corresponded to results
by Tan et al. on lumbar spine imaging when comparing rule-based methods to ML models[82].
On the more heterogeneous and larger RadLex® feature space of the findings sections, most
ML models including fastText struggled but XGBoost performed best with an almost ideal
calibration profile among all models (including those developed on the impressions). As
impressions are expert-created condensed extracts of the most relevant information, ML
performed substantially better (all > 80%). Accordingly, both RF and XGBoost meta/ensemble
learners favored ML models that were developed on the impressions particularly fastText,
SVM-LK and BS-tuned RF. These second layer meta/ensemble models achieved precision of
90-93%, recall: 92-94% and F1 score: 91-93%, which was well in line with the performance of
information extraction model by Hassanpour et al. on a similarly sized (n=150) test set of multi-
institutional chest CT reports[69].

The advantage of RadLex-based ML models compared to fastText is that they contain
anatomical concepts and we can directly access negation information providing human
interpretable explanation of the model. For fastText, such concepts are not necessarily learnable
from limited training data or for more complex decision support scenarios other than
ASPECTS. This was also supported by the fact that, despite being a baseline model, single
CART performed remarkable well on the impressions implying that recommending ASPECTS

is a less complex decision task.

The present study has certain limitations as it was a single-center, retrospective cross-sectional
study of moderate size. Nonetheless, we selected a stratified random sample of ~200 reports
from ~4000 reports from a period of 4 years, which robustly represented the general daily

praxis. Our primary goal was to provide baseline performance metrics for well-established NLP
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and ML algorithms and linear classifiers with respect to radiology-specific biomarker
(ASPECTS) recommendation tasks. Hence, there are natural extensions to our methodology
including the switch to well-known neural network architectures both to generate RadLex®
mappings[26, 83] and to create task-specific classifiers in an end-to-end manner such as
convolutional (CNN)[24], recurrent neural networks (RNN)[72] or long short-term memory
(LSTM) networks[63, 84]. However, fastText (with only a single hidden layer) has proven to
be on a par with these more complex network architectures on several benchmarks[36].
Although, incorporating pre-trained language-specific word representations into fastText was
expected to improve its accuracy we chose not to do so to allow for more direct performance
comparisons with bag-of-RadLex-based ML classifiers[58].

Utilizing large transformer architectures[25, 27-29, 85] directly on German free-text reports
would be a reasonable extension, however, sufficiently large non-English public radiology
domain-specific corpora for transfer learning are lacking and the interpretability of TLMs is
challenging[31]. Whether TLMs “truly learn” underlying concepts as a model of language or
just extract spurious statistical correlations is a topic of active research[32, 33]. Thus, our CT
stroke corpus can facilitate benchmarking of such models for the German radiological
domain[31, 83, 85].

For recommending ASPECTS we used pyes > 0.5 probability threshold. Optimizing this cutoff
could further improve the performance metrics of the ML classifiers — for example by
maximizing the Youden index[86].

To counteract class imbalance, we also explored upsampling, downsampling, random over-
sampling and synthetic minority over-sampling techniques (SMOTE)[87], however, they did
not improve the accuracy of ML classifiers on our data set (data not shown).

Regardless of these limitations, compared to text-based DL methods, our approach has some
major advantages: i) building ML classifiers on top of cross-lingual RadLex® mappings

incorporates domain-specific knowledge thereby only requiring a limited amount of expert
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labeled data — for which simple class labels are sufficient; ii) this approach can be easily adopted
to any other language where RadLex® was translated by the local radiological society; iii) an
ultimate benefit of our methodology is that it allows for the instant interoperability between
languages especially the direct transportability of any ML model created for biomarker

recommendation or inference from one language to another.
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5. Conclusion

We showed that expert-based key information extraction and fully-automated RadLex
mapping-based machine learning is comparable and requires only a limited amount of expert-
labeled training data — even for highly imbalanced classification tasks. We performed detailed
comparative analyses of well-established ML algorithms and identified those, which are best
suited for automated rule learning on bag-of-RadLex® concepts (SVM, XGBoost and RF) and
directly on German radiology report texts (fastText) through utilizing a nested CV learning
framework.

Taken together, this work provides a generalizable probabilistic framework for developing
embedded ML algorithms for CAR tools to context-sensitively suggest, not just ASPECTS but
any required key biomarker information. Thereby improving report quality and facilitating

cohort identification for downstream analyses.
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Data statement
Both the human expert annotated features (heaf.csv) and the fully automated NLP-based
RadLex® mappings (term-report-matrices) are provided in our GitHub repository

(https://github.com/mematt/ml4RadLexCAD/). The RadLex® annotation and scoring pipeline

(RASP) is freely available for research purposes as Shiny application at
www.mmatt.shinyapps.io/rasp . All tuned ML-model objects including the fold IDs for the 5 x
5-fold stratified nested CV scheme (nfolds.RData) are provided on GitHub. Additionally, we

provide R code for ML-model training and for generating calibration plots presented in Fig. 3.
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Table 1 | Summary table of performance measures of the investigated ML algorithms developed on human expert-annotated features (HEAF).

Report Method ML HEAF feature Rank Software Optimized  Tested Selected number of features or hyperparameter Accuracys# ME AUC BS LL
section Classifier space metric hyperparameter space settings on outer fold 1.0-5.0 [min-max; %]
. rpart.control = default; cp = 0.01 -~

CART cT p=28 (all) rpart [R] ACC no optimization (no pruning) 28 73.3[66.7-79.2] 027 063 037 087
T VRF RF p=28 (all) 4 randomForest [R] ME ntree =500, mtry=>5, pvarsel = 28 28 81.5[73.8-92.7] 0.18 0.82 0.27 0.44
<
'-'IJ VRF RF p=28 (all) randomForest[R] ME ntree =500, mtry=5, pvarsel = 9 9 71.0[59.5-82.9] 0.29 0.69 0.37 0.56
4 VRF RF p=28 (all) randomForest[R] ME ntree =500, mtry=5, pvarsel = 5 5 75.2 [68.3-83.3] 0.25 0.69 0.36 0.54
=
§ tRFss RF p=28 (all) 2 randomForest[R] BS ntree = [100, 200, 300, ..., 900, 1000] 28,14, 14,14, 14 83.1[76.2-90.2] 0.17 0.81 0.27 0.44
TR
3 tRFve RF p=28 (all) randomForest[R] ME mtry =[3, 4, 5, 6, 7] 28, 28, 14,5, 14 79.6 [68.3-90.2] 0.20 0.79 0.29 0.46
% tRFLL RF p=28 (all) 2 randomForest[R] LL puasel = [3, 5, 10, 14, 20, 25, 28] 25,14, 14, 14, 14 83.1[76.2-90.2] 0.17 0.81 0.27 0.44
c
= _ a=1[0,0.1,02,...,08,0.9, 1] a«=[0.1,08,0,1,0.1]
< = : %
x ELNET ELNET p=28 (all) 8 gimnet(R] ME A = 10-fold CV with default hot-start A =10.195, 0.0688, 0.208, 0.0301, 0.1632] 62.0[78.6-854] 018 079 027 043
:i SVM-LK SVM p=28 (all) 1 e1071[R] ME C =[0.001, 0.01, 0.1, 1, 10, 100, 1000] C =11, 1, 100, 10, 10] 87.4[82.9-90.2] 013 079 022 037
nj
c nrouds/ntree = 100, _
I _ nrouds = 100
E g“tzx_—‘[’ggtho‘3g3' 5.6.8] max_depth = [5, 8, 5, 8, 3]
I XGBoost BT p=28 (all) 5 xgboost[R] ME g eta=[0.1,0.1,0.1,0.3,0.1] 80.6[75.0-85.7] 019 070 030 048

gamma = [0, 0.5, 1.0]
colsample_bytree = [0.1, 0.25, 0.5,
0.693 (In2)~rr, 1]

gamma=[0, 0.5, 1, 0.5, 1]
colsample_bytree = [1, 1, 0.5, 1, 0.5]

Accuracy#: the averaged 5-fold CV accuracy is calculated, ACC: accuracy, AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are scaled to 1), BS: Brier score, ME: misclassification error, LL: multiclass log
loss, VRF and tRF: vanilla- and tuned random forests, ELNET: elastic net penalized multinomial logistic regression, SVM: support vector machines, LK: linear kernel SVM; XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees,
CART: classification and regression trees; CT: classification tree; cp: complexity parameter used for CART node splitting (for this no optimization (pruning) was performed); In(2)~re: column sampling (i.e. bootstrap) representing the settings equivalent to
running RF in the xgboost library, [R]: R statistical software environment.
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Table 2 | Summary table of performance measures of the investigated ML algorithms on the NLP-annotated bag-of-RadLex® features of the findings and impressions sections.

Selected number of features or

Report ML RadLex® feature Optimized Tested . Accuracy#
section Method Classifier space Software metric hyperparameter space gygt;rgarameter settings on outer fold [min-max; %] ME AUC BS LL
CART CT p =907 rpart [R] ACC rpart.control = default; cp = 0.01 p =907 77.2 [70.8-82.7] 0.23 0.74 0.32 0.66
VRF RF p=300 (us var filt.) randomForest [R] ME ntree =500, mtry=30, pvarsel = 200 pvarsel = 200 76.2 [71.4-85.4] 0.24 0.78 0.33 0.51
VRF RF p=907 (all) randomForest[R] ME ntree =500, mtry=30, pvarsel = 200 puarsel = 200 72.8 [67.5-78.6] 0.27 0.78 0.33 0.50
VRF RF p=907 (all) randomForest[R] ME ntree =500, mtry=30, pvarsel = 20 parsel = 20 71.4 [62.5-75.6] 0.29 0.74 0.40 0.63
tRFBs RF p=907 (all) randomForest[R] BS ntree = [200, 400, 600, ... , 1400, 1600] parsel = [500, 50, 100, 100, 50] 75.2 [71.4-81.0] 0.25 0.76 0.33 0.51
tRFmE RF p=907 (all) randomForest[R] ME mtry = [20, 25, 30, 35, 40] pvarsel = [907, 907, 907, 907, 907] 74.3 [67.5-83.3] 0.26 0.77 0.33 0.50
§ tRFLL RF p=907 (all) randomForest[R] LL pvarsel = [10; 20; 50; 100; 200; 500; 907] pvarsel = [50, 50, 50, 50, 50] 75.7 [70.7-85.7] 0.24 0.77 0.33 0.52
=] -
i ELNET  ELNET p=007 (all) gimnet[R] ME @=10,0.1,02, ..., 0.8,09, 1] A= [[8 '36357’001'%’41’006993 0.114 79.6[76.2-82.9] 020 075 020 046
A = 10-fold CV with default hot-start 0 397]' T T . ’ . ’ . ’ :
SVM-LK SVM p=907 (all) €1071[R] ME C =[0.001, 0.01, 0.1, 1, 10] C=[0.1,0.1,0.1,0.1, 0.1] 82.5 [78.6-85.4] 0.18 0.80 0.27 0.43
nrouds/ntree = 100
_ ! nrouds = 100
emtg":—‘[’g’i‘ho‘sf" 56.8 max_depth = [5, 8, 5, 8, 3]
XGBoost BT p=907 (all) xghoost[R] ME i eta=1[0.1,0.1,0.1,0.3,0.1] 85.4 [80.9-90.2] 0.15 0.78 0.25 0.45
gglr;erlr:pl_e[oﬁy?}gélé()[]f) 1,0.25, 0.5, 0.693 gamma = [0, 0.5, 1, 0.5, 1]
(In2)~re, ﬂ colsample_bytree =[1, 1, 0.5, 1, 0.5]
fastText linear direct fit on text Fasttext [Python] ACC & LL default - 83.0 [81.0-85.4] 0.17 0.81 0.29 0.98
CART CT p=675 rpart [R] ACC rpart.control = default; cp = 0.01 p=675 85.0[79.3-89.5] 0.15 0.75 0.26 0.58
VRF RF p=300 (us varfilt.) randomForest [R] ME ntree =500, mtry=26, pvarsel = 200 pvarsel = 200 83.0[71.4-88.1] 0.17 0.87 0.25 0.39
VRF RF p=675 (all) randomForest [R] ME ntree =500, mtry=26, pvarsel = 200 pvarsel = 200 82.5[71.4-88.1] 0.17 0.87 0.25 0.39
VRF RF p=675 (all) randomForest [R] ME ntree =500, mtry=26, pvarsel = 20 parsel = 20 78.2 [70-85.4] 0.22 0.81 0.30 0.49
tRFss RF randomForest [R]  BS ntree = [200, 400, 600, .., 1400, 1600] puarsel = [200, 100, 200, 500, 200] 80.0 [69.0-87.8] 0.20 0.85 0.26 0.41
_ mtry = [21, 26, 31, 36, 41] _ 83.0 [69.0-90.5]
g tRFME RF p=675 (all) randomForest [R]  ME puarest = [10: 20: 50: 100; 200; 500; 675] parsel = [200, 675, 200, 675, 500] 0.17 0.85 0.25 0.41
2 tRFLL RF randomForest [R]  LL nodesize = [1; 2 (1%); 10 (5%)] puarsel = [50, 100, 50, 500, 50] 79.6 [71.4-87.8] 020 084 027 042
S _ a=1[0,0.1,0.2,...,0.8,0.9, 1] a=1[0.9,0.4,1,0,0.9] g
£ ELNET ELNET p=675 (all) Glmnet [R] ME X = 10-fold Qv with default hot-start A = [0.056-2.01] 85.0 [82.9-88.1] 0.15 0.85 0.22 0.37
SVM-LK  SVM p=675 (all) €1071 [R] ME € =1[0.001, 0.01, 0.1, 1, 10] Cc=1[0.1,0.1,0.01, 0.1,0.01] 85.4 [80.0-90.2] 0.15 0.86 0.21 0.36
nrouds/ntree = 100, nrouds = 100
max_depth = [3, 5, 6 ,8] max_depth =[5, 3, 6, 5, 6]
_ eta=[0.1, 0.3] eta=1[0.3,0.3,0.1,0.1,0.3]
XGBoost BT p=675 (all) xghoost [R] ME gamma = [0, 0.5, 1.0] gamma = [0, 0, 1, 0.5, 0.5] 83.0[71.4-90.2] 0.17 0.83 0.26 0.44
colsample_bytree = [0.1, 0.25, 0.5, 0.693 colsample_bytree =[0.1, 0.25, 0.1, 1,
(In2)~rF, 1.0] 0.1]
fastText linear direct fit on text Fasttext [Py] ACC & LL default - 89.3[83.3-97.6] 0.11 0.92 0.18 0.55

Accuracy#: the averaged 5-fold CV accuracy is calculated, ACC: accuracy, AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are scaled to 1), us var.filt: unsupervised variance filtering using p=300 most variable

RadLex® terms -this step was previous of training to prevent information leakage, BS: Brier score, ME: misclassification error, LL: multiclass log loss, vVRF and tRF: vanilla- and tuned random forests, ELNET: elastic net penalized multinomial logistic regression, SVM:
support vector machines, LK: linear kernel SVM; XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees, CART: classification and regression trees; CT: classification tree; cp: complexity parameter used for CART node splitting (for this

no optimization (pruning) was performed); In(2)~rr: column sampling (i.e. bootstrap) representing the settings equivalent to running RF in the xgboost library, [R]: R statistical software environment; [Py] Python v3.7 programming language.
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Table 3 | Summary table of performance measures of the second layer meta/ensemble learners (random forests and boosted trees) combining the predictions of all RadLex®-based ML base classifiers from the findings and

impression sections.

Most important ML- Optimi Selected number of features
Ensemble - Number of features - X Accuracy#
ML-algorithm Classifiers (ML-model outputs) classifiers / outer fold zed ) Hyperparameters or hyperparameter settings on [95%Cl] ME AUC BS LL
metric outer fold 1.0-5.0
Top 1:
VRF-find 1/5
s SVM-find 2/5
- ELNET-find 1/5
tRFwmE,
tRFLL 8x ML-models (findings) XGBoost 1/5
VRF ELN E’T ME ntree =500, mtry=2, pvarsel = 8 Pvarsel = 8 83.5[77.7-88.3] 0.17 0.83 0.29 0.47
SVM-LK Top 2:
XGBoosi XGBoost-find 1/5
fastText ! tRF-ME-find 2/5
fasstext-find 1/5
ELNET-find 1/5
VRF Top 1:
tRFes, fasstext-impr 5/5
tRFwe, p
tRFLL, 8x ML-models Top 2:
VRF ELNET, (impressions) p e ME ntree =500, mtry=2, pvarsel = 8 Prarsel = 8 89.3[84.3-93.2] 0.11 0.90 0.19 0.34
svm-impr 1/5
SVM-LK, .
XGBoost XGBoosF-lmpr 2/5
fastText ! tRF-BS-impr 1/5
ELNET-impr 1/5
VRF Top 1:
tRFes, fasstext-impr 5/5
tRFe, 16x ML-models p
VRF RFw, (8 findings & Top 2: ME ntree =500, mtry=4, puasel = 16 Prarsel = 16 88.8[83.7-92.8] 011 090 020  0.36
ELNET, 8x impressions) ]
svm-impr 3/5
SVM-LK, !
tRF-BS-impr 1/5
XGBoost, ELNET-impr 1/5
fastText P
VRF Top 1: nrouds/ntree = [5, 10, 25, 50, 75, 100]
tRFss, fasstext-impr 3/5 max_depth =[3, 5, 6,8] nrounds = [75, 5, 75, 5, 10]
tRFmE, 16x ML-models svm-impr 2/5 eta=[0.01, 0.1, 0.3] max_depth =[3, 6, 5, 3, 5]
tRFLL, om0 ) ) gamma = [0, 0.001, 0.01, 0.1, 0.5, 1] eta=1[0.3,0.01, 0.1, 0.01, 0.1] g
XGBoost ELNET, (findings & impressions) Top 2: ME colsample_bytree = [0.1, 0.25, 0.5, gamma = [1, 0.01, 0.1, 0, 0.5] 87.4[82.0-91.6] 0.13 0.87 0.30 0.46
SVM-LK, fasstext-impr 2/5 0.693 (In2)~rr, 1.0], colsample_bytree = [0.1, 0.5,
XGBoost, tRF-BS-impr 2/5 min_child_weight = 1, In2-rr, 0.1, 0.25]
fastText svm-impr 1/5 subsample = 1

AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are scaled to 1), us var filt: unsupervised variance filtering using p=300 most variable RadLex® terms -this step was previous of
training to prevent information leakage, BS: Brier score, ME: misclassification error, LL: multiclass log loss, VRF and tRF: vanilla- and tuned random forests, ELNET: elastic net penalized multinomial logistic regression, SVM:
support vector machines, LK: linear kernel SVM, n.SV: number of support vectors; XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees.
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Figure 1 shows the 5 x 5-fold nested cross validation setup, which was used to evaluate all
machine learning (ML) algorithms and to train the second layer model as a meta/ensemble-
learner on top of the combined predictions of these base ML classifiers. Human experts had
access to both the findings and impression sections as well as the clinical question field of the
reports to generate target labels ASPECTS recommended “yes” (n=154) vs. “no” (n=52) and
to extract clinico-radiologically relevant features (HEAF). The findings and the impressions
were each passed through a fully automated cross-lingual (German-English) natural language
processing (NLP) pipeline to generating RadLex® mappings. The pipeline can be accessed at
mmatt.shinyapps.io/rasp. In order to prevent information leakage, the second layer
meta/ensemble models (random forests [RF] and boosted trees [ XGBoost]) were trained on the
combined inner fold test (i.e. sum of nested validation YNrest 1.1-15) sets. These second layer
models were used to derive objective importance rankings of the individual ML-classifiers. To
ensure direct comparability between the investigated ML-algorithms, the data partitioning was
identical (i.e. each model was trained and fitted on the very same subsamples of the data).
However, fastText was fitted directly on German report texts, whereas other ML-algorithms
were fitted on both HEAF and NLP-based RadLex® mappings. The final performance measure
of the classifiers was calculated as the 5-fold cross-validated average on the outer folds (see

Tables 1, 2 and 3).

do0i:10.20944/preprints202004.0354.v1
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Figure 2 depicts the visual calibration profiles (reliability plots) of the most important machine learning classifiers based on the random forests

ensemble when fitting the automated RadLex® mappings (all outer folds combined, N=206). Points represent the mean predictions and corresponding
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observed fractions of respective “ASPECTS recommended: yes” cases for each ten bins (i.e. 0-0.1, ..., 0.9-1.0) of the probability domain. The rug
plots at the top (red; impressions) and bottom (blue; findings) visualize the distribution of the probability estimates of the respective ML-algorithm.
Each line indicates an estimate of a single case (N=206). ELNET (A) was more suitable for the impressions (red) particularly in the 0.50-0.75 range,
corresponding to its top 3 ranked accuracy. Linear kernel SVMs (B) showed well-calibrated estimates for the 0.50-1.0 probability domain for both
the findings (blue) and the impressions (red). XGBoost (C) showed the best overall calibration profile among all investigated ML-models. It presented
an almost perfect calibration curve (grey diagonal line) on the findings for the whole probability domain (0-1) while being the most accurate ML-
classifier (Table 2). Although fastText (D) showed remarkable accuracies (highest overall) when fitting the impressions (red curve) and the third best
on the findings (blue curve), its probability estimates were poorly calibrated — particularly on the findings and for “ASPECTS recommended: no”
cases (see Table 2). The RF ensemble (E) showed a reasonably well-calibrated profile when trained on the probability estimates of all ML-algorithms
(16x ML-models) including both of which were generated on the findings and impressions sections (see Table 3). The inset of the histogram shows
the bimodal distribution of the probability estimates for the “ASPECTS recommended: yes” label of the RF ensemble. For the most part, the ensemble
was “quite sure” about the label (maximum in the range of 0.75-1.0). Also, it showed (F) similar calibration profiles when trained either only on ML-

model estimates of the findings (blue; 8x models) or the impressions (red; 8x models).
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Figure 3 shows the multi-way importance plots of the investigated machine learning algorithms based on the random forests ensemble when fitting

the automated RadLex® mappings of the first outer fold test set (Ntest.1.0=42). Subplots A, B and C show the importance measures (y-axis: mean

decrease in Gini index; x-axis: mean decrease in accuracy) that are based on the role a ML-algorithm plays in the prediction of the RF ensemble.

Notably, the mean decrease in accuracy (x-axis) is a more robust measure for variable importance[6, 53, 55, 56]. P-values are based on a binomial
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distribution of the number of nodes split on the variable. Subplots D, E and F focus on three importance measures that are derived from the structure
of the trees in the forest including i) mean_min_depth (x-axis) of the first split on the variable; ii) number of trees in which the root is split on the
variable (“variable”: blue patch non-top or top); iii) the total number of nodes in the forest that split on that ML-classifier (no_of _nodes). Subplots A
and D; B and E; and C and F are the corresponding plots to each other when fitting ML-models of the findings only, impressions only and both,
respectively. When combining ML-classifiers trained on the findings sections only (A), XGBoost (p<0.01) and linear kernel SVMs (p<0.05) were the
only two significant predictors. Likewise, for the impressions (B), fastText (p<0.01) was by far the most important predictor. Nonetheless, SVM-LK
(p<0.01) and brier score-tuned RF (tRF-BS) were also significant (p<0.05). When we combined all ML-models (findings & impressions; C), fastText
(p<0.01) and SVM-LK (p<0.01) based on the impressions dominated the importance rankings, however, (although less relevant) XGBoost estimates

using the findings sections stayed also significant (p<0.05).
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Figure 4 depicts the prototype graphical user interface of our context-sensitive CAR tool
“MyReportCheck”, which utilizes our embedded machine learning framework on fully
automated RadLex® mappings for recommending ASPECTS during the reporting of
neuroradiological emergencies. The software solution is available as service from Empolis

Information Management GmbH (Kaiserslautern, Germany).
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