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Highlights 

• Cross-lingual RadLex® mapping-based machine learning can improve radiological 

report quality by context-sensitively suggesting key imaging biomarkers. 

• Human expert-based key information extraction and fully automated RadLex®-based 

machine learning are comparable. 

• By increasing key information content in reports, embedded assistive algorithms can 

substantially improve cohort selection for downstream analytics. 

• The presented approach is robust and requires only a limited amount of expert labeled 

training data even for imbalanced classification tasks. 

• We open-source our framework to facilitate research on developing task specific 

classifiers for computer-assisted reporting tools.  
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Abstract 

Objectives: Studies evaluating machine learning (ML) algorithms on cross-lingual RadLex® 

mappings for developing context-sensitive radiological reporting tools are lacking. Therefore, we 

investigated whether ML-based approaches can be utilized to assist radiologists in providing key 

imaging biomarkers – such as The Alberta stroke programme early CT score (APECTS).  

Material and methods: A stratified random sample (age, gender, year) of CT reports (n=206) with 

suspected ischemic stroke was generated out of 3997 reports signed off between 2015-2019. Three 

independent, blinded readers assessed these reports and manually annotated clinico-radiologically 

relevant key features. The primary outcome was whether ASPECTS should have been provided 

(yes/no: 154/52). For all reports, both the findings and impressions underwent cross-lingual 

(German to English) RadLex®-mappings using natural language processing. Well-established ML-

algorithms including classification trees, random forests, elastic net, support vector machines 

(SVMs) and boosted trees were evaluated in a 5 x 5-fold nested cross-validation framework. 

Further, a linear classifier (fastText) was directly fitted on the German reports. Ensemble learning 

was used to provide robust importance rankings of these ML-algorithms. Performance was 

evaluated using derivates of the confusion matrix and metrics of calibration including AUC, brier 

score and log loss as well as visually by calibration plots. 

Results: On this imbalanced classification task SVMs showed the highest accuracies both on 

human-extracted- (87%) and fully automated RadLex® features (findings: 82.5%; impressions: 

85.4%). FastText without pre-trained language model showed the highest accuracy (89.3%) and 

AUC (92%) on the impressions. Ensemble learner revealed that boosted trees, fastText and SVMs 

are the most important ML-classifiers. Boosted trees fitted on the findings showed the best overall 

calibration curve. 

Conclusions: Contextual ML-based assistance suggesting ASPECTS while reporting 

neuroradiological emergencies is feasible, even if ML-models are restricted to be developed on 

limited and highly imbalanced data sets.   
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Graphical abstract 
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1. Introduction 

There are no studies available that evaluate machine learning (ML) algorithms on cross-lingual 

RadLex® mappings to provide guidance when developing context-sensitive radiological reporting tools. 

Therefore, the purpose of our study was to compare the performance of ML algorithms developed on 

features extracted by human experts against those developed on fully automated cross-lingual RadLex® 

mappings of German radiological reports to English[1], in order to assist radiologists in providing key 

imaging biomarkers such as The Alberta Stroke Programme Early CT Score (APECTS)[2]. We show 

that this fully automated RadLex®-based approach is highly accurate even if the ML models were 

trained on limited and imbalanced expert labelled data sets[3-6]. Hence, this work provides a valuable 

blueprint for developing ML-based embedded applications for context-sensitive computer-assisted 

reporting (CAR) tools[7-10]. 

RadLex® is a comprehensive hierarchical lexicon of radiology terms that can be utilized in reporting, 

decision support and data mining[3]. RadLex® is freely available (v.4.0, http://radlex.org/) from the 

Radiological Society of North America (RSNA). It provides the foundation for further ontologies and 

procedural data bases such as the LOINC/RSNA Radiology Playbook[11] or Common Data Elements 

(CDE; RadElement; https://www.radelement.org/)[12]. The official translation of RadLex® to German 

by the German Society of Radiology (DRG) was made public in January 2018 and contained over 45,000 

concepts.  

ASPECTS is widely used in neurological emergencies to assess the extent of early ischemic changes on 

pretreatment non-contrast CT studies of the brain in patients with acute ischemic stroke of the anterior 

circulation[2]. It proved to be a robust and highly significant independent imaging biomarker to predict 

the outcome of intravenous thrombolysis, endovascular thrombectomy (EVT) and a surrogate for 90-

day functional outcome [13]. Hence, ASPECTS serves as a key selection criterion for 

neurointerventional procedures. Accordingly, radiological textual metadata is of crucial importance 

when retrospectively selecting patient cohorts for clinical trials or extracting their imaging to develop 

computer vison algorithms[14-17]. Therefore, it is in the best interest of radiologists to report key 

radiological biomarkers like ASPECTS or other scoring systems such as the prostate (PI-RADS) or 

breast imaging-reporting data system (BI-RADS) to optimize downstream analytics and software 
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development using their data[18, 19]. Nonetheless, these key predictors are frequently missing from 

radiological reports as their overwhelming majority is still created as conventional narrative “free-

text”[1, 20, 21].  

ML methods have been introduced as powerful computer-aided diagnostic (CAD) tools[9, 15, 22] not 

only in image recognition and classification, but also in radiological reporting[23, 24]. Recently, 

complex deep transformer-based language models (TLM) are becoming the state-of-the-art (SOTA) in 

natural language processing (NLP)[25-29]. However, these models need considerable amount of general 

and domain specific corpora for training (even if using transfer learning approaches), which are scarce 

for languages other than English, particularly in the medical domain where creating expert-labelled high-

quality training data is extremely resource intensive[30-33]. Despite achieving SOTA on certain 

classification tasks, TLMs represent black box methods and show susceptibility to subtle 

perturbances[31, 32]. Additionally, TLMs are seldom compared to baseline information retrieval 

methods such as shallow ML algorithms or linear classifiers (fastText) developed on bag-of-words 

(BOW)[34-36]. Therefore, we performed comprehensive analyses using an ensemble learning 

framework (Figure 1) that combined well-established ML algorithms as base classifiers including 

random forests (RF)[37], regularized logistic regression (ELNET)[38, 39], support vector machines 

(SVM)[40] and classification- (CART)[41] and boosted trees (XGBoost)[42] as well as fastText[36] on 

German computed tomography (CT) reports with suspected stroke and on their cross-lingual English 

RadLex® mappings using NLP[43]. 

 

As a proof of concept (“MyReportCheck”), we present a flexible open-source pipeline to swiftly develop 

robust ML classifiers for CAR tools in a language-agnostic fashion by using only limited expert labelled 

training data and cross-lingual bag-of-RadLex® mappings. We aimed to demonstrate the feasibility of 

our approach by automatically developing production-ready ASPECTS classifiers for CT stroke 

workups and compare it to methods developed on human expert annotations. Furthermore, we provide 

valuable guidance on choosing ML algorithms for similar context-sensitive recommendation tasks and 

make our data set available for the community to facilitate algorithm development and benchmarking. 
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2. Materials and methods 

2.1 Study cohort 

The study was approved by the local ethics committee (approval nr.: 2017-825R-MA). Written 

informed consents were waived by the ethics committee due to the retrospective nature of the 

analyses. In this single-center retrospective cohort study, consecutive (German) radiological 

reports of cranial CTs with suspected ischemic stroke or hemorrhage between 01/2015-12/2019 

were retrieved from local RIS (Syngo, Siemens, Healthineers, Erlangen, Germany) that 

contained the following key words in the clinical <request reason>, <request comment> or 

<request technical note> fields: “stroke”, “time window for thrombolysis”, “wake up”, 

“ischemia” and their (mis)spelling variations. A total of 4022 reports fulfilled the above criteria. 

After data cleaning, which excluded cases with missing requesting department, 3997 reports 

remained. Next, we generated a stratified random subsample (n=207, ~5.2%) based on age 

(binned into blocks of 10 years), sex (M|F), year (in which the imaging procedure was 

performed) and requesting department. During downstream analyses one report was removed 

because it contained only a reference to another procedure, leaving n=206 for later analyses 

(Figure 1). The extracted reports were all conventional free-texts and were signed off by senior 

radiologists with at least 4 years of experience in neuroradiology.  

 

2.2 Information extraction by human experts  

Three independent readers (R1, experience 3yrs; R2, 7yrs; R3, 10yrs) assessed the clinical 

questions, referring departments, findings and impressions of the reports. For each report, all 

readers independently evaluated whether ASPECTS was provided in the report or should have 

been provided in the report text (necessary: 154, 74.7%; not meaningful: 52, 25.3%]). Further, 

the two senior experts (R2 and R3) manually extracted clinico-radiologically relevant key 

features in the context of whether reporting ASPECTS is sensible based on the presence (yes 

| no) of ischemia (separately for new infarct demarcation and/or chronic post-ischemic defects); 
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bleeding (separately for each of the following entities: intracerebral hemorrhage (ICH), epi- 

(EDH), subdural hematoma (SDH), subarachnoid hemorrhage (SAH)); tumor; procedures 

including CT-angiography (CTA) or CT-perfusion (CTP); whether cerebral aneurysms or 

arteriovenous malformations (AVM) were detected; previous neurosurgical (clipping, tumor 

resection) or neurointerventional procedures (coiling); and previous imaging (within the last 1-

3 days)[44, 45]. These human expert-annotated features (HEAF) were extracted concurrently 

from both the finding and impression sections and selected in accordance with national and 

international guidelines for diagnosing acute cerebrovascular diseases[44, 45]. HEAFs were 

used as input for ML algorithm development (Table 1). The feature matrix is available as 

supplementary data (heaf.csv) or GitHub download 

(https://github.com/mematt/ml4RadLexCAD/data). 

 

2.3 RadLex® mapping pipeline  

Both the findings and impression sections of each German report (n=206) were mapped to 

English RadLex® terms using a proprietary NLP tool, the Healthcare Analytics Services® 

(HAS) by Empolis Information Management GmbH (Kaiserslautern, Germany; 

https://www.empolis.com/en/). HAS implements a common NLP pipeline consisting of 

cleansing (e.g., replacement of abbreviations), contextualization (e.g. into segments "clinical 

information", "findings", and "conclusion"), concept recognition using RadLex®, and negation 

detection ("affirmed", "negated", and "speculated")[46]. For concept recognition, a full text 

index and morpho-syntactic operations such as tokenization, lemmatization, part of speech 

tagging, decompounding, noun phrase extraction and sentence detection were used. The full 

text index is an own implementation with features such as word/phrase search, spell check and 

ranking via similarity measures such as Levenshtein distance and BM25[47, 48]. The index is 

populated with synonyms for all RadLex® entities (both from the lexicon and by manual 

extensions), the morpho-syntactic operations are based on Rosette Base Linguistics (RBL) from 
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Basis Technology® (Cambridge, MA, USA; https://www.basistech.com/text-

analytics/rosette/). For accuracy, RBL uses machine learning techniques such as perceptrons, 

support vector machines, and word embeddings. For negation detection, the NegEx algorithm 

was implemented in UIMA RUTA[46, 49]. No further pre-processing steps of the text were 

done. 

Our RadLex® annotation and scoring pipeline (RASP), which utilizes the aforementioned API 

by Empolis, is available as a Shiny application at mmatt.shinyapps.io/rasp [35]. We used RASP 

to generate the document (i.e. report RadLex®) term matrix (DTM) of the complete data set 

over all reports (n=206) both for the findings and impression sections, respectively. In the DTM, 

each report is represented as a vector (i.e. bag-of-)RadLex® terms that occurred in the 

corpus[34, 35]. RadLex® terms were encoded in a binary fashion (0|1), whether the term was 

present or not. Further, each RadLex® term (i.e. feature) was annotated with three levels of 

confirmation or confidence “affirmed”, “speculated”, “negated”, which was included in the 

feature name. This DTM provided the basis for fully automated RadLex®-based ML algorithm 

development (Table 2). The report-RadLex® term-matrices (i.e. DTMs) both for the findings 

and impression sections are available for direct download from our GitHub repository 

(https://github.com/mematt/ml4RadLexCAD/data) or as supplementary data (radlex-dtm-

findings.csv and radlex-dtm-impressions.csv).  

The performances of ML algorithms developed on these automated NLP-RadLex® mappings 

were then compared to those ML algorithms that were developed on the features extracted by 

human experts (HEAF). It is of note, however, that in its current iteration (v4.0) RadLex® does 

not contain certain key terms or concepts, one of which is ASPECTS. Although there is a CDE 

for ASPECTS classification (https://www.radelement.org/element/RDE173)[12]. Hence, 

extended IDs had to be created for such terms in the NLP annotation service, which are denoted 

as RadLex® ID Extended (RIDE), for example ASPECTS = RIDE172 in the DTMs. 
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2.4 Machine learning setup and classifier development  

We performed extensive comparative analyses of well-established ML algorithms (base 

classifiers) to automatically learn rules required for ASPECTS reporting including single 

classification (and regression) trees (CART)[41], random forests (RF)[37], boosted decision 

trees (XGBoost)[42], elastic net-penalized binomial regression (ELNET)[38, 39] and support 

vector machines (SVM)[40]. Single CART was used to represent the baseline ML algorithm. 

A CART has the advantage that human readers can more easily interpret it, however its 

estimates are much less robust than ensembles of trees like RF[41, 50-52].  

Each ML algorithm was fitted to the i) human expert-annotated features (HEAF; Table 1) and 

to the ii) RadLex® mapped DTMs both for the findings and impressions separately (Table 2).  

Because the effort of manually annotating the data set is large, especially if multiple experts 

annotate the same reports, we built upon our previously open-sourced protocol of a 5-fold 

nested cross-validation (CV) resampling scheme to have an objective and robust metric when 

comparing the performance of the investigated methods (Figure 1). Nested CV schemes allow 

for the proper training of secondary (e.g. calibrator or ensemble) models, without allowing for 

information leakage (Figure 1). To counter act the class imbalance (yes:no = 3:1) during CV-

fold assignment (nfolds.RData), we performed stratified sampling. Also, RFs were 

downsampled to the minority class during training [53, 54].  

In brief, the data set (n=206) was divided into stratified subsamples (outer fold training 

[nouter.train=~164-166] – test set pairs [nouter.test=40-42]) using 5-fold cross-validation (Figure 1; 

dashed blue and red boxes). Then, only the outer fold training sets were, yet again, subsampled 

using 5-fold CV, in order to create the nested/inner fold (training [ninner.train=130-134] – test set 

pairs [ninner.test=32-34]; Figure 1, nested CV). This was performed for both the findings and 

impressions sections using identical fold structures (Figure 1). 

Hyperparameter tuning (i.e. training) of the investigated ML algorithms (base classifier) was 

performed within an extra-nested CV loop on the outer- or inner fold training sets. All models 
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were fitted to the same data structure. Also, random seeds were fixed across all ML algorithms, 

in order to ensure direct comparability of their performance measures. ML algorithm training 

was optimized using either accuracy, brier score or log loss, which is indicated along the tuning 

parameter settings in Tables 2 & 3. For all ML algorithms probability outputs were also 

recorded and used to measure AUC and to create calibration plots. The average 5-fold CV 

model performances on the outer fold test sets are provided in Tables 1, 2 & 3.  

Furthermore, we investigated whether a second layer ensemble model (based on all evaluated 

ML-base classifiers) could improve the overall performance. This second layer algorithm 

(either RF or XGBoost) was trained on the combined predictions (i.e. “ensemble”) of the base 

ML models (i.e. CART, RF, XGBoost, ELNET, SVM and fastText) on the respective 

nested/innerfold test sets (Figure 1). Then, this tuned model was evaluated on the corresponding 

outer fold test set preventing any information leakage[6]. Additionally, the second layer 

“meta/ensemble” learner was used to derive importance rankings of the investigated ML base 

classifiers. For this, we have used mean decrease in accuracy without scaling when RF was 

used as the second layer “meta/ensemble” model, which has been suggested as the most robust 

setting when testing correlated features[6, 53, 55, 56]. Variable importance plots describing the 

RF meta-learner (Figure 3) were created using the randomForestExplainer package 

(v0.10.0.)[57]. Similarly, for importance ranking of boosted decision trees the gain metric was 

used[42]. Heretofore, we refer to second layer RF and XGBoost algorithms as meta/ensemble 

learners or models.  

 

2.5 Text classification directly on German report texts using fastText 

We used the open-source, lightweight fastText library (v0.9.1; https://fasttext.cc/) to learn linear 

text classifiers for ASPECTS recommendations on our data set[36] . The German report texts 

(both findings and impression sections) were preprocessed by excluding “([-.!?,'/()])”. It is of 

note that fastText was only trained “on-the-fly” in each resampling loop on the corresponding 
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subset of ~130-165 reports and we did not utilize any pre-trained word vector model for 

German[58]. This approach ensured a more direct comparability with the ML-classifiers 

developed on bag-of-RadLex® mappings. However, pre-trained word vector models for 157 

languages, which were pre-trained on Common Crawl and Wikipedia by the fastText package 

authors are available for direct download (https://fasttext.cc/docs/en/crawl-vectors.html) [58]. 

We used the Python (v3.7) interface to fastText 

(https://github.com/facebookresearch/fastText/tree/master/python) on an Ubuntu 19.10 

machine. FastText models were fitted both on the findings and impression sections respectively, 

using the same 5 x 5-fold nested-CV scheme as for the other ML algorithms with similar extra-

nested CV loop for training on the outer- or inner fold training sets. Class label predictions and 

probability outputs were recorded and evaluated in the same manner as the investigated ML 

algorithms developed on HEAF and RadLex® mappings.  

 

2.6 Statistical analyses  

All statistical analyses were performed using the R language and environment for statistical 

programming (R v3.6.2, R Core Team 2019, Vienna Austria). The Cohen’s kappa statistic was 

used to assess inter-rater agreement whether ASPECTS is recommended in a pairwise fashion 

for each of the two readers. To assess the overall agreement among the three readers, Fleiss’ 

and Light’s kappa was used.  

Additionally, we created custom functions 

(https://github.com/mematt/ml4RadLexCAD/tree/master/calibration plots) to visualize the 

probability outputs (i.e. calibration profiles) of the investigated ML-classifiers (Figure 3). Such 

calibration plots (or reliability diagrams) are useful graphical tools to visually assess the quality 

of calibration[59, 60]. Briefly, for real-life problems the true conditional probabilities are 

unknown, therefore the prediction space needs to be discretized into bins [60, 61]. A common 

approach is to use ten bins and assign cases to the corresponding bin where their predicted 
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probabilities fall. For each bin the fraction of true positive cases (y-axis) is plotted against the 

mean of predicted classifier values (x-axis). Hence, an ideally calibrated classifier would lie on 

the diagonal line [59, 61]. P-values <0.05 were considered significant. 
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3. Results 

3.1 Inter-rater reliability of human experts 

Providing ASPECTS in the report would have been recommended by R1 in 156 (75.7%), by 

R2 in 154 (74.8%) and by R3 in 155/206 (75.2%) of the cases. The overall agreement between 

the three readers for “ASPECTS recommended” was kappaLight=0.747 (n=206, z=4.6, 

p=4.3×10-6). The pairwise Cohen’s kappa between R1 and R2 was 0.635 (p<2×10-16), which 

corresponded to 86.4% agreement. Between R1 and R3 it was 0.62 (p<2×10-16) corresponding 

to 85.9% agreement. Ratings of two (R2 and R3) experienced readers showed an almost perfect 

alignment kappa=0.987 (p<2×10-16) with 99.5% overall agreement. 

 

3.2 Reliability between automated RadLex® mappings and expert-annotated labels 

In this random subsample, which represents a robust cross-section of the daily praxis, 

ASPECTS was reported extremely rarely in 4/206 (1.9%). Three of which occurred both in the 

findings and impressions (3/4, 75%) section and one of which was only reported in the 

impression (1/4, 25%). The RASP tool correctly annotated all ASPECTS-negative (203/203) 

and ASPECTS-positive (3/3) finding sections. In the impressions, it misclassified one 

ASPECTS-positive (1/4, 25%) report as negative (1/206, 0.49%).  

 

3.3 Performance of machine learning algorithms developed on human expert-annotated 

features (HEAF) 

3.3.1 Single classification tree (CART)  

CART demonstrated a 5-fold CV accuracy of 73.3% with the worst 63% AUC, BS (0.37) and 

LL (0.87) values among the tested ML-classifiers (Table 1). 

 

3.3.2 Random forests (RF)  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 April 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2020                   doi:10.20944/preprints202004.0354.v1

https://doi.org/10.20944/preprints202004.0354.v1


The default (“vanilla”) RF classifier fitted on the 28 HEAF achieved a 5-fold CV accuracy of 

81.5% with an AUC of 82% and corresponding BS and LL of 0.27 and 0.44, respectively (Table 

1). Drastically reducing the feature space of vRF to only the nine (9/28: 32.1%) or five (5/28; 

17.9%) most important predictors, had a comparably limited effect on the predictive 

performance of vRF: its accuracies decreased 12.8% and 7.7%, respectively; AUC decreased 

by ~16%; while BS (~37%) and LL (~27%) scores increased (Table 1). 

Fine tuning the RF classifier using the BS (tRFBS) and LL (tRFLL) metrics slightly improved the 

overall accuracy without relevantly changing the calibration metrics of the vRF algorithm 

(Table 1). On the outer folds, both tRFBS and tRFLL limited the feature space similarly – to the 

14 or 25-28 most important variables. Interestingly, ME-optimized RF (tRFME) achieved a 

slightly worse overall performance profile. Notably, on the outer fold 4.0, it limited the feature 

space to only the five RadLex® terms. 

 

3.3.3 Elastic net-penalized binomial regression (ELNET)  

ELNET showed a similar performance profile to RFs when fitted on the 28 HEAF but it 

achieved a narrower 5-fold CV confidence range of its accuracies (78-86%) while obtaining 

similar AUC, BS and LL scores (Table 1). The mixing parameter alpha (𝛼) was chosen 3 out 

of 5 times to fit ridge (0) or ridge-like (0.1, 0.1) models while twice to fit lasso (1) or lasso-like 

(0.8) models on the outer folds. 

 

3.3.4 Support vector machines (SVM)  

On HEAF linear kernel SVMs (SVM-LK) achieved the highest 5-fold CV accuracy (87.4%) 

and lowest BS (0.22) and LL (0.37) scores while obtaining a similar AUC of ~80% to other ML 

classifiers (Table 1). The tuning parameter of C was selected as 1 on two outer folds suggesting 

a larger margin for the separating hyperplane while larger values of 10 or 100 were selected on 

the remaining three outer folds, suggesting a smaller-margin classifier. 
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3.3.5 Boosted decision trees (XGBoost) 

Boosted decision trees were similarly accurate (80.6%) like tuned RF and ELNET. Despite the 

detailed tuning grid, XGBoost had overall somewhat worse performance profile than the other 

investigated ML algorithms, particularly AUC was lower at 70% for which we do not have a 

clear explanation.  

 

3.4 Performance of machine learning algorithms developed on fully automated RadLex® 

mappings  

3.4.1 Single classification tree (CART) 

Directly applying a classification tree without optimizing its tree complexity (i.e. no pruning) 

showed on the findings similar overall accuracy (77.2%) to vRF with similar AUC and BS 

(Table 2) but with worse LL metrics. On the impressions, however, CART was tied for the 3rd 

best accuracy (85.0%) but still it showed low AUC (0.75) and high LL (0.58) values. 

 

3.4.2 Random forests (RF) 

Applying unsupervised variance filtering to select the top 33% most variable RadLex® 

mappings of the findings sections, improved the 5-fold CV accuracy of vRF by ~4.7%. In 

contrast, the same variance filtering on the impression sections did not relevantly (0.6%) 

improve vRF’s accuracy (Table 2). Tuned RF models were slightly more accurate than the 

default vRF, however, tuning did not improve much upon the remaining calibration metrics. 

 

3.4.3 Elastic net-penalized binomial regression (ELNET) 

ELNET was the 3rd best-performing ML algorithm on the RadLex® features of the findings 

sections behind SVMs and XGBoost with similar BS and LL metrics but lower accuracy 

(pAcc.vs.NIR = 0.061) and AUC (Table 2). On the impression, it achieved the second highest 5-
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fold CV accuracy (85.0%; 95%CI: 79.3-89.5%; pAcc.vs.NIR = 2.8×10-4) with corresponding 

second-best calibration profile (AUC: 86%; BS: 0.22; and LL: 037). On the outer folds of the 

impressions lasso or lasso-like settings (0.9-1) dominated the tuned 𝛼 settings. ELNET had a 

better visual calibration profile on the impressions than on the findings (Figure 2A). 

 

3.4.4 Support vector machines (SVM) 

Linear kernel SVMs (SVM-LK) were the only classifiers that performed in the top 2 on the 

RadLex® feature spaces of both the findings (pAcc.vs.NIR = 5.1×10-3) and impressions (pAcc.vs.NIR 

= 1.4×10-4) sections (Table 2). SVM-LK had the highest AUC and lowest LL on the findings 

while on the impressions, it was overall the best-performing base ML-classifier. SVMs were 

comparably well-calibrated for both the findings and impressions, especially in the 0.5-1.0 

probability domain (Figure 2B).  

 

3.4.5 Boosted decision trees (XGBoost) 

XGBoost performed particularly well on the RadLex® mappings of the findings – where the 

other ML algorithms (including fastText) struggled (Table 2). It showed the highest accuracy 

(pAcc.vs.NIR = 1.4×10-4) and lowest BS with corresponding slightly worse AUC and LL metrics 

(than the runner-up SVM-LK). Nevertheless, it had the best overall visual calibration profile on 

the reliability diagrams for the whole probability domain (Figure 2C). Compared to the 

findings, on the impressions XGBoost tuning implied a stronger subsampling of the features 

when constructing each tree, thereby strongly limiting the available predictor space. On the 

impressions, XGBoost performed similar to RF classifiers. 

 

3.5. Linear models (fastText) fitted directly on German report text 

When directly fitting the findings sections of the reports, the fastText algorithm showed a 5-

fold CV accuracy of 83.0% (95%CI: 77.2-87.9%; pAcc.vs.NIR = 0.0030) with sensitivity of 94.8%, 
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and specificity of 48.1% (PPV 84.4%, NPV: 75.8%), which corresponded to 84.4% precision 

and 89.3% F1 score. It achieved comparable AUC (81.1%) and BS (0.29) to other shallow ML-

models trained on RadLex® mappings but showed markedly worse LL profile (0.98) 

suggesting “more certain” misclassifications. 

FastText achieved the best results across all investigated ML algorithms fitted on the 

impressions sections of the reports. It showed a 5-fold CV accuracy of 89.3 % (95%CI: 84.3-

93.2%; pAcc.vs.NIR  = 1.35× 10-7) with a balanced accuracy of 82.0%. Its predictive profile was 

in the 87-97% range (sensitivity: 96.8%; specificity: 67.3%; PPV 89.8%, NPV: 87.5%) with 

precision of 89.8% and F1 score of 93.1%. Furthermore, it showed the highest AUC (91.7%) 

with lowest BS (0.18) but yet again somewhat worse LL (0.55) than the RadLex®-based ML 

algorithms. FastText showed poor visual calibration profiles for both the findings and 

impressions in the lower probability domains (0-0.5), however it was almost ideally calibrated 

in the 0.75-1.0 domain of the impressions (Figure 2D). 

 

3.6 Performance of the second layer meta/ensemble-learners 

The second layer meta/ensemble RF learner, which was trained on predictions of the ML-

classifiers of the findings sections, showed similar performance metrics (Table 3) as the top 

single ML-classifiers like SVM-LK, fastText and XGBoost (Table 2). Its accuracy was in the 

77-88% 95%CI range (pAcc.vs.NIR = 1.8 ×10-4) with 89.6% sensitivity; 65.3% specificity; 88.5% 

PPV; and 68% NPV which corresponded to a precision of 88.5% and F1 score of 89.6%. SVM-

LK was chosen twice as the most important classifier while vRF, ELNET and XGBoost were 

each selected once on the five other folds (Figure 3A & D). 

The 5-fold CV accuracy (89.3%) of the ensemble RF (Table 3), when using only the ML-

models of the impressions as input features, was identical to the best predictor (fastText). But 

the 95% confidence interval got narrower and the LL score got considerably reduced (by 38%). 

This solely impressions-based ensemble achieved the following metrics: sensitivity 92.2%; 
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specificity 80.8%; PPV 93.4%, NPV 77.8% with corresponding precision of 93.4% and F1 

score of 92.8%. FastText was chosen as the most important predictor for all outer fold test sets 

while as top 2nd predictor XGBoost was chosen twice; ELNET, SVM-LK and tRFBS were each 

selected once, respectively (Table 3; Figure 3B & E). 

When the ML-classifier predictions of both the findings and impressions were the combined 

input for the second layer RF model, its accuracy, BS and LL slightly got worse (5-6%). The 

confusion matrix derivates were as follows: sensitivity 91.6%; specificity 80.8%; PPV 93.4%, 

NPV 76.4% with corresponding precision of 93.4% and F1 score of 92.5%. The variable 

importance rankings were dominated by ML-classifiers developed on the impression sections 

(Table 3; Figure 3C & F). The visual calibration profile of the RF ensemble developed on all 

ML-models (both findings and impressions; p =16) are presented in (Figure 2E & F). 

On this same combined feature space (p=16), the second layer XGBoost ensemble showed a 

slightly reduced accuracy and worse calibration profiles than the RF ensemble (Table 3). Its 

predictive profile was in the 82-92% range (pAcc.vs.NIR = 6 ×10-6; sensitivity: 93.5%; specificity: 

69.2%; PPV 90.0%, NPV: 78.3%) with precision of 90% and F1 score of 91.7%. XGBoost 

selected fastText impressions 3x and SVM impressions 2x out of 5 on the outer folds as the 

most important variable based on the gain metric. 
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4. Discussion 

In this work, we present a resource effective approach to develop production-ready embedded 

ML models for CAR tools, in order to assist radiologists in providing clinically relevant key 

biomarkers[9, 20, 62, 63]. To our knowledge, this is the first study that uses fully automated 

cross-lingual (German to English) RadLex® mappings-based machine learning to improve 

radiological reports by suggesting the key predictor ASPECTS in CT stroke workups. We 

demonstrated the feasibility of our automated RadLex® framework (“MyReportCheck”, Figure 

4) by comparing it to ML classifiers developed on human expert annotations. Furthermore, our 

ensemble learning setup provides objective rankings and a generalizable blueprint for choosing 

ML algorithms when developing classifiers for similar context-sensitive recommendation 

tasks[62, 64].  

 

Although reporting templates have been developed to promote and standardize the best practice 

of radiological reporting[65-67], the majority of radiology reports are still created in free-text 

format[68, 69]. This limits the use of radiology reports in clinical research and algorithm 

development[63, 67, 69]. To overcome this, NLP pipelines including ML proved to be effective 

to annotate and to extract recommendations from reports[69, 70]. Nonetheless, studies dealing 

with ML algorithm development particularly for real-time context-sensitive assistance of 

radiologists while writing reports are scarce[64, 71]. Therefore, in this work, we focused on 

comprehensive and objective comparison of ML algorithms to provide technical guidance for 

developing these algorithms on limited (non-English) training data. For this, we have put an 

emphasis on the probabilistic evaluation and ranking of ML classifiers. This is less relevant for 

biomarker CAR recommendation systems but crucial for automated inference systems for 

scores such as BI-RADS[72] or PI-RADS[18]. 
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We used a commercially available NLP pipeline that implements a common approach[8, 69] 

comprised of cleansing, contextualization and concept recognition as well as negation detection 

trained explicitly for German and English RadLex® mappings[1, 43]. This fully automated 

approach to generate bag-of-RadLex mappings is advantageous compared to standard 

BOW[35] approaches, as it already captures domain-specific knowledge including negation and 

affirmation[3]. Mikolov et al. proposed word2vec to create semantic word embeddings, which 

gained popularity in the field of radiology[5, 73]. However, word2vec struggles to properly 

handle out-of-vocabulary words[74, 75]. Thus, it needs to be combined with radiology domain-

specific mappings. In contrast, our approach directly generates bag-of-RadLex terms for each 

report. We then combine all binary RadLex® term occurrences in our corpus (separately for 

findings and impressions) to generate the RadLex-DTMs. Therefore, our pipeline is also more 

robust for new or missing words e.g. if a new report does not contain certain terms (present in 

the training corpus), these can be easily substituted with 0 or new terms can be added to the 

DTM and the ML classifier can be swiftly retrained. This commercial NLP-based RadLex-

mapping pipeline for creating DTMs is free for research purposes and can be easily utilized 

through our Shiny application. 

 

Similar to previous studies[65, 69], we also flattened the hierarchical tree structure of RadLex® 

concepts and let the ML classifiers select subgroups of terms relevant to the classification task 

automatically during training. For a similar domain-specific semantic-dictionary mapping, as 

part of their hybrid word embedding model, Banerjee et al. created a custom ontology crawler 

that identified key terms for pulmonary embolism[76]. Another approach by Percha et al. 

included only partial flattening of RadLex®. They selected the eight most frequent parent 

categories that were used to learn word and RadLex® term vector representations for 

automatically expanding ontologies[5]. We have also found that certain key terms are missing 

from RadLex® and manually extended it. Other approaches to mitigate this problem and to 
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increase interoperability, aim to combine multiple (both radiology-specific and general 

medical) ontologies or procedural databases such as RadLex®, LOINC/RSNA playbook, CDE 

from the RSNA and Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) 

as well as the International Classification of Diseases (v.10) Clinical Modification (ICD-10-

CM)[74, 77-79].  

 

All investigated ML algorithms were “CPU only” thereby imposing minimal hardware 

requirements and being quick both at train and test time[36]. These ML models have proven to 

be effective on both text classification[34, 36, 80] and other high-dimensional medical problems 

including high-throughput genomic microarray data[6, 81]. Additionally, we implemented a 

nested CV learning framework in order to objectively assess the importance of each ML base 

classifier and report section (i.e. findings and impressions) based on their probability estimates 

of recommending ASPECTS[6]. Zinov et al. also  used a probabilistic ensemble learning setup 

to match lung nodule imaging features to text[71]. It is of note that there is multicollinearity 

both on the level of RadLex® mappings when training ML base classifiers and when combining 

the probability estimates of these ML classifiers on the second layer meta/ensemble-learner 

level. Default settings of RF (both in Python and R) are less robust for these scenarios due to 

the dilution of true features[6, 53, 55, 56]. To counter act dilution, we used the most robust 

metric of permutation-based importance (type=1) without scaling for all RF models. In contrast, 

boosted trees by design are less susceptible to correlation of features [42, 52]. The performance 

of the investigated ML algorithms is differently sensitive to the number of features[6, 81]. 

Based on results by limiting the feature space with unsupervised variance filtering, we suggest 

using all annotated RadLex® features as input and treating the number of features (p) as a 

tuning parameter during ML-algorithm training to achieve the best possible accuracies.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 April 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2020                   doi:10.20944/preprints202004.0354.v1

https://doi.org/10.20944/preprints202004.0354.v1


ML models developed on HEAF were similarly accurate (87%) to those developed on fully 

automated cross-lingual RadLex® mappings (~85%), although the latter models had 

substantially better calibration profiles (especially AUC and BS). This corresponded to results 

by Tan et al. on lumbar spine imaging when comparing rule-based methods to ML models[82]. 

On the more heterogeneous and larger RadLex® feature space of the findings sections, most 

ML models including fastText struggled but XGBoost performed best with an almost ideal 

calibration profile among all models (including those developed on the impressions). As 

impressions are expert-created condensed extracts of the most relevant information, ML 

performed substantially better (all > 80%). Accordingly, both RF and XGBoost meta/ensemble 

learners favored ML models that were developed on the impressions particularly fastText, 

SVM-LK and BS-tuned RF. These second layer meta/ensemble models achieved precision of 

90-93%, recall: 92-94% and F1 score: 91-93%, which was well in line with the performance of 

information extraction model by Hassanpour et al. on a similarly sized (n=150) test set of multi-

institutional chest CT reports[69]. 

The advantage of RadLex-based ML models compared to fastText is that they contain 

anatomical concepts and we can directly access negation information providing human 

interpretable explanation of the model. For fastText, such concepts are not necessarily learnable 

from limited training data or for more complex decision support scenarios other than 

ASPECTS. This was also supported by the fact that, despite being a baseline model, single 

CART performed remarkable well on the impressions implying that recommending ASPECTS 

is a less complex decision task.  

 

The present study has certain limitations as it was a single-center, retrospective cross-sectional 

study of moderate size. Nonetheless, we selected a stratified random sample of ~200 reports 

from ~4000 reports from a period of 4 years, which robustly represented the general daily 

praxis. Our primary goal was to provide baseline performance metrics for well-established NLP 
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and ML algorithms and linear classifiers with respect to radiology-specific biomarker 

(ASPECTS) recommendation tasks. Hence, there are natural extensions to our methodology 

including the switch to well-known neural network architectures both to generate RadLex® 

mappings[26, 83] and to create task-specific classifiers in an end-to-end manner such as 

convolutional (CNN)[24], recurrent neural networks (RNN)[72] or long short-term memory 

(LSTM) networks[63, 84]. However, fastText (with only a single hidden layer) has proven to 

be on a par with these more complex network architectures on several benchmarks[36]. 

Although, incorporating pre-trained language-specific word representations into fastText was 

expected to improve its accuracy we chose not to do so to allow for more direct performance 

comparisons with bag-of-RadLex-based ML classifiers[58].  

Utilizing large transformer architectures[25, 27-29, 85] directly on German free-text reports 

would be a reasonable extension, however, sufficiently large non-English public radiology 

domain-specific corpora for transfer learning are lacking and the interpretability of TLMs is 

challenging[31]. Whether TLMs “truly learn” underlying concepts as a model of language or 

just extract spurious statistical correlations is a topic of active research[32, 33]. Thus, our CT 

stroke corpus can facilitate benchmarking of such models for the German radiological 

domain[31, 83, 85].  

For recommending ASPECTS we used pyes > 0.5 probability threshold. Optimizing this cutoff 

could further improve the performance metrics of the ML classifiers – for example by 

maximizing the Youden index[86].  

To counteract class imbalance, we also explored upsampling, downsampling, random over-

sampling and synthetic minority over-sampling techniques (SMOTE)[87], however, they did 

not improve the accuracy of ML classifiers on our data set (data not shown). 

Regardless of these limitations, compared to text-based DL methods, our approach has some 

major advantages: i) building ML classifiers on top of cross-lingual RadLex® mappings 

incorporates domain-specific knowledge thereby only requiring a limited amount of expert 
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labeled data – for which simple class labels are sufficient; ii) this approach can be easily adopted 

to any other language where RadLex® was translated by the local radiological society; iii) an 

ultimate benefit of our methodology is that it allows for the instant interoperability between 

languages especially the direct transportability of any ML model created for biomarker 

recommendation or inference from one language to another.  
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5. Conclusion 

We showed that expert-based key information extraction and fully-automated RadLex 

mapping-based machine learning is comparable and requires only a limited amount of expert-

labeled training data – even for highly imbalanced classification tasks. We performed detailed 

comparative analyses of well-established ML algorithms and identified those, which are best 

suited for automated rule learning on bag-of-RadLex® concepts (SVM, XGBoost and RF) and 

directly on German radiology report texts (fastText) through utilizing a nested CV learning 

framework.  

Taken together, this work provides a generalizable probabilistic framework for developing 

embedded ML algorithms for CAR tools to context-sensitively suggest, not just ASPECTS but 

any required key biomarker information. Thereby improving report quality and facilitating 

cohort identification for downstream analyses. 
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Data statement 

Both the human expert annotated features (heaf.csv) and the fully automated NLP-based 

RadLex® mappings (term-report-matrices) are provided in our GitHub repository 

(https://github.com/mematt/ml4RadLexCAD/). The RadLex® annotation and scoring pipeline 

(RASP) is freely available for research purposes as Shiny application at 

www.mmatt.shinyapps.io/rasp . All tuned ML-model objects including the fold IDs for the 5 x 

5-fold stratified nested CV scheme (nfolds.RData) are provided on GitHub. Additionally, we 

provide R code for ML-model training and for generating calibration plots presented in Fig. 3. 
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Table 1 | Summary table of performance measures of the investigated ML algorithms developed on human expert-annotated features (HEAF). 

Report 
section 

Method 
ML  
Classifier 

HEAF feature 
space 

Rank Software 
Optimized 
metric 

Tested  
hyperparameter space 

Selected number of features or hyperparameter 
settings on outer fold 1.0-5.0 

Accuracy# 
[min-max; %] 

ME AUC BS LL 

H
u
m

a
n
 E

x
p
e
rt

-A
n
n

o
ta

te
d

 F
e
a

tu
re

s
 (

H
E

A
F

) 

CART CT p=28 (all)  rpart [R] ACC 
rpart.control = default; cp = 0.01 
no optimization (no pruning) 

28  73.3 [66.7-79.2] 0.27 0.63 0.37 0.87 

vRF  RF p=28 (all) 4 randomForest [R] ME ntree =500, mtry=5, pvarsel = 28 28 81.5 [73.8-92.7] 0.18 0.82 0.27 0.44 

vRF  RF p=28 (all)  randomForest[R] ME ntree =500, mtry=5, pvarsel = 9 9 71.0 [59.5-82.9] 0.29 0.69 0.37 0.56 

vRF  RF p=28 (all)  randomForest[R] ME ntree =500, mtry=5, pvarsel = 5 5 75.2 [68.3-83.3] 0.25 0.69 0.36 0.54 

tRFBS RF p=28 (all) 2 randomForest[R] BS ntree = [100, 200, 300, … , 900, 1000] 28, 14, 14, 14, 14 83.1 [76.2-90.2] 0.17  0.81 0.27 0.44 

tRFME RF p=28 (all)  randomForest[R] ME mtry = [3, 4, 5, 6, 7] 28, 28, 14, 5, 14 79.6 [68.3-90.2] 0.20 0.79 0.29 0.46 

tRFLL RF p=28 (all) 2 randomForest[R] LL pvarsel = [3, 5, 10, 14, 20, 25, 28] 25, 14, 14, 14, 14 83.1 [76.2-90.2] 0.17  0.81 0.27 0.44 

ELNET  ELNET p=28 (all) 3 glmnet[R] ME 
𝛼 = [0, 0.1, 0.2, … , 0.8, 0.9, 1] 
λ = 10-fold CV with default hot-start 

𝛼 = [0.1, 0.8, 0, 1, 0.1] 
λ = [0.195, 0.0688, 0.208, 0.0301, 0.1632] 

82.0 [78.6-85.4] 0.18  0.79 0.27 0.43 

SVM-LK SVM p=28 (all) 1 e1071[R] ME C = [0.001, 0.01, 0.1, 1, 10, 100, 1000] C = [1, 1, 100, 10, 10] 87.4 [82.9-90.2] 0.13  0.79 0.22 0.37 

XGBoost BT p=28 (all) 5 xgboost[R] ME 

nrouds/ntree = 100, 
max_depth = [3, 5, 6 ,8]  
eta = [0.1, 0.3]  
gamma = [0, 0.5, 1.0] 
colsample_bytree = [0.1, 0.25, 0.5, 
0.693 (ln2)~RF, 1] 

nrouds = 100 
max_depth = [5, 8, 5, 8, 3] 
eta = [0.1, 0.1, 0.1, 0.3, 0.1] 
gamma = [0, 0.5, 1, 0.5, 1] 
colsample_bytree = [1, 1, 0.5, 1, 0.5] 

80.6 [75.0-85.7] 0.19 0.70 0.30 0.48 

Accuracy#: the averaged 5-fold CV accuracy is calculated, ACC: accuracy, AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are scaled to 1), BS: Brier score, ME: misclassification error, LL: multiclass log 
loss, vRF and tRF: vanilla- and tuned random forests, ELNET: elastic net penalized multinomial logistic regression, SVM: support vector machines, LK: linear kernel SVM; XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees, 
CART: classification and regression trees; CT: classification tree; cp: complexity parameter used for CART node splitting (for this no optimization (pruning) was performed); ln(2)~RF: column sampling (i.e. bootstrap) representing the settings equivalent to 
running RF in the xgboost library, [R]: R statistical software environment.  
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Table 2 | Summary table of performance measures of the investigated ML algorithms on the NLP-annotated bag-of-RadLex® features of the findings and impressions sections. 

Report 
section 

Method 
ML  
Classifier 

RadLex® feature 
space 

Rank Software 
Optimized 
metric 

Tested  
hyperparameter space 

Selected number of features or 
hyperparameter settings on outer fold 
1.0-5.0 

Accuracy# 
[min-max; %] 

ME AUC BS LL 
F

in
d
in

g
s
 

CART CT p = 907 5 rpart [R] ACC rpart.control = default; cp = 0.01 p = 907 77.2 [70.8-82.7] 0.23 0.74 0.32 0.66 

vRF  RF p=300 (us var.filt.)  randomForest [R] ME ntree =500, mtry=30, pvarsel = 200 pvarsel = 200 76.2 [71.4-85.4] 0.24 0.78 0.33 0.51 

vRF  RF p=907 (all)  randomForest[R] ME ntree =500, mtry=30, pvarsel = 200 pvarsel = 200 72.8 [67.5-78.6] 0.27 0.78 0.33 0.50 

vRF  RF p=907 (all)  randomForest[R] ME ntree =500, mtry=30, pvarsel = 20 pvarsel = 20 71.4 [62.5-75.6] 0.29 0.74 0.40 0.63 

tRFBS RF p=907 (all)  randomForest[R] BS ntree = [200, 400, 600, … , 1400, 1600] pvarsel = [500, 50, 100, 100, 50] 75.2 [71.4-81.0] 0.25  0.76 0.33 0.51 

tRFME RF p=907 (all)  randomForest[R] ME mtry = [20, 25, 30, 35, 40] pvarsel = [907, 907, 907, 907, 907] 74.3 [67.5-83.3] 0.26 0.77 0.33 0.50 

tRFLL RF p=907 (all)  randomForest[R] LL pvarsel = [10; 20; 50; 100; 200; 500; 907] pvarsel = [50, 50, 50, 50, 50] 75.7 [70.7-85.7] 0.24  0.77 0.33 0.52 

ELNET  ELNET p=907 (all) 4 glmnet[R] ME 
𝛼 = [0, 0.1, 0.2, …, 0.8, 0.9, 1] 
λ = 10-fold CV with default hot-start 

𝛼 = [0.2, 0.7, 0.9, 1, 0.1] 
λ = [0.2685, 0.134, 0.0793, 0.114, 
0.397] 

79.6 [76.2-82.9] 0.20  0.75 0.29 0.46 

SVM-LK SVM p=907 (all) 3 e1071[R] ME C = [0.001, 0.01, 0.1, 1, 10] C = [0.1, 0.1, 0.1, 0.1, 0.1] 82.5 [78.6-85.4] 0.18  0.80 0.27 0.43 

XGBoost BT p=907 (all) 1 xgboost[R] ME 

nrouds/ntree = 100, 
max_depth = [3, 5, 6 ,8]  
eta = [0.1, 0.3]  
gamma = [0, 0.5, 1.0] 
colsample_bytree = [0.1, 0.25, 0.5, 0.693 
(ln2)~RF, 1] 

nrouds = 100 
max_depth = [5, 8, 5, 8, 3] 
eta = [0.1, 0.1, 0.1, 0.3, 0.1] 
gamma = [0, 0.5, 1, 0.5, 1] 
colsample_bytree = [1, 1, 0.5, 1, 0.5] 

85.4 [80.9-90.2] 0.15 0.78 0.25 0.45 

fastText linear direct fit on text 2 Fasttext [Python] ACC & LL default - 83.0 [81.0-85.4] 0.17 0.81 0.29 0.98 

Im
p
re

s
s
io

n
s
 

CART CT p=675 4 rpart [R] ACC rpart.control = default; cp = 0.01 p=675 85.0 [79.3-89.5] 0.15 0.75 0.26 0.58 

vRF  RF p=300 (us var.filt.)  randomForest [R] ME ntree =500, mtry=26, pvarsel = 200 pvarsel = 200 83.0 [71.4-88.1] 0.17 0.87 0.25 0.39 

vRF RF p=675 (all)  randomForest [R] ME ntree =500, mtry=26, pvarsel = 200 pvarsel = 200 82.5 [71.4-88.1] 0.17 0.87 0.25 0.39 

vRF RF p=675 (all)  randomForest [R] ME ntree =500, mtry=26, pvarsel = 20 pvarsel = 20 78.2 [70-85.4] 0.22 0.81 0.30 0.49 

tRFBS RF 

p=675 (all)  

randomForest [R] BS 
ntree = [200, 400, 600, …, 1400, 1600] 
mtry = [21, 26, 31, 36, 41] 
pvarsel = [10; 20; 50; 100; 200; 500; 675] 
nodesize = [1; 2 (1%); 10 (5%)] 

pvarsel = [200, 100, 200, 500, 200] 80.0 [69.0-87.8] 0.20  0.85 0.26 0.41 

tRFME RF randomForest [R] ME pvarsel = [200, 675, 200, 675, 500] 
83.0 [69.0-90.5] 
 

0.17  0.85 0.25 0.41 

tRFLL RF randomForest [R] LL pvarsel = [50, 100, 50, 500, 50] 79.6 [71.4-87.8] 0.20  0.84 0.27 0.42 

ELNET ELNET p=675 (all) 3 Glmnet [R] ME 
𝛼 = [0, 0.1, 0.2, …, 0.8, 0.9, 1] 
λ = 10-fold CV with default hot-start 

𝛼 = [0.9, 0.4, 1, 0, 0.9] 
λ = [0.056-2.01] 

85.0 [82.9-88.1] 0.15  0.85 0.22 0.37 

SVM-LK SVM p=675 (all) 2 e1071 [R] ME C = [0.001, 0.01, 0.1, 1, 10]  C = [0.1, 0.1, 0.01, 0.1, 0.01] 85.4 [80.0-90.2] 0.15  0.86 0.21 0.36 

XGBoost BT p=675 (all) 5 xgboost [R] ME 

nrouds/ntree = 100, 
max_depth = [3, 5, 6 ,8]  
eta = [0.1, 0.3]  
gamma = [0, 0.5, 1.0] 
colsample_bytree = [0.1, 0.25, 0.5, 0.693 
(ln2)~RF, 1.0] 

nrouds = 100 
max_depth = [5, 3, 6, 5, 6] 
eta = [0.3, 0.3, 0.1, 0.1, 0.3] 
gamma = [0, 0, 1, 0.5, 0.5] 
colsample_bytree = [0.1, 0.25, 0.1, 1, 
0.1] 

83.0 [71.4-90.2] 0.17  0.83 0.26 0.44 

fastText linear direct fit on text 1 Fasttext [Py] ACC & LL  default - 89.3 [83.3-97.6] 0.11 0.92 0.18 0.55 

Accuracy#: the averaged 5-fold CV accuracy is calculated, ACC: accuracy, AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are scaled to 1), us var.filt: unsupervised variance filtering using p=300 most variable 
RadLex® terms -this step was previous of training to prevent information leakage, BS: Brier score, ME: misclassification error, LL: multiclass log loss, vRF and tRF: vanilla- and tuned random forests, ELNET: elastic net penalized multinomial logistic regression, SVM: 
support vector machines, LK: linear kernel SVM; XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees, CART: classification and regression trees; CT: classification tree; cp: complexity parameter used for CART node splitting (for this 
no optimization (pruning) was performed); ln(2)~RF: column sampling (i.e. bootstrap) representing the settings equivalent to running RF in the xgboost library, [R]: R statistical software environment; [Py] Python v3.7 programming language.  
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Table 3 | Summary table of performance measures of the second layer meta/ensemble learners (random forests and boosted trees) combining the predictions of all RadLex®-based ML base classifiers from the findings and 

impression sections. 

Ensemble  
ML-algorithm 

Classifiers 
Number of features  
(ML-model outputs) 

Most important ML-
classifiers / outer fold 
 

Optimi
zed 
metric 

Hyperparameters 
Selected number of features 
or hyperparameter settings on 
outer fold 1.0-5.0 

Accuracy# 
[95%CI] 

ME AUC BS LL 

vRF  

vRF 
tRFBS, 
tRFME,  
tRFLL,  
ELNET,  
SVM-LK, 
XGBoost, 
fastText 

8x ML-models (findings) 
 

Top 1:  
vRF-find 1/5 
SVM-find 2/5 
ELNET-find 1/5 
XGBoost 1/5 
 
Top 2:  
XGBoost-find 1/5 
tRF-ME-find 2/5 
fasstext-find 1/5 
ELNET-find 1/5 

ME ntree =500, mtry=2, pvarsel = 8 pvarsel = 8 83.5 [77.7-88.3] 0.17  0.83 0.29 0.47 

vRF  

vRF 
tRFBS, 
tRFME,  
tRFLL,  
ELNET,  
SVM-LK, 
XGBoost, 
fastText 
 

8x ML-models 
(impressions) 
 

Top 1:  
fasstext-impr 5/5 
 
Top 2:  
svm-impr 1/5 
XGBoost-impr 2/5 
tRF-BS-impr 1/5 
ELNET-impr 1/5 

ME ntree =500, mtry=2, pvarsel = 8 pvarsel = 8 89.3 [84.3-93.2] 0.11  0.90 0.19 0.34 

vRF  

vRF 
tRFBS, 
tRFME,  
tRFLL,  
ELNET,  
SVM-LK, 
XGBoost, 
fastText 

16x ML-models  
(8x findings &  
8x impressions) 
 

Top 1:  
fasstext-impr 5/5 
 
Top 2:  
svm-impr 3/5 
tRF-BS-impr 1/5 
ELNET-impr 1/5 

ME ntree =500, mtry=4, pvarsel = 16 pvarsel = 16 88.8 [83.7-92.8] 0.11  0.90 0.20 0.36 

XGBoost 

 
vRF 
tRFBS, 
tRFME,  
tRFLL,  
ELNET,  
SVM-LK, 
XGBoost, 
fastText 
 

16x ML-models  
(findings & impressions) 
 

Top 1:  
fasstext-impr 3/5 
svm-impr 2/5 
 
Top 2:  
fasstext-impr 2/5 
tRF-BS-impr 2/5 
svm-impr 1/5 

ME 

nrouds/ntree = [5, 10, 25, 50, 75, 100] 
max_depth = [3, 5, 6 ,8] 
eta = [0.01, 0.1, 0.3] 
gamma = [0, 0.001, 0.01, 0.1, 0.5, 1] 
colsample_bytree = [0.1, 0.25, 0.5, 
0.693 (ln2)~RF, 1.0], 
min_child_weight = 1,  
subsample = 1 

nrounds = [75, 5, 75, 5, 10] 
max_depth = [3, 6, 5, 3, 5] 
eta = [0.3, 0.01, 0.1, 0.01, 0.1] 
gamma = [1, 0.01, 0.1, 0, 0.5] 
colsample_bytree = [0.1, 0.5, 
ln2~RF, 0.1, 0.25] 

87.4 [82.0-91.6] 0.13  0.87 0.30 0.46 

AUC: multiclass area under the ROC after Hand and Till (that can only be calculated if probabilities are scaled to 1), us var.filt: unsupervised variance filtering using p=300 most variable RadLex® terms -this step was previous of 
training to prevent information leakage, BS: Brier score, ME: misclassification error, LL: multiclass log loss, vRF and tRF: vanilla- and tuned random forests, ELNET: elastic net penalized multinomial logistic regression, SVM: 
support vector machines, LK: linear kernel SVM, n.SV: number of support vectors; XGBoost: extreme gradient boosting using trees as base learners, BT: boosted trees. 
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Figure 1 shows the 5 x 5-fold nested cross validation setup, which was used to evaluate all 

machine learning (ML) algorithms and to train the second layer model as a meta/ensemble-

learner on top of the combined predictions of these base ML classifiers. Human experts had 

access to both the findings and impression sections as well as the clinical question field of the 

reports to generate target labels ASPECTS recommended “yes” (n=154) vs. “no” (n=52) and 

to extract clinico-radiologically relevant features (HEAF). The findings and the impressions 

were each passed through a fully automated cross-lingual (German-English) natural language 

processing (NLP) pipeline to generating RadLex® mappings. The pipeline can be accessed at 

mmatt.shinyapps.io/rasp. In order to prevent information leakage, the second layer 

meta/ensemble models (random forests [RF] and boosted trees [XGBoost]) were trained on the 

combined inner fold test (i.e. sum of nested validation 𝛴Ntest_1.1-1.5) sets. These second layer 

models were used to derive objective importance rankings of the individual ML-classifiers. To 

ensure direct comparability between the investigated ML-algorithms, the data partitioning was 

identical (i.e. each model was trained and fitted on the very same subsamples of the data). 

However, fastText was fitted directly on German report texts, whereas other ML-algorithms 

were fitted on both HEAF and NLP-based RadLex® mappings. The final performance measure 

of the classifiers was calculated as the 5-fold cross-validated average on the outer folds (see 

Tables 1, 2 and 3). 
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Figure 2 depicts the visual calibration profiles (reliability plots) of the most important machine learning classifiers based on the random forests 

ensemble when fitting the automated RadLex® mappings (all outer folds combined, N=206). Points represent the mean predictions and corresponding 
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observed fractions of respective “ASPECTS recommended: yes” cases for each ten bins (i.e. 0-0.1, …, 0.9-1.0) of the probability domain. The rug 

plots at the top (red; impressions) and bottom (blue; findings) visualize the distribution of the probability estimates of the respective ML-algorithm. 

Each line indicates an estimate of a single case (N=206). ELNET (A) was more suitable for the impressions (red) particularly in the 0.50-0.75 range, 

corresponding to its top 3 ranked accuracy. Linear kernel SVMs (B) showed well-calibrated estimates for the 0.50-1.0 probability domain for both 

the findings (blue) and the impressions (red). XGBoost (C) showed the best overall calibration profile among all investigated ML-models. It presented 

an almost perfect calibration curve (grey diagonal line) on the findings for the whole probability domain (0-1) while being the most accurate ML-

classifier (Table 2). Although fastText (D) showed remarkable accuracies (highest overall) when fitting the impressions (red curve) and the third best 

on the findings (blue curve), its probability estimates were poorly calibrated – particularly on the findings and for “ASPECTS recommended: no” 

cases (see Table 2). The RF ensemble (E) showed a reasonably well-calibrated profile when trained on the probability estimates of all ML-algorithms 

(16x ML-models) including both of which were generated on the findings and impressions sections (see Table 3). The inset of the histogram shows 

the bimodal distribution of the probability estimates for the “ASPECTS recommended: yes” label of the RF ensemble. For the most part, the ensemble 

was “quite sure” about the label (maximum in the range of 0.75-1.0). Also, it showed (F) similar calibration profiles when trained either only on ML-

model estimates of the findings (blue; 8x models) or the impressions (red; 8x models). 
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Figure 3 shows the multi-way importance plots of the investigated machine learning algorithms based on the random forests ensemble when fitting 

the automated RadLex® mappings of the first outer fold test set (Ntest.1.0=42). Subplots A, B and C show the importance measures (y-axis: mean 

decrease in Gini index; x-axis: mean decrease in accuracy) that are based on the role a ML-algorithm plays in the prediction of the RF ensemble. 

Notably, the mean decrease in accuracy (x-axis) is a more robust measure for variable importance[6, 53, 55, 56]. P-values are based on a binomial 
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distribution of the number of nodes split on the variable. Subplots D, E and F focus on three importance measures that are derived from the structure 

of the trees in the forest including i) mean_min_depth (x-axis) of the first split on the variable; ii) number of trees in which the root is split on the 

variable (“variable”: blue patch non-top or top); iii) the total number of nodes in the forest that split on that ML-classifier (no_of_nodes). Subplots A 

and D; B and E; and C and F are the corresponding plots to each other when fitting ML-models of the findings only, impressions only and both, 

respectively. When combining ML-classifiers trained on the findings sections only (A), XGBoost (p<0.01) and linear kernel SVMs (p<0.05) were the 

only two significant predictors. Likewise, for the impressions (B), fastText (p<0.01) was by far the most important predictor. Nonetheless, SVM-LK 

(p<0.01) and brier score-tuned RF (tRF-BS) were also significant (p<0.05). When we combined all ML-models (findings & impressions; C), fastText 

(p<0.01) and SVM-LK (p<0.01) based on the impressions dominated the importance rankings, however, (although less relevant) XGBoost estimates 

using the findings sections stayed also significant (p<0.05).  
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Figure 4 depicts the prototype graphical user interface of our context-sensitive CAR tool 

“MyReportCheck”, which utilizes our embedded machine learning framework on fully 

automated RadLex® mappings for recommending ASPECTS during the reporting of 

neuroradiological emergencies. The software solution is available as service from Empolis 

Information Management GmbH (Kaiserslautern, Germany). 
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